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Abstract This paper considers a time expanded version
of the classical (Hitchcock-) transportation problem.
Certain quantities of goods are produced in the produc-
tion facilities in each period of a planning horizon and
also the demand values of the outlets are different for
each time period. Moreover, the transportation costs
from i to j also vary over time. The different planning
periods are connected by the fact that goods may be
stored at a facility or at an outlet to exploit cheaper
transportation costs as long as the demand is met in
every time period. We describe the problem by two
models, showing that it can be solved in polynomial
time by standard software packages. Then we describe
some generalizations of the problem by adapting the
two models, pointing out that each model seems to
provide different benefits.

Keywords Transportation problems ·
Min-cost flow problem · Hitchcock problem

1 Introduction

For notation and standard terminology, let us refer to
[10] (see also [6, 9]).

The (Hitchcock-) transportation problem is a well
known problem in operations research [6, 9, 10] and can
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be solved in polynomial time by fast algorithms (see e.g.
[12]). By its applicative nature, several versions of this
problem have been considered, such as dynamic, time-
dependent versions (see e.g. [5]).

In this paper we consider a time expanded version,
which is defined below as problem P. Problem P was
studied in [2] (see also [3, 4]) by referring to a method
for solving integer programming which resorts to the
calculation of suitable Gröbner bases [7]: in partic-
ular, the authors call it 3-dimensional transportation
problem (referring to [11], while a similar name was
used in [1] for a different problem). The motivation
of this paper is to try to study problem P by an op-
erations research approach. The closest reference in
this sense seems to be [8], where the authors study
the existence of feasible solutions in a multiperiod
allocation problem of substitutable resources: in par-
ticular, at a certain point of the paper the authors
call it a multiperiod transportation problem a prob-
lem which however seems to be quite distant from
problem P.

Let P be the following problem: Given r produc-
tion facilities F1, . . . , Fr, let Aik (i = 1, . . . , r, and k =
1, . . . , t) denote the number of units of an indivisi-
ble good produced by Fi during the k-th period of a
planning horizon of t periods. Assume that there are
s outlets O1, . . . , Os each one demanding a certain
number of units per period, say B jk ( j = 1, . . . , s and
k := 1, . . . , t). Let cijk ≥ 0 be the cost associated with
transporting one unit from Fi to O j during the k-th
period, let hik ≥ 0 (let h′

jk ≥ 0) be the cost associated
with storing one unit in Fi (in O j) at the end of the
k-th period. Then one wishes to minimize the total
cost of transportation and of storage along the planning
horizon of t periods.
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One can assume that the following conditions (1) and
(2) hold true (as discussed below).
∑

i=1,...,r

∑

k=1,...,t̄

Aik ≥
∑

j=1,...,s

∑

k=1,...,t̄

B jk, for t̄ = 1, . . . , t (1)

∑

i=1,...,r

∑

k=1,...,t

Aik =
∑

j=1,...,s

∑

k=1,...,t

B jk (2)

If Eq. 1 is not true, then the problem has no feasible
solution (demand exceeds supply at the t̄-th period). If
Eq. 2 is not true, then one may proceed similarly to the
Hitchcock problem (i.e., problem P for t = 1) as shown
in [10] since all the costs are nonnegative: one may add,
for k = 1, . . . , t, a fictitious outlet Ouk (with u = s +
1) and define Buk = ∑

i=1,...,r Aik − ∑
j=1,...,s B jk, and

ciuk = 0 for i = 1, . . . , r; then define h′
uk = 0 for k =

1, . . . , t.
Let us denote as:

• xijk the amount of good which is sent from Fi to O j

in the k-th period;
• zik the amount of good which is stored in Fi at the

end of the k-th period;
• z′

jk the amount of good which is stored in O j at the
end of the k-th period.

A solution of P is determined by the values of xijk,

zik, z′
jk for i = 1, . . . , r, j = 1, . . . , s, k = 1, . . . , t: then

let [xijk, zik, z′
jk] denote a solution of P and C[xijk,

zik, z′
jk] denote its cost.

In this paper we propose two models for P: the first
(Section 2) is a natural min-cost flow model, while the
second (Section 3) is a Hitchcock model obtained by
exploiting some peculiarities of the problem. Then we
describe some possible generalizations of P by adapting
the two proposed models (Section 4), pointing out that
each model seems to provide different benefits.

