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Abstract
The Setting In the Nineties of the last century the European
Commission decided to open the railway market to competition,
allowing different railway companies to operate on the same
network. Under this framework Infrastructure Managers have to
allocate capacity in order to define the timetable, dealing with
possible slot conflicts between competing Transport Operators.
The Problem An efficient train scheduling requires collecting
a lot of information from the Transport Operators, but it may
not be in their interests to reveal their private information.
Therefore, it may be useful for real-world applications to
designmethods that provide incentives to Transport Operators
for cooperating with the aim of increasing their utility; more-
over, this may result in an improvement of the efficiency even
for the Infrastructure Managers, so they also have incentives
for favouring the cooperation.
The Proposal In this paper we propose a game theoretical
model in which the agents (Transport Operators) exchange
information on their needs and are compensated by a possible
increasing of their utility. This approach represents the situa-
tion as a coalition formation problem. In particular, we refer to
the C-Solution proposed by Gerber (Rev Econ Design 5:149–
175, 1), which is applied to some examples, each with differ-
ent features. This model requires that information is revealed
to a small number of competitors. This is rather important in a
market currently still characterized by operator reluctance to
an indiscriminate diffusion of information. Furthermore, the
low dimension of the problem allows having a low computa-
tional complexity.

Keywords Coalition formation . NTU-game . Railway
scheduling . Slot allocation

1 Introduction

The typical framework in the European railway industry in
the past century was the presence of monopolistic state-
owned companies in all countries. These integrated com-
panies managed both infrastructure and service. As this
type of organization revealed a lot of inefficiencies (defi-
cits, low quality, etc.), in the 1990s the European Com-
mission decided to open the market to competition. The
reform process began with the directive 440/91, followed
by different packages of directives,1 First of all, the
Commission asked for separating the management of in-
frastructure from the management of the service. In this
way the infrastructure becomes available for several oper-
ators through competition in the market or competition for
the market. In such a competitive view, the definition of
the railway timetable and the resolution of possible con-
flicts between operators become crucial tasks.

In particular, the European Commission emphasizes the
concept of non-discriminatory access to the railway market
and asks for a higher level of transparency of the sector.
Railway undertakings are invited to reveal more information
about market conditions. Unfortunately at the current state-of-
art of the research, there not exists a method to allocate
capacity able to satisfy the condition of non-discriminatory
access. The literature identifies different methodologies for
capacity allocation that we briefly set out afterwards and that
draw on auction theory or mathematical programming.

1 We refer to directives EEC 18-19/95, EU 12-13-14/2001 and EU 49-50-
51/2004.
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The increase of competition implies the need to use scien-
tific methods of decision in order to optimize the allocation of
available resources, particularly the scheduling of trains. Other
elements that increase the complexity of the problem are the
large dimension of the network and the interconnection with
the timetables of boundary countries, due to international
trains. For these reasons the problem was approached, at least
theoretically, in many different ways, from the classical man-
ual to the most sophisticated software.

The manual approach starts, in general, from the existing
timetable and tries to improve it, or just to update it, taking
into account the requirements for insertions and/or elimina-
tions of trains. This approach depends on a suitably skilled
and experienced timetable expert, who has knowledge about
how well the old timetables worked.

Referring to the sophisticated software approaches it is
possible to consider an optimal timetable as the solution of
mathematical programming problems whose data consist of
the topology of the network (lines and stations), the technical
characteristics of the tracks and of the trains, the demand for
transport and the utility functions of the trains operators (TOs).
It is possible to assume as unknown the leaving time and the
travel time of each train and, consequently, to state as con-
straints the headway times between trains and some require-
ments arising from the technical characteristics and from the
quality of services to the users; under these conditions it is
possible to search for the maximum of the global utilities (see
[2]). Due to the dimension and computational complexity of
the problem, these approaches may produce a timetable that is
an approximate optimum; moreover the objective function is
based on the global utility of the TOs, so that there is the
possibility to improve the schedule looking at the utility of
each agent.

In this paper we propose a new approach, rooted in coop-
erative game theory; more precisely, we use a cooperative
game without transferable utility (NTU-game), that considers
the role of each TO. The idea is to introduce small changes in
the current schedule, after which a small set of TOs is better
off, without affecting the utility of the others. Even if a large
number of non cooperative models for transportation prob-
lems were developed in the past (see [3]), to the best of our
knowledge there do not exist applications of NTU-games to
railway slot allocation that deal both questions of coalition
formation and payoff distribution. Our idea is to start from a
railway timetable proposed by an Infrastructure Manager
(IM), whose efficiency may be improved, involving a small
number of agents, operating trains on the same line in a short
period of time, that agree on exchanging more information on
their preferences, moving from a non cooperative setting to a
cooperative one. In this way we exploit the inefficiencies in
the current timetable due to limited information exchange,
which in its turn depends on the competitive environment
which the TOs operate in. Our aim is twofold. First, we want

to obtain a new timetable that allows improving the utility of
the TOs that decide to cooperate. Second, we are interested in
getting also a numerical solution of the problem, in the sense
that the rearrangement of the scheduling may require that
some agents accept to be worst off from the point of view of
the utility associated to their final scheduling but they are
compensated with a monetary amount from those agents
who are better off, after a larger increasing of their utility
associated to their final scheduling (see Example 1). This
implies that we have the necessity to compute not only the
scheduling, but also a fair compensation system for providing
incentives to the agreement. In order to reach this aim, we
refer to the C-Solution proposed by Gerber [1] for three
reasons. First, it does not necessarily favour the formation of
the grand coalition, i.e. an agreement involving all the
cooperating TOs; second, it takes into account the possibility
that the agents have in other coalitions; third, it offers also the
possibility to obtain the amount of compensations, if allowed.
Next, we consider a different setting in which the agents look
only for improving their utilities via a better scheduling,
without compensations among them. In this scenario, we refer
to a generalization of the bargaining approach, introduced by
Nash [4] for two agents (see Examples 2, 3, 4).

