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Abstract

Purpose The commercial vehicle sector is characterized by
high competitive pressure. Fuel consumption is one major
factor that influences the transport efficiency and competitive-
ness of logistics companies. Therefore, an eco-driving assis-
tance system (EDAS) is developed in order to support the
driver in sustainably maintaining an efficient driving style—
the Virtual Driving Coach (ViDCo). In this paper, we describe
the design and development process of ViDCo as well as
results of the first steps of evaluation and preliminary testing.
Methods An EDAS is developed that uses knowledge of in-
frastructure based on digital maps in order to proactively and
predictively provide the driver with driving advice. The sys-
tem’s algorithms are structured within the modules “situation
detection”, “driving error detection”, and “message filtering
and prioritization”. The evaluation of ViDCo comprises pre-
liminary field-testing on public roads as well as a driving
simulator experiment.

Results Driving tests show that the Virtual Driving Coach is
capable of enhancing fuel efficiency for commercial vehicles
in real-world scenarios. The results of the driving simulator
experiment indicate a positive level of user acceptance and
system safety. Furthermore, the results point towards a
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positive correlation between user acceptance and the subjects’
judgment of learning.

Conclusions The Virtual Driving Coach’s concept is a prom-
ising approach for efficient and environmentally friendly road
transport.

Keywords Eco-driving - Driver assistance system - Fuel
efficiency - Prediction - Driving simulator experiment - User
acceptance - System safety - Judgment of learning

1 Introduction

Rising fuel costs have become a major cost driver for logistics
companies and contribute to nearly 30 % of Germany’s long
distance transportation costs (Fig. 1).

Commercial vehicle manufacturers have been able to
achieve significant savings by modifying vehicle designs
and improving engine efficiency [1, p. 4]. Despite these ef-
forts, the driver’s driving style still has a significant impact on
fuel consumption.

From fuel efficiency training programs it is a well-known
fact that truck drivers can reduce fuel consumption and com-
ponent wear. Geiler [2] found short-term fuel savings of about
7 % through driver training, which deteriorated to 4 % within
10 months. In a study conducted by Wahlberg [3] regarding
eco-driving training, professional drivers reduced their fuel
consumption by 6 % in the short term. Again, long-term sav-
ings weakened to 2 %.

For commercial vehicles, eco-driving assistance systems
(EDAS) are available that analyze driving behavior and pro-
vide continuous feedback on driving style [5—7]. This there-
fore helps to remind the drivers of the importance of fuel-
efficient driving. The driver, however, has to anticipate the
fuel-efficient driving strategy by himself.
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Fig. 1 Cost structure of long-haul trucks (according to [4])

Information about preceding driving situations are provid-
ed for EDAS of passenger vehicles [8—10]. Haptic feedback
on the acceleration pedal or a message on the display informs
the driver when to release the accelerator pedal in front of
speed-reducing infrastructure elements.

Still there is a lack of eco-driving assistance systems that
give the driver specific, situational driving advice about fuel-
efficient and wear-reducing actions while at the same time
taking the unique requirements of commercial vehicles into
account. It can be assumed that predictive driving advice may
also increase acceptance.

In this paper, we describe the design of an EDAS for heavy
commercial vehicles—the Virtual Driving Coach (Ger.
Virtueller Fahrtrainer; ViDCo)—which is capable of detect-
ing sub-optimal driving behavior in a situation-specific man-
ner and for some scenarios also predictively (Section 5). If
ViDCo detects a state of sub-optimal driving, it outputs an
advisory message to the driver by means of a message on a
display unit and a synthesized voice message. Since the Vir-
tual Driving Coach continuously monitors and supports
drivers during their transport assignments, this mode of assis-
tance may be called system-based on-the-job training.

Moreover, we present results of ViDCo’s evaluation pro-
cess (Section 6). The EDAS’s evaluation was done by means
of extensive field testing and a driving simulator experiment.
The methods of the driving simulator experiment and the re-
sults of the objective measures have been reported by Daun
etal. in[11]. As the results of the questionnaires have not been
reported so far, we present the according results with regard to
the self-reported evaluation of user acceptance, system safety
and judgment of learning.