2 A min-cost flow model for P

A network N = (σ, τ, V, E, w, c) is a digraph (V, E)

together with a source σ ∈ V with 0 indegree, with a
terminal τ ∈ V with 0 outdegree, with an edge-capacity
function w : E −→ R, and with an edge-cost function
c : E −→ R. A flow f in N is a vector in R

|E| (one
component f (u, v) for each (u, v) ∈ E) such that:

(i) 0 ≤ f (u, v) ≤ w(u, v) for all (u, v) ∈ E
(ii)

∑
(u,v)∈E f (u, v) = ∑

(v,u)∈E f (v, u) for all v ∈ V \
{σ, τ }.

The value of f is the quantity:
∑

(σ,y)∈E f (σ, y). The cost
of f is the quantity:

∑
(u,v)∈E c(u, v) f (u, v).

Given a network N and a flow-value v f , the min-
cost flow problem with respect to pair (N, v f ) is that of
computing in N a flow f of value v f that has minimum
cost.

In the sequel, let us try to model P as a min-cost flow
problem in the following network, which is constructed
by considering that P implicitly contains t instances of
the Hitchcock problem and by adding an origin vertex,
a destination vertex, and edges for the links between
consecutive periods (see Fig. 1):

• construct t disjoint digraphs G1, . . . , Gt such that:

Gk = (Vk, Ek), for k = 1, . . . , t,

where

Vk = {aik : i = 1, . . . , r} ∪ {b jk : j = 1 . . . , s};
Ek = {(aik, b jk) : i = 1, . . . , r, j = 1, . . . , s};
Comment: vertex aik represents Fi at period k, for
i = 1, . . . , r, k = 1, . . . , t; vertex bik represents O j

at the period k, for j = 1, . . . , s, k = 1, . . . , t; edge
(aik, b jk) represents the possibility of transporting
good from Fi to O j at period k, for i = 1, . . . , r,
j = 1, . . . , s, k = 1, . . . , t.

• add vertex σ and edges {(σ, aik) : i = 1, . . . , r,
k = 1, . . . , t};

• add vertex τ and edges {(b jk, τ ) : j = 1, . . . , s,
k = 1, . . . , t};

• add edges {(aik, aik+1) : i=1,. . ., r, k=1,. . ., t−1};
• add edges {(b jk, b jk+1) : j=1, . . . , s, k=1,. . ., t−1};
• the elements of V and E are defined as above;
• the function w : E −→ R of edge-capacities is

defined as follows:

w((σ, aik)) = Aik, for i = 1, . . . , r, k = 1, . . . , t;
w((b jk, τ )) = B jk, for j = 1, . . . , s, k = 1, . . . , t;
w(e) = ∞, for the remaining elements e ∈ E;

• the function c : E −→ R of edge-costs is defined as
follows:

c((aik, b jk)) = cijk, for i = 1, . . . , r, j = 1 . . . , s,

k = 1, . . . , t;
c((aik, aik+1))=hik, for i=1, . . . , r, k=1, . . . , t − 1;
c((bik, bik+1))=h′

ik, for j=1, . . . , s, k=1, . . . , t−1;
c(e) = 0, for the remaining elements e ∈ E.

Let N = (σ, τ, V, E, w, c) be the network defined as
above. By Eq. 1 it is possible to define in N a flow
of value v f = ∑

j=1,...,r

∑
k=1,...,t Bik. Then let P f denote

the min-cost flow problem in (N, v f ).
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Fig. 1 A min-cost flow model
for P in the case r = 2, s = 2,
t = 3
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By Eq. 1 and by the structure of N, given a feasible
solution [xijk, zik, z′

jk] of P one can derive a feasible
solution [y(u, v)] of P f , and vice-versa, by the following
equalities:

• xijk = y(aik, b jk) for i = 1, . . . , r, j = 1, . . . , s, k =
1, . . . , t;

• zik = y(aik, aik+1) for i = 1, . . . , r, k = 1, . . . , t;
• z′

jk = y(b jk, b jk+1) for j = 1, . . . , s, k = 1, . . . , t.

Furthermore C[xijk, zik, z′
jk] = ∑

(u,v)∈E c(u, v)y(u, v),
by the definition of costs for edges of N.

One can formalize what above by the following
theorem.

Theorem 1 An instance of P can be solved as a min-cost
f low problem.

As network N can be efficiently constructed, one
obtains the following corollary.

Corollary 1 Problem P can be solved in polynomial
time.