The paper is organized as follows. In the next section we
summarize some papers that deals with the problem of deter-
mining an efficient scheduling of the trains; in Section 3 we
recall some basic definitions of game theory; Section 4 is
devoted to the C-Solution by Gerber [1], the main instrument
we need in our approach; in Section 5 we formalize our
problem; Section 6 presents some simple examples of possible
situations and related solutions; Section 7 concludes.

2 Previous approaches

This section highlights some papers that inspired our research.
First, we remark that there exists a wide literature on capacity
allocation issues in railway. For example, several models
proposed in the literature aim to solving the scheduling prob-
lem focusing on a certain objective function under predefined
constraints to optimality, such as periodic time windows con-
straints [5], or introduce stochastic disturbances [6]; Fischetti
et al. [7] focused on robustness improvement of a given
solution; Ho et al. [8], after remarking that multi-objective
optimization approaches often end with feasible solutions
because of the constraints on computation time, propose a
method for designing the scheduling based on Particle Swarm
Optimization that considers the negotiations rounds among
the IM and the TOs. Another interesting field is that of
simulation tools, possibly combined with other instruments
and approaches. In this case timetables are generated by time-
stepping simulation using train motion differential equations.
SIMONE, OpenTrack and RailSys are some of the commercial
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simulation programs available in the railway industry (see [10,
11] and [12]). Wong and Ho [9] consider a competitive setting,
where the IM and the TOs negotiate on the access fees and
service requests, accounting learning techniques that allow for
improving the resulting scheduling after several rounds; the
model is solved via simulation. Simulation is used also by
Meijer [13] that analyzes the Dutch railways situation from
the point of view of gaming. For going deeper, we address to
“An assessment of Railway Capacity” [14]; a recent survey on
the state-of-art of railway timetable and traffic management is
[15].

Now, we briefly recall some interesting works based on
auction theory and mathematical programming. In Binary
Conflict Ascending Price mechanism (BICAP) (see [16])
agents bid to have access to railroad and they are free to
increase their bids in order to compete for the available slots.
The mechanism works like a set of simultaneous ascending
auctions, one for each train to be operated, and bids are
submitted in real time. Three elements are involved: a set of
feasible outcome allocations, a message space through which
agents interact each other and with the allocation authority,
and an outcome rule setting how these messages could deter-
mine a unique outcome starting from the feasible set of
allocations. The allocation process maximizes the total value
of bids from trains with feasibility constraints. Each agent
could submit increasing bids for trains in a continuous time
auction. The mechanism checks if the new bid is higher for a
given train than the current bid. The potential allocation of a
certain period of time is defined as the set of bids that cause no
conflict and maximizes the sum of all feasible allocations.
Only the highest bids are kept as information by the mecha-
nism. A new allocation is computed and the auction ends
when there are no further increases in the bids after a certain
period of time. The experiments carried out by the authors
confirm that a decentralized mechanism can solve some of the
technical aspects of the rail scheduling problem and yield to an
efficient allocation of tracks. Moreover, the design consisten-
cy appears strong.

A different approach was proposed by Nilsson [17], ad-
dressing two strongly related challenges: The optimization
problem, related to the mathematical aspects, and the incen-
tive problem, referred to the need to make operators reveal
their value of track access, i.e. with the need to acquire
information about the operators’ value-of-access. Firstly, the
interested operators have to register their preferred trains
departures and arrivals. They also include alternatives to the
preferred path and submit also a set of bids, one for each
alternative path. Each bid indicates the operator’s
willingness-to-pay for the preferred departure-arrival path as
well as for the alternative paths. Secondly, the IM identifies
the value-maximizing allocation, i.e. the timetable which gen-
erates the largest possible aggregate value of bids. For each
train path a set of prices is calculated, given the demand

schedules and bids which have been submitted. These are
the prices the operators have to pay in order to run their trains.
Thirdly, the information acquired is sent back to operators for
further considerations. If there are no conflicts for path be-
tween operators, all get their preferred choices and the process
can be terminated. If not, one or more operators have not been
allocated exactly what they asked for. Finally, these last oper-
ators have the opportunity to reconsider their initial train path
specifications. The whole process is repeated as long as any-
one wants to make changes in bids or departure specifications.
Another important point is that the IM could address problem
that are indirectly related to timetabling. The result of the
allocation process may also provide other relevant information
like that about scarcity of capacity. Using the suggested tech-
niques, scarcity will manifest itself in high track user charges,
signalling that users’ value of access is high. The process may
therefore create relevant information for the investment plan-
ning process useful to decide if track supply should be ex-
panded or not.

The paper by Caprara et al. [18] introduces a model based
on a graph. They consider a single line. Each station along the
line is represented by a set of 2880 nodes: 1440 indicating the
arrival time and 1440 indicating the departure time (to the
nearest minute). The oriented arcs are of two sorts: those
connecting a departure node of one station to an arrival node
of the next station (representing the train travelling between
the stations) and those connecting an arrival node to a depar-
ture node of the same station (representing the stopping time
of the train in the station). A path, i.e. a sequence of arcs from
a departure station to an arrival station represents the travel of
a train from its origin to its destination. Suitable constraints
avoid undesired results. The solution provides a set of paths
that maximize the total utility of the trains, on the basis of the
difference from their optimal departure time from the origi-
nating station (shift, that can be positive if the train leaves later
or negative if the train leaves earlier) and of the delay in the
travel time (stretch, that is supposed to be only non negative,
as the trains ask for the minimal travel time). Further modifi-
cations of the basic model allow taking into account multiple
tracks in the stations or simple networks, like a line with two
branches Caprara et al. [19].

Recently, Borndörfer et al. [20] used an iterative combina-
torial auction that takes place in a sequel of rounds. Each
round consists of two stages. In the first stage, each operator
submits simultaneously a set of bids that, jointly with the set of
standing bids, represents the set of “live bids”. In the second
stage the “optimizationmachinery” is applied on the set of live
bids and computes the set of bids accepted in the round, which
becomes the new set of standing bids. During the optimization
process the auctioneer must determine a conflict-free slot
schedule that maximizes the network proceeds. They denote
optimal allocation problem (OPTRA) the winner determina-
tion problem that is a so called multi-commodity flow
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problem with additional constraints solved with integer pro-
gramming techniques. The auction ends when for a fixed
number of rounds, the total proceed does not change.

Finally, we mention the approaches by Lalive and
Schmutzler [21] that analyze which impact the competition
may have on the reduction of the costs and the improvement
of the scheduling, measured via the frequencies of the trains
represented by the ratio between train kilometres per year and
the length of a line, and by Kuo and Miller-Hooks [22] that
consider a specific form of cooperation that leads the different
TOs to pool their trains.

3 Recall of game theory

In this section we introduce some classical definitions of game
theory that will be used through the paper.We start by defining
a cooperative game without transferable utility.

Definition 1 A cooperative game without transferable utility
(NTU-game) is a coupleG= (N, V), whereN={1,…, n} is the
player set and V is the characteristic function that maps each
coalition S⊆N in the set of its feasible payoffs, with the
conditions:

& V(S)⊂RS;
& V(S) is closed and non-empty;
& V Sð Þ ¼ V Sð Þ−R ≥

S

The third condition is called comprehensiveness, and rep-
resents the possibility of the players to dispose any amount
from their payoffs (R ≥

S denotes the non negative orthant
of RS).
Definition 2 A cooperative game with transferable utility
(TU-game) is a couple G=(N, v), where N={1, …, n} is the
player set and v is the characteristic function that associates to
each coalition S⊆N a real value representing its worth, with
v(∅)=0.

v(S) can be interpreted as the maximum total payoff that the
players in S may obtain independently from the other agents.

Given a TU-game (N, v) it is always possible to define the
associated NTU-game (N, V) where V(S)={(xi)i∈S ∈ RS, s.t.
∑i∈S xi ≤ v(S)}.

Another important element in this paper is the bargaining
problem, introduced by Nash [4] with two players and gener-
alized as follows.
Definition 3 A bargaining problem is a couple (F, d), where
F⊆Rn is the feasibility set, i.e. the closed, convex, bounded
and non-empty set of payoffs which players can agree on after
bargaining and d=(d1,…, dn), d ∈ F is the disagreement point,

i.e. the starting payoff or the minimum that players can guar-
antee if they do not reach an agreement.

Many solutions were proposed for a bargaining problem;
here we recall three classical ones that we use in this paper:

& the Nash solution [4]:

N F; dð Þ ¼ argmax ∏
i∈N

xi−dið Þ
���x∈F; x≥d

� �

& the Kalai-Smorodinsky solution [23]:

K F; dð Þ ¼ argmax
x1−d1
a1−d1

¼ … ¼ xn−dn
an−dn

�����x∈F; x≥d
( )

where ai=max{xi ∈ R | x ∈ F, x≥d}, i ∈ N.
& the Egalitarian solution [24]:

E F; dð Þ ¼ argmax x1−d1 ¼ … ¼ xn−dn
���x∈F; x≥dn o

The Nash solution corresponds to the Pareto efficient point
that maximizes the product of the increasing of utility for the
agents.

The Kalai-Smorodinsky solution produces the Pareto effi-
cient point for which the increasing of utility for the agents is
proportional to their maximal increasing.

The Egalitarian solution determines the Pareto efficient
point that assigns to each agent the same increasing of utility.

4 C-Solution

In this section, we shortly recall the coalition formation meth-
od of Gerber [1], addressing to the original paper for more
details. The method is based on the dynamic solution of a
suitable abstract game [25]. A nice characteristic of this pro-
cess is that the final numerical solution, the C-Solution, spec-
ifies not only which coalitions form, but assigns a payoff to
each player, starting from its “power” in the other coalitions
(outside opportunities).

4.1 Abstract Games

We recall some basic concepts about abstract games, which
are the simplest idea of a game.

& An abstract game is a couple (X, dom) where X is an
arbitrary set and dom ⊂ X × X is a binary relation on X,
called domination; given x, y ∈ X, x is accessible from y, or
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y→x, if x = y or if there exist z1, …, zm ∈ X s.t.
x=z1 dom z2 dom … dom zm-1 dom zm = y

& An elementary dynamic solution is a set S⊆X that satisfies
the following conditions:

1. x ∈ S, y ∈ X \ S⟹y is not accessible from x (elements
not in S are not accessible from elements of S).

2. x, y ∈ S⟹y→x and x→y (two elements in S are
accessible one another).

& The dynamic solution is the set P that is union of all
elementary dynamic solutions.

& For dynamic solutions the following theorem (Theorem 1
in [1]) holds: If X is finite, then P is non-empty.

4.2 Assumptions

In the following we suppose (cf. [1]) that:

& An NTU-game is a set of pure bargaining games
HS={(FS, d S)}, S⊆N, where FS is the feasible region
and dS is the disagreement point.

& Each player can join to one coalition.
& The players bargain over utility distribution in each game.

In practice, the players have to face two intertwined deci-
sion problems: which coalition to form and which payoff
vector to choose from the bargaining region for the members
of each coalition. Other approaches to coalition formation
problems mainly search for an allocation of the worth of the
grand coalition (see [26]).