In particular the problem admits an optimal integer
solution if all the values Aik, B jk are integer.

3 A Hitchcock model for P

Let us consider problem P as problem P f defined in
Section 2, according to the equalities linking the respec-
tive solutions. In [10] a standard transformation from
an instance of the min-cost flow problem to an instance
of the Hitchcock problem is shown. However, in the
sequel let us try to model P as a Hitchcock problem just
by exploiting some peculiarities of the problem (i.e., by
compacting some aspects of P f ) and not by using the
standard transformation of [10].

The Hitchcock model for P is based on the following
variables (see Fig. 2):

qii′ jj′ = the amount of good produced in Fi at period i′,

and sold in O j at period j′.

Then (also by conditions (1) and (2)) one has:

qii′ jj′ ≥ 0, (with qii′ jj′ = 0 , for i′ > j′); (3)

∑

j=1,...,s

∑

j′=1,...,t

qii′ jj′ = Aii′ , for i = 1, . . . , r, i′ = 1, . . . , t;

(4)
∑

i=1,...,r

∑

i′=1,...,t

qii′ jj′ = B jj′ , for j = 1, . . . , s, j′ = 1, . . . , t.

(5)
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Fig. 2 A Hitchcock model for P in the case r = 2, s = 2, t = 3
(the edges, i.e. the variables, with i′ > j′ are omitted)

It remains to define the costs cii′ jj′ .
Assume that i′ > j′. Then one can define cii′ jj′ = ∞,

so to ensure qii′ jj′ = 0 for i′ > j′.
Assume that i′ ≤ j′.
Let us observe that for any solution of P, the amount

qii′ jj′ will arrive from Fi to O j through a path from aii′ to
b jj′ in the network N of Section 2: in particular, all the
edge-capacities along each of such paths are ∞.

It follows that for any optimal solution of P, the
amount qii′ jj′ will arrive from Fi to O j through a least
cost path (or in general through least cost paths, if more
than one) from aii′ to b jj′ in the network N of Section 2.
Then the cost cii′ jj′ may be defined as the cost of a
least cost path from aii′ to b jj′ : by the structure of N
such paths are exactly j′ − i′ + 1 (i.e., each such path is
formed by a possible storage multi period in Fi, by a
transfer period from Fi to O j, and by a possible storage
multi period in O j: the transfer period is a period k with
i′ ≤ k ≤ j′).

Then summarizing one obtains:

• cii′ jj′ = ∞, for i′ > j′;
• cii′ jj′ = mini′≤k≤ j′ {(∑u=i′,...,k−1 hiu)+cijk + (

∑
u=k,..., j′

h ju)}, for i′ ≤ j′.

Then the objective function
∑

i=1,...,r

∑
i′=1,...,t

∑
j=1,...,s∑

j′=1,...,t cii′ jj′qii′ jj′ and the constraints (3), (4), (5) define

an instance of the Hitchcock problem (all the costs are
non-negative), say H.

Let us show that given an optimal solution [xijk,

zik, z′
jk] of P one can derive a feasible solution [qii′ jj′]

of H, and vice-versa.

From P to H Let [xijk, zik, z′
jk] be an optimal solution

of P. Then a solution [qii′ jj′] of H with the same cost can
be obtained as follows. Let us observe that: (i) the costs
of storage in facilities (in outlet) do not depend on the
destination (on the origin) of the good. By (i) and by
the definition of costs cii′ jj′ , one may proceed as follows.

The first step may be to obtain the values of qikjk,
for k = 1, . . . , t: to this end, for k = 1, . . . , t, it is
enough to chose the values of qikjk, in order to maxi-
mize

∑
i=1,...,r

∑
j=1,...,s qikjk, subject to qikjk ≤ xijk and to∑

j=1,...,s qikjk ≤ Aik for i = 1, . . . , r (that is to charge the
values of xijk to those of qikjk as much as possible). That
can be easily done by a greedy technique.

The second step may be to obtain the other values of
qii′ jj′ : to this end one can apply the Ford–Fulkerson pro-
cedure to compute a maximum flow in the network N′
obtained from the network N of Section 2 by modifying
the edge-capacities as follows:

• w((σ, aik)) = Aik − ∑
j=1,...,s qikjk , for i = 1, . . . , r,

k = 1, . . . , t;
• w((b jk, τ )) = B jk − ∑

i=1,...,r qikjk , for j = 1, . . . , s,
k = 1, . . . , t;

• w((aik, aik+1)) = zik , for i = 1, . . . , r, k = 1, . . . , t;
• w((bik, bik+1)) = z′

jk , for j = 1, . . . , s, k = 1, . . . , t;
• w((aik, bik)) = xijk − qikjk , for i = 1, . . . , r, j =

1, . . . , s, k = 1, . . . , t.