4.3 Tools

& A bargaining solution is a function ϕS : HS→R S
N that

assigns a payoff vector as a solution for each bargaining
problem for S, and satisfies the following properties:

Feasibility: ϕS(FS, dS) ∈ FS

Individual rationality: ϕS(FS, dS)≥dS

Pareto optimality: x∈RS
N,x>ϕS(FS,dS)⇒x∉FS

The three solutions presented in Section 3 are possible
choices.

& A payoff configuration is a couple (P, x) ∈ ∪P∈Π(P×FV(P))
where P ∈ Π is a coalition structure, i.e. a partition of the
player set N, and FV(P) is the set: {x ∈ RN | x ∈ V(S),
S ∈ P}.

& The domination relation between two different payoff
configurations (P1, x1), (P2, x2) is:

(P1,x1)dom(P2,x2)⇔∃R∈P1|xi
1>xi

2,i∈R
& The set of relevant coalitions for a game V, εV, is the set of

coalitions S, |S|≥2, s.t.:
∃ y ∈ V(S) | y>xS
where xS=(xi)i∈S and xi=sup {t ∈ R | tei ∈ V(i)}.

& A reduced game with respect to the coalition S, or V −S, is
the game:

V − S Tð Þ ¼
V Tð Þ if T ≠S
y ∈ RN

T

���y≤xT
n o

if T ¼ S

(

& A feasibility function is a functionφV
S : {x∈RS

N|x≥xS}→RS
N

that returns a feasible allocation for coalition S if the solution
of V −S associated to outside opportunities is infeasible:

ϕS
V xð Þ ¼

φS V Sð Þ; xð Þ if x∈V Sð Þ
φS V Sð Þ; xS ; x

� �
otherwise

(

4.4 Computation of the C-Solution

TheC-Solution concept is defined by induction on the cardinality
of the set of relevant coalitions εV; in other words we consider
first the coalition structure in which each player stands alone,
next we define an abstract game where X is the set of payoff
configurations corresponding to the coalition structures generated
by adding at each step one of the relevant coalitions and consid-
ering as payoff vector the solution of the bargaining problem for
the relevant coalitions and the stand-alone solution for the sin-
gletons and using the above defined domination relation.

Formally, we have:

Initial step |εV|=0⇒εV=∅
The C-Solution is ({{1}, {2},…, {n}}, (x1, x2,…, xn))

Iterative step |εV|=m≥1

The C-Solution is the dynamic solution of the
abstract game (X, dom) where X={(P,x)∈Π×RN},
with xT ¼ ϕT V Tð Þ; yT� �

if T∈εV and jT j≥2
xi if T ¼ if g

�
for each T ∈

P, yT ¼ 1
K Tð Þ∑

K Tð Þ
h¼1 x

h
T and dom is the domination defined

above.
The point yT represents the average payoff of the players in the

C-Solution {(P1, x1),…, (PK(T), xK(T))} ∈ ∪P∈Π P � FV − T Pð Þð Þ
of the reduced game V −T, that represents the outside opportuni-
ties of the players of T in the other coalitions:

Note that V −T is originated according to the current εV, so
by the inductive hypothesis the C-Solution was computed in
the previous step; as X is finite, the dynamic solution is always
non-empty.

We remark that the C-Solution may be used also for a TU-
game, applying it to the associated NTU-game (see Example 1).

5 The problem

We consider a situation in which a set N={1, …, n} of TOs
operates a set of trains on the same line. For sake of simplicity

Eur. Transp. Res. Rev. (2014) 6:113–125 117



we suppose that each TO operates exactly one train, so that we
may identify the set of TOs and the set of trains .2

In order to determine a scheduling, we assume that each TO
i=1,…, n, communicates to the IM a small set of data consisting
of the ideal departure time for the train he operates pi, the travel
time ti and the associated arrival time ai = pi + ti, the correspond-
ing maximal utility, Ui, and a feasible time window fi = f

i
; f i

h i
with pi ∈ fi, that represents the time interval in which it is still
profitable to schedule the departure of the train. At this point the
IM assigns to each train an a priori utility function (see Fig. 1).
We may think of a utility function as a map that assigns to every
possible leaving instant a real number that represents the income
for operating the train according to this departure time. The a
priori utility function for each TO i=1, …, n is continuous,
piecewise linear and assumes the maximum value at its ideal
departure time, while is null outside of its feasible time window,
as the train is no longer operated:

bu xið Þ ¼
Ui

xi− f i
pi− f i

if xi∈ f
i
; pi

h i

Ui
f i−xi
f i−pi

if xi∈ pi; f i

h i
0 otherwise

8>>>>>>><
>>>>>>>:

Referring to these utility functions, we suppose that the
IM defines a scheduling (x1

*,…,xn
*) that maximizes the

total utility, ∑i∈Nbui xð Þ , minimizing the losses of each
train, Ui - bui x�i� �

; i ¼ 1;…; n . Obviously, if xi
*∉fi the TO

may decide to not operate train i.
We do not go deeper on this aspect and we address to the

literature mentioned in Sections 1 and 2 for the possible
approaches that may be used for computing the scheduling
(x1

*,…, xn
*), but we remark that the proposal of the IM is based

on the a priori utility functions bui; i ¼ 1;…; n .
The resulting scheduling is communicated to the TOs.
Looking at the proposed timetable, it is possible that a small

group of TOs realize that a coordinate behaviour may improve
their utilities. So, they decide to cooperate and share among them
(possibly with the intervention of a mediator) more details about
their utility functions. A larger set of information may lead to a
different scheduling that increases the profits of the cooperating
TOs, without affecting the timetable of other trains. Let us
illustrate it using a simple example: suppose that the TO of train
A considers his best choice to leave from a given station ten
minutes after the arrival of train B; in this situation the maximum
of the utility is defined according to the arrival time of train B.
The TO establishes his ideal departure time referring to historical
data, that can be no longer valid in the new timetable. When the

IM proposes its timetable, this information is available, so the
TOs may work on better data for designing their “real” utility
functions, i.e. a utility function that takes into account more data,
those that are made public by the IM and those that all the TOs
decide to share with the cooperating agents. We want to stress
that the true utility function of an agent is difficult to determine
even for him and contains data that are considered private
information by each agent. In other words, our setting is not a
full information one. In the examples in the following section we
suppose that the a priori and the “real” utility functions of each
TO have the same ideal departure time and time window, while
the values of the utility could be different. In Examples 2, 3 and
4, the “real” maximal does not coincide with the one communi-
cated to the IM; this difference may bemotivated by the idea that
the IM may apply a smaller access fee to the infrastructure.
Another interesting point is that, as we said, the scheduling
proposed by the IM may influence some elements of the “real”
utility function of a TO, especially the ideal departure time or the
extension of the time window. Finally, we want to remark that
even if the a priori and the “real” utility functions of all the TOs
coincide not necessarily the solution proposed by the IM is the
same of the bargaining process, because some agents may be
more able during the negotiation, unless the solution proposed by
the IM is Pareto optimal for the agents and side payments are not
allowed (see Example 3).

We propose to use game theoretical tools in order to model a
cooperative situation in which the agents are interested in im-
proving their own utility; when the TOs decide to cooperate we
have a problem of coalition formation. This problem often arises
when we want to model a real-world situation; in fact it is very
important that the model takes into account the various possibil-
ities of the players, in particular that it is not necessary that all the
players form the grand coalition and that each player decides to
cooperate with other players not for the worth of the coalition but
on the basis of its own payoff (see [27] and [28]). The C-Solution
proposed by Gerber [1] seems very suitable both for getting a
numerical solution of the problem and because it does not
necessarily favour the formation of the grand coalition.

In the following section we present some examples in
which we completely develop the approach proposed in this
section, referring to simple case-studies.

6 Examples

In this section, we present four examples. In order to make the
reasoning simpler, we suppose that the solutions may differ only
in the departure time, i.e. we do not allow the possibility of

2 Otherwise, we may assume that when a TO operates more trains it is
“split” in several “clones”, each one operating one train.

Fig. 1 The a priori utility function
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modifying the travel time of the trains. Consequently, we con-
sider a line without intermediate stations, as the scheduling of the
trains depends only on their departure times. Moreover, we
suppose that all the TOs declare to the IM the same maximal
utility Ui, i=1,…, n.

Example 1 refers to a simple situation with five trains two of
which have conflicting requests and the resolution of the conflict
may involve also a third train. The solution proposed by the IM
may be improved when the three TOs involved take into account
their “real” utility functions. In this first example we suppose that
the TOs accept to transfer utility among them, i.e. side payments
are permitted, so that the main aim is to maximize the global
utility; the proposed methodology allows computing also the
monetary compensations that the agents have to pay or receive
as a consequence of the new scheduling obtained after the
agreement. The limited number of agents enables us to complete-
ly develop the steps of the iterative procedure for computing the
C-Solution.

Examples 2, 3 and 4 consider a situation in which the agents
are not allowed for side payments. In these cases the improve-
ment of the solution is obtained through a bargaining procedure
among the agents. In order to have a simple graphical represen-
tation of the strategies and of the utilities of the agents, we restrict
to two-agent situations, being aware that this excludes interme-
diate coalitions and consequently, the outside opportunities do
not play any role. The data set, i.e. the requirements of the agents
are the same in all three examples, but introducing different
“real” utility functions we analyze three possible situations: in
Example 2 the agents may improve their utilities with respect to
the proposal of the IM and we show three possible alternatives
corresponding to the bargaining problem solutions of Nash,
Kalai-Smorodinsky and Egalitarian; in Example 3 the agents
realize that the proposal of the IM is already Pareto optimal, i.e.
it cannot be improved by an agent without a reduction of the
utility of the other one; finally, Example 4 shows that under

particular utility functions the agents may face a situation in
which the bargaining region is non-convex, in contrast with the
classical literature. The situation of Example 4 allows us to
propose some non-standard approaches to this kind of problems.
In all the examples we assume that the headway time between
trains is at least two minutes.

6.1 Example 1 - trains with transferable utilities

We consider a situation with five TOs, whose requirements are
in Table 1 and the string diagram is in Fig. 2.

In order to solve the conflict between trains 3 and 4, the IM
computes the optimal scheduling using the a priori utility func-
tions of the TOs. The solution of the conflict requires to anticipate
the leaving of train 3 or to delay the leaving of train 4 or both. It is
easy to observe that according to the a priori utility function each
minute of difference with respect to the optimal departure time
corresponds to a reduction of one unit of utility for the corre-
sponding TO; on the other hand the anticipation of train 3
requires anticipating also the departure of train 2. This corre-
sponds to a reduction of two units per minute of the global utility
of TOs 2 and 3, while a delay of train 4 reduces the utility of TO4
of one unit per minute.

In Table 2 we report the departure times and the corre-
sponding a priori utilities of the TOs associated to the sched-
uling that maximizes the global utility; the related string
diagram is depicted in Fig. 3.