In fact, by starting from a null flow in N′, at each
iteration of the procedure an augmenting flow saturates
a path in N′ from a certain lowest aii′ to a certain
highest b jj′ , with i′ < j′ (because of the first step): the
value of such an augmenting flow can be charged onto
qii′ jj′ , which may be updated at each iteration. Note
that: concerning the cost, [qii′ jj′] has the same cost as
[xijk, zik, z′

jk], since the latter is an optimal solution of
P and by the definition of costs cii′ jj′ ; concerning the
procedure, at most t × (r × t) × (s × t) iterations occur,
where the first t stands for an upper bound to the
number of all possible paths from aii′ to b jj′ .

From H to P Let [qii′ jj′] be a solution of H. Then
a solution [xijk, zik, z′

jk] of P with the same cost can
be obtained as follows. By the definition of costs cii′ jj′ ,
every qii′ jj′ defines a least cost path Pii′ jj′ from aii′ to b jj′

in the network N of Section 2 (i.e., corresponding to
the costs which minimize the expression which defines
cii′ jj′). Then qii′ jj′ can be charged (as a flow line) onto
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the edges of Pii′ jj′ , so to compose the values of a so-
lution [xijk, zik, z′

jk] of P according to the equalities of
Section 2.

One can formalize what above by the following
theorem.

Theorem 2 An instance of P can be solved (directly) as
a Hitchcock problem.

Then a corollary and a comment similar to those at
the end of Section 2 hold.

4 Some generalizations of P

In this section let us introduce three possible general-
izations of problem P, pointing out the advantages and
the disadvantage of the two proposed models.

Let P1 be the following problem. In the context of
problem P, assume that every facility Fi for i = 1, . . . , r
(that every outlet O j for j = 1, . . . , s) can store at most
di (at most d′

j) units of good at the end of each period
k for k = 1, . . . , t. The objective remains that of the
problem P.

Then P1 can be modeled by the min-cost flow model
of Section 2, by modifying the network N as follows:

• w((aik, aik+1)) = di , for i = 1, . . . , r, k = 1, . . . , t;
• w((b jk, b jk+1)) = d′

j , for j = 1, . . . , s, k = 1, . . . , t.

Then P1 can be solved as a min-cost flow problem, i.e.,
in polynomial time.

On the other hand, it seems to be not immediate to
model P1 by the Hitchcock model of Section 3.

Let P2 be the following problem. In the context of
problem P, assume that the good produced in a facility
has to be sold in a outlet before a certain number of
periods (e.g., before corruption of the good), say L
periods. The objective remains that of the problem P.

Then P2 can be modeled by the min-cost flow model
of Section 2, by adding the following constraints:

• ∑
i=1,...,r zik + ∑

j=1,...,s z′
jk ≤ ∑

k̄=k,...,k∗ B jk̄ , for k =
1, . . . , t , where k∗ = min{k + L, s}.

Actually in this way one obtains a generalization of
the min-cost flow problem, which remains a linear pro-
gramming problem, but can not be solved as a classical
min-cost flow problem.

Then P2 can be modeled by the Hitchcock model of
Section 3, by modifying the costs as follows:

• cii′ jj′ = ∞ , for j′ − i′ > L,

so to ensure qii′ jj′ = 0 for j′ − i′ > L.

Then P2 can be solved as a Hitchcock problem, i.e.,
in polynomial time.

Let P3 be the following problem: In the context
of problem P, let cik (i = 1, . . . , r, k = 1, . . . , t) be the
cost of production for a unit of good in Fi in the k-
th period, and let pjk ( j = 1, . . . , s, k = 1, . . . , t) be the
profit for selling a unit of good in O j in the k-th period:
in particular, Aik can be view as the maximum amount
which can be produced by Fi in the k-th period. Then
one wishes to minimize the total cost of transportation,
of storage, and of production, less the total profit by
selling, along the horizon of t periods, i.e., one wishes to
maximize the total profit by selling, less the total cost of
transportation, of storage, and of production, along the
horizon of t periods.