Clearly, TO 4 does not like the reduction of his utility with
respect to his expectation, so he looks for a better solution after an
agreement with TOs 2 and 3. Note that trains 1 and 5 do not
influence the decisions of TOs 2, 3 and 4 because there is no
conflict when departure times are in the time windows. Suppose

Table 1 Data communicated by the TOs to the IM (Example 1)

Departure
time

Travel
time

Arrival
time

Time
window

Maximal
utility

TO1 9.20 25 9.45 [8.50, 9.50] 30

TO2 9.58 32 10.30 [9.28,10.28] 30

TO3 10.00 86 11.26 [9.30,10.30] 30

TO4 10.30 43 11.13 [10.00,11.00] 30

TO5 11.00 40 11.40 [10.30,11.30] 30

Fig. 2 String diagramwith conflict
among the TOs (Example 1)

Table 2 Scheduling proposed by the IM and a priori utilities of the TOs
(Example 1)

Departure time A priori utility

TO1 9.20 bu1 9:20ð Þ ¼ 30

TO2 9.58 bu2 9:58ð Þ ¼ 30

TO3 10.00 bu3 10:00ð Þ ¼ 30

TO4 10.45 bu4 10:45ð Þ ¼ 15

TO5 11.00 bu5 11:00ð Þ ¼ 30

Eur. Transp. Res. Rev. (2014) 6:113–125 119



that the three TOs have similar “real” utility functions, i.e. all of
them obtain quite the same utility if the departure time is antic-
ipated (in the timewindow), while the utility linearly decreases to
zero after the ideal departure time (see Fig. 4):

uri xið Þ ¼

30−
pi−xi

30 pi− f i
� �

if xi∈ f
i
; pi

h i

30
f i−xi
f i−pi

if xi∈ pi; f i

h i
i ¼ 2; 3; 4

0 otherwise

8>>>>>>>>>>><
>>>>>>>>>>>:

This situation is a natural habitat for our purpose: it is
possible that the “real” utility functions induce a better solu-
tion for the three players. First of all, note that the utilities of
the TOs 2, 3 and 4 according to their “real” utility functions
coincide with their utilities according to the a priori utility
functions.

We suppose that computing the C-Solution, in each
bargaining problem HS, S⊆N={2, 3, 4} the players in S agree
on the scheduling that corresponds to their maximal global
utilityM(S), so V(S)={x ∈RS |∑i∈N xi≤M(S)}, i.e. the feasible s-
tuples of utilities for the members of S. Under this hypothesis the
Nash, Kalai-Smorodinsky and Egalitarian solutions coincide; the
corresponding payoffs are obtained with side payments.

For each coalition S⊆N, the characteristic function V(S) is
defined on the basis of the solution proposed by the IM and of
the “real” utility functions of theTOs (seeTable 3).More precisely,
the scheduling of the TOs not belonging to S remain fixed
according to the solution proposed by the IM,while the scheduling
of the TOs belonging to S are re-optimized referring to their “real”
utility functions ui

r,i∈S, maximizing the total utility ∑i∈Sui
r(xi).

The set of relevant coalitions is:
εV={{3,4}, {2,3,4}}
Now, we have all the data for performing the steps of the

procedure for computing the C-Solution.

Initial step
|εV|=0
εV=∅

There is a unique coalition structure: ({2}, {3}, {4}).
The C-Solution is ({2}, {3}, {4}), (30, 30, 15)), according

to the scheduling proposed by the IM.

Iterative step
|εV|=1
εV={{3,4}}

There are two coalition structures: ({2}, {3}, {4}) and
({2}, {3,4}).

The payoff vector is computed with respect to the coalition
{3,4}:

Fig. 3 String diagram proposed
by the IM (Example 1)

Fig. 4 “Real” utility functions of TO2, TO3, TO4 (Example 1)

Table 3 Characteristic function V(S) and the maximal global utilityM(S)
for each coalition S⊆N (Example 1)

S V(S) M(S)

{2} {u∈R{2}|u2
r≤30} u2

r(9.58)=30

{3} {u∈R{3}|u3
r≤30} u3

r(10.00)=30

{4} {u∈R{4}|u4
r≤15} u4

r(10.45)=15

{2,3} {u∈R{2,3}|u
2
r+u3

r≤60}
u2

r(9.58)+u3
r(10.00)=30+30

{2,4} {u∈R{2,4}|u
3
r+u4

r≤45}
u2

r(9.58)+u4
r(10.45)=30+15

{3,4} {u∈R{3,4}|u
3
r+u4

r≤57}
u3

r(10.02)+u3
r(10.00)=28+29

{2,3,4} {u∈R{2,3,4}|u
2
r+u3

r+u4
r≤89} ur2 9:43ð Þ þ ur3 9:45ð Þ þ ur4 10:30ð Þ ¼

¼ 29:50þ 29:50þ 30

Table 4 Scheduling and “real” utilities after the agreement of the TOs
(Example 1)

Departure time “Real” utility

TO1 9.20 u1
r(9.20)=30

TO2 9.43 u2
r(9.43)=29.50

TO3 9.45 u3
r(9.45)=30

TO4 10.30 u4
r(10.30)=30

TO5 11.00 u5
r(11.00)=30
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T ¼ 3; 4f g yT ¼ 0; 30; 15ð Þ is feasible
ϕT V Tð Þ; yT� � ¼ 0; 36; 21ð Þ

X={(({2}, {3}, {4}), (30, 30, 15)), (({2}, {3,4}), (30, 36,
21))}

The C-Solution is ({2}, {3,4}), (30, 36, 21)), i.e. train 2
leaves at 9.58 (IM solution) with utility 30, train 3 at 10.02
with utility 28 plus a compensation of 8 from the fourth TO
and train 4 at 10.00 with utility 29 minus a compensation of 8
to the third TO.

εV={{2,3,4}}
There are two coalition structures: ({2}, {3}, {4}) and

({2,3,4}).
The payoff vector is computed with respect to the coalition

{2,3,4}:

T ¼ 2; 3; 4f g yT ¼ 30; 30; 15ð Þ is feasible
ϕT V Tð Þ; yT� � ¼ 34:66; 34:66; 19:66ð Þ

X={(({2}, {3}, {4}), (30, 30, 15)), (({2,3,4}), (34.66,
34.66, 19.66))}

The C-Solution is (({2,3,4}), (34.66, 34.66, 19.66)), i.e. train 2
leaves at 9.43 with utility 29.50 plus a compensation of 5.16 from
the fourth TO, train 3 at 9.45 with utility 29.50 plus a compen-
sation of 5.16 from the fourth TO and train 4 at 10.30 with utility
30.00 minus a compensation of 10.33 to the other TOs.

εV
�� �� ¼ 2

εV={{3,4},{2,3,4}}
There are three coalition structures: ({2}, {3}, {4}), ({2},

{3,4}) and ({2,3,4}).
The payoff vectors computed with respect to the coalitions

{3,4} and {2,3,4} are:

T ¼ 3; 4f g yT ¼ 0; 34:66; 19:66ð Þ is feasible
ϕT V Tð Þ; yT� � ¼ 0; 36; 21ð Þ

T ¼ 2; 3; 4f g yT ¼ 30; 36; 21ð Þ is feasible
ϕT V Tð Þ; yT� � ¼ 30:66; 36:66; 21:66ð Þ

X={(({2}, {3}, {4}), (30, 30, 15)), (({2}, {3,4}), (30, 36,
21)), (({2,3,4}), (30.66, 36.66, 21.66))}

The C-Solution is (({2,3,4}), (30.66, 36.66, 21.66)), i.e.
train 2 leaves at 9.43 with utility 29.50 plus a compensation of
1.16 from the fourth TO, train 3 at 9.45 with utility 29.50 plus
a compensation of 7.16 from the fourth TO and train 4 at
10.30 with utility 30 minus a compensation of 8.33 to the
other TOs (see Table 4 and Fig. 5). The different compensa-
tions of TOs 2 and 3 depend on their different roles played in
the coalition formation process. In fact the C-Solution reflects
the opportunity that players 3 and 4 have of getting a joint
utility of 57 not cooperating with player 2. In other words
player 2 cannot obtain the utility of 34.66 that assigns to
players 3 and 4 a joint utility of 55.32, because they may
exclude player 2 from the coalition, getting a joint utility of 57.
However, each player increases his final payoff with respect to
the solution proposed by IM. ♣

Remark 1 When TOs exchange information about their
“real” utility functions they realize that each minute of delay
for train 4 reduces its utility of one unit, i.e. the same amount
of anticipating of 15min both trains 2 and 3. The possibility of
transferring the utility from TO 4 to TOs 2 and 3 induces them
to accept the new scheduling.

6.2 Example 2 - trains without transferable utilities

In order to have a better analysis of the bargaining problemwe
suppose that the players cannot transfer their utilities. Starting

Fig. 5 String diagram after the
agreement of the TOs (Example 1)

Table 5 Data communicated by the TOs to the IM (Example 2)

Departure
time

Travel
time

Arrival
time

Time
window

Maximal
utility

TO1 10.00 60 11.00 [9.30,10.30] 15

TO2 10.20 22 10.42 [9.50,10.50] 15

Fig. 6 String diagram with conflict among the TOs (Example 2)

Table 6 Scheduling proposed by the IM and a priori utilities of the TOs
(Example 2)

Departure time A priori utility

TO1 9.50 bu1 9:20ð Þ ¼ 10

TO2 10.30 u2 10:30ð Þ ¼ 10
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from the strategies of each player, i.e. the possible departure
times, we build up the space of strategies. If a situation of
conflict shows up it means that some tuples of strategies are
infeasible.

We define the bargaining problem using the utility func-
tions of the players in order to define the bargaining region in
the space of the utilities; in this case the natural choice for the
disagreement point is the solution proposed by the IM, be-
cause it has the double role of starting point for the negotiation
and of adopted scheduling if the negotiation fails. We analyze
the Nash, Kalai-Smorodinsky the Egalitarian solutions. Con-
sider the requirements of TOs as in Table 5 and the string
diagram as in Fig. 6.

Using the a priori utility functions, maximizing the total
utility and minimizing the loss of each train, the IM solves the
conflict between the trains. The departure times and the related
a priori utilities of the TOs are given in Table 6; the corre-
sponding string diagram is depicted in Fig. 7.

In Fig. 8, we represent the space of strategies (departure
times) of the two players; the horizontal axis represents the
departure times in the time window for TO1 and the vertical
axis represents the departure times in the time window for
TO2; the points A, B, C, D, E, F, G, H, I, J represent the
extreme points that will be used to define the bargaining
region in the space of utilities of the two players; the point
IM represents the solution proposed by the IM that corre-
sponds to the disagreement point in the bargaining problem;
the “UNFEASIBLE” region corresponds to pairs of departure
times that produce a conflict among trains.

Now, we introduce the “real” utility functions of the two
TOs, represented in Fig. 9 (note that the “real” maximal
utilities of the two TOs are different from those communicated
to the IM) and build the bargaining problem (in the space of
utilities) depicted in Fig. 10 (the utilities of the TOs are
reported in Table 7).

We compute the solutions of Nash (N), Kalai-Smorodinsky
(K) and Egalitarian (E) for the bargaining problem in Fig. 10

Fig. 7 String diagram proposed by the IM to the TOs (Example 2)

Fig. 8 The space of strategies of the two players (Example 2)

Fig. 9 “Real” utility functions of
TO1 (a) and TO2 (b) (Example 2)

Fig. 10 The bargaining problem (Example 2)

Table 7 Utilities of the two players (Example 2)

point A B C D E F G H I J IM

“real” utility of
TO1

80 50 2
3 40 40 80 26 2

3 80 80 0 0 53 1
3

“real” utility of
TO2

35 1
3 50 50 30 30 50 16 2

3 0 0 50 33 1
3
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and referring to the space of strategies (see Fig. 11), we
compute the corresponding timetables and the related “real”
utilities of the TOs (see Table 8). ♣

6.3 Example 3 - Pareto optimal disagreement point

In this example we suppose that the “real” utility functions of
the two TOs are those represented in Fig. 12.