A possible scenario for problem P3 may be that
of a tobacco manufacture company: in fact the selling
price of tobacco varies over countries and its fluctuation
(over countries) is planned in advance.

Then P3 can be modeled by the min-cost flow model
of Section 2, by modifying the network N as follows:

• c((σ, aik)) = cik , for i = 1, . . . , r, k = 1, . . . , t;
• c((σ, b jk)) = −pjk , for j = 1, . . . , s, k = 1, . . . , t.

Actually in this way one obtains a generalization of the
min-cost flow problem (where: the costs are allowed
to be negative, and the flow value is not fixed), which
remains a linear programming problem, but can not be
solved as a classical min-cost flow problem.

Then P3 can be modeled by the Hitchcock model of
Section 3 as follows.

Let us observe that (recalling the definition of costs
cii′ jj′ of Section 3) it is possible and convenient to send
good from aii′ to b jj′ if and only if:

• i′ ≤ j′ (it is possible);
• cii′ + mini′≤k≤ j′ {(∑u=i′,...,k−1 hiu) + cijk + (

∑
u=k,..., j′

h ju)} − pjj′ < 0 (it is convenient).

Let us say that a variable qii′ jj′ is green if the above two
conditions are satisfied.

For any green variable qii′ jj′ let us write c̄ii′ jj′ = cii′+
mini′≤k≤ j′ {(∑u=i′,...,k−1 hiu) + cijk+(

∑
u=k,..., j′ h ju)}− pjj′ ,

and let K be a scalar with K > |c̄ii′ jj′ |.
Then let us define the following costs c∗

ii′ jj′ for every
variable qii′ jj′ :

• c∗
ii′ jj′ = K − |c̄ii′ jj′ | , if qii′ jj′ is a green variable;

• c∗
ii′ jj′ = K , otherwise.

Let P∗
3 denote the Hitchcock problem (with all non-

negative costs) defined by the objective function∑
i=1,...,r

∑
i′=1,...,t

∑
j=1,...,s

∑
j′=1,...,t c∗

ii′ jj′qii′ jj′ and subject
to the constraints of the Hitchcock model of P.
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Then it is not difficult to verify that, given an optimal
solution [q∗

ii′ jj′] of P∗
3, one can directly derive an optimal

solution [qii′ jj′ ] of P3 by setting:

• qii′ jj′ = q∗
ii′ jj′ , if qii′ jj′ is a green variable;

• qii′ jj′ = 0 , otherwise.

Then P3 can be solved as a Hitchcock problem, i.e., in
polynomial time.

Then summarizing it seems that: the first model is
more powerful than the second model to describe gen-
eralizations of P (e.g., P1), though it may lead to linear
programming which can not be solved as a classical
min-cost flow problem (e.g., P2 and P3); while the
second model may be more useful than the first model
to show that certain generalizations of P (e.g., P2 and
P3) can be solved as a classical Hitchcock problem.

5 Conclusions

The (Hitchcock-) transportation problem is a well
known problem in operations research [6, 9, 10] and can
be solved in polynomial time by fast algorithms (see e.g.
[12]). By its applicative nature, several versions of this
problem have been considered, such as dynamic, time-
dependent versions (see e.g. [5]).

In particular the following time dependent version
was studied in [2] (see also [3, 4]) by referring to a
method for solving integer programming which resorts
to the calculation of suitable Gröbner bases [7]:

Given r production facilities F1, . . . , Fr, let Aik (i =
1, . . . , r, and k = 1, . . . , t) denote the number of units
of an indivisible good produced by Fi during the k-th
period of a planning horizon of t periods. Assume that
there are s outlets O1, . . . , Os each one demanding a
certain number of units per period, say B jk ( j = 1, . . . , s
and k := 1, . . . , t). Let cijk ≥ 0 be the cost associated
with transporting one unit from Fi to O j during the k-
th period, let hik ≥ 0 (let h′

jk ≥ 0) be the cost associated
with storing one unit in Fi (in O j) at the end of the k-
th period. Then one wishes to minimize the total cost
of transportation and of storage along the planning
horizon of t periods.

In this paper we tried to study the above problem
by an operations research approach. We described the
problem by two models, showing that it can be solved
in polynomial time by standard software packages: the

first is a natural min-cost flow model, while the sec-
ond is a Hitchcock model obtained by exploiting some
peculiarities of the problem. Then we described some
possible generalizations of the problem by adapting the
two proposed models, pointing out that each model
seems to provide different benefits.
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