The new bargaining problem is represented in Fig. 13 and
the “real” utilities are reported in Table 9.

In this case the solution proposed by the IM is already on
the Pareto boundary of the bargaining region and it is Pareto
optimal (we can improve the utility for one player only with a
loss for the other one). ♣

6.4 Example 4 - non-convex bargaining region

Avery interesting problem appears when we consider a slight-
ly different situation in which the “real” utility functions of the
two TOs are those represented in Fig. 14.

The new bargaining problem is represented in Fig. 15 and
the “real” utilities are reported in Table 10.

Here the bargaining region is not convex. If we consider
also the area delimited by the segment BG as the usual theory
of bargaining suggests a new question arises: what is the
meaning of these new points, or more precisely the points of
the individually rational Pareto boundary B G ?

Fig. 11 The space of strategies of the two players with the three possible
solutions (Example 3)

Table 8 The scheduling corresponding to the three solutions (seconds
are in brackets) and the “real” utilities of the TOs (Example 2)

Solution TO Departure time “Real” utility

Nash TO1 10.08(.30) ur1 10:08ð Þ ¼ 68 2
3

TO2 10.06(.30) u2
r(10.06)=41

Kalai-Smorodinsky TO1 10.10(.00) ur1 10:10ð Þ ¼ 66 2
3

TO2 10.08(.00) u2
r(10.08)=42

Egalitarian TO1 10.12(.20) ur1 10:12ð Þ ¼ 63 14
25

TO2 10.10(.20) ur2 10:10ð Þ ¼ 43 14
25

Fig. 12 “Real” utility functions of
TO1 (a) and TO2 (b) (Example 3)

Fig. 13 The bargaining problem (Example 3)

Table 9 Utilities of the two players (Example 3)

point A B C D E F G H I J IM

“real” utility of
TO1

80 21 1
3 0 0 80 53 1

3 80 80 40 40 66 2
3

“real” utility of
TO2

13 1
3 50 50 0 0 50 36 2

3 30 30 50 43 1
3
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In the space of strategies the segment B G corresponds to
infeasible strategies. We can consider these points as corre-
sponding to correlated strategies or to lotteries of the two
(feasible) events B and G. A correlated strategy is impossible
in the present situation because the timetable is fixed for all the
season and cannot be varied on the basis of a probabilistic
event; on the other hand a lottery requires that the players
accept the risk of a result that can be worse of the solution of
the IM.

Another possible interpretation corresponds to a side pay-
ment between the players, but in this case the two players will
try to maximize their joint utility so they choose G and if they
agree on side payments we are back to a situation like that in
Example 1.

Finally we can restrict to consider only the individually
rational Pareto boundary eB eG, returning to a usual bargaining
problem, like that in Example 2. ♣

7 Concluding remarks

The approach proposed in this paper presents how to improve
a railway timetable, when a small set of agents decides to
cooperate exchanging more data with respect to the dataset
communicated to the IM. The C-Solution method shows not
only how to produce a better schedule, but also the level of
compensation that an agent requires for accepting a worse
scheduling, in order to increase the global utility of the
cooperating agents. Clearly, under this assumption it is possi-
ble to increase the global utility, with positive influence on the
quality of service for the users. This approach can be applied
whenever the scheduling proposed by the IM relies on less
information than that exchanged by the TOs in our model.

This procedure may increase also the utility of the IM who
may succeed in allocating a larger number of tracks, via a
better use of the infrastructure, or simply asking a higher price
to the TOs, after that more profitable scheduling increases
their willingness-to-pay. The IM, aiming to increase profit
and quality of service, may have an interest in creating an
arena for stimulating communication between the TOs. In this
way some of them may identify situations of inefficiency that
could lead to an agreement that improves the utility and the
scheduling.

We know that the main hindrance to the proposed approach
is implicit in the railway system, i.e. the operators’ resistance
to cooperate and to reveal even partial information (in view of

Fig. 14 “Real” utility functions of
TO1 (a) and TO2 (b) (Example 4)

Fig. 15 The bargaining problem (Example 4)

Table 10 Utilities of the two
players (Example 4) point A B C D E F G H I J IM

“real” utility of TO1 80 50 2
3

40 40 80 26 2
3

80 80 0 0 53 1
3

point “real” utility of TO2 13 1
3

50 50 0 0 50 30 20 20 50 40

point B G eB eG
“real” utility of TO1 53 1

3 65 1
3 53 1

3 58 2
3

“real” utility of TO2 48 2
11

40 46 2
3

40
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this, we were not able to make suitable comparisons of our
approach with other ones); nevertheless we think that it should
be of extreme importance to use research in order to highlight
the benefits that could originate from a higher level of coop-
eration in order to stimulate TOs. Clearly, the maximal im-
provement of the utility may be obtained in a transferable
utility setting, possibly with large exchange of information,
as we noticed in the comments to Example 4.

Possible further developments of the present research in-
clude a deeper analysis of the situation illustrated in Example
4, via an analysis of the strategic behaviour of the agents. It
would be interesting to compare some refinements of our
approach with a combinatorial auction using sophisticated
strategies. First of all, it is interesting to analyze the possibility
that an agent intentionally disable some coalitions in order to
reduce the alternatives for himself or for other agents; second-
ly, the agents may face a combinatorial auction, that allows for
different strategies in submitting bids, following the ideas first
addressed by Rassenti et al. [29] and reconsidered by
Borndörfer et al. [20]. Another point deserving better analysis
is the situation shown in the last example. In fact the assump-
tion of convexity for the bargaining region is important from a
theoretical point of view, but it may result no longer valid in
this and other real-world situations (see [30]).
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