2 System description
According to literature on eco-driving with respect to heavy

commercial vehicles, drivers have numerous possibilities to
influence fuel consumption and component wear [12—14]. In
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order to select situations and scenarios in which the Virtual
Driving Coach should support the driver with advisory mes-
sages, a detailed analysis based on expert investigations and
literature review is performed. This analysis reveals over 150
different situations [15, 16]. But not every driving error in
those situations results in significant increased fuel consump-
tion or component wear. By an expert rating, the situations are
prioritized according to their influence on eco-driving. Addi-
tionally it is rated how an eco-support system is capable of
detecting those situations and to which extent driving advice is
suitable to support the driver. As a result, 14 relevant situa-
tions with respect to eco-driving are identified and the corre-
sponding driving advice is implemented in ViDCo (Table 1).
The advisory messages of these situations can be classified
into driving style, anticipatory driving, operational level and
usage of manual gearbox.

» Driving style: A key factor for fuel efficient driving is to
maintain a uniform speed profile. This can be achieved by
reducing the maximum speed on motorways, the usage of
cruise control and by keeping an appropriate headway
distance to preceding vehicles.

* Aanticipatory driving: By an early reaction to topography,
infrastructure and slow preceding vehicles, less energy is
wasted through the braking system. Thus, the driver is
supported proactively and predictively to determine the
optimal time at which the vehicle can be operated in
coasting mode without infringing acceptance thresholds.

* Operational level: Operating the vehicle in an appropriate
manner helps to reduce fuel consumption and component

Table 1  Overview of relevant driving advice regarding eco-driving
Category Driving advice
Driving style Reduce travel speed to max. 85 km/h

Maintain sufficient headway distance
to preceding vehicles

Maintain uniform velocity by using cruise
control and speed limiter

Anticipatory driving Coast before crests in time

Coast before infrastructural objects in time (speed
limits, bends, roundabouts, highway exits)

Coast before slow preceding vehicles
Avoid kick down
Accelerate at high engine torques

Operational level

Decelerate using wear-free braking systems
Stall engine at long idling phases

Usage of manual
gearbox

Use high gears while cruising at constant speed
Use low starting gear

Handle clutch pedal correctly

Do not use accelerator pedal until clutch is closed
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wear. The engine efficiency can be increased by acceler-
ating at high engine torque. Unnecessary downshifts, e.g.
by triggering the kick down switch, should be avoided.
Switching off the engine reduces fuel consumption during
long idling phases. Brake wear is reduced by applying
wear-free braking systems, such as retarder or exhaust
brake.

» Usage of manual gearbox: Clutch wear is reduced by
choosing a low starting gear and a correct handling of
the clutch pedal. When cruising, the vehicle should be
operated at a high gear.

2.1 Modules of the system

The algorithms of the Virtual Driving Coach consist of the
modules situation detection, driving error detection and mes-
sage filtering and prioritization (Fig. 2). The situation
detection module interprets the situational context the vehicle
is in, while the driving error detection module identifies sub-
optimal driving behavior and decides whether driving advice
is advisable. Downstream, the message filtering and
prioritization module guarantees sufficient time between ad-
visory messages to achieve a high level of user acceptance.

2.1.1 Situation detection

In the context of driving, Fastenmeier defines the term situa-
tion as the environment of the driver—vehicle’s human—ma-
chine system from the driver’s perspective whereby situations
are delimitable units in space, time and their characteristics
[17, p. 271].

This concept is illustrated by an example: Exceeding
85 km/h permanently increases fuel consumption excessively
while hardly saving time due to traffic effects [18, 19]. The
situation where excessive velocity is not recommended can be
described using the situational variables street type (highway),
topography (even) and driver intention (not overtaking).

This ensures that a driving error is only triggered in obvi-
ously inefficient situations, whereas the driver is given the
opportunity to fully exploit the properties of the vehicle in
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Fig. 2 Layout of the Virtual Driving Coach with the modules “situation
detection”, “driving error detection”, “message filtering and

prioritization”

topographically challenging terrain or when overtaking. If all
the situational variables meet the required properties, the sit-
uation “excessive speed” is active and driving advice can be
given if the driver operates the vehicle in an inadequate way.

The situational variables are derived by a systematic
approach [15, 16]. Starting point is a test drive over
400 km on a commonly used test track for commercial
vehicles [20], which is divided by experts into situations
relevant for eco-driving. By analyzing situations relevant
for fuel consumption, situational variables are discovered
and divided into discrete states. An algorithmic description
of the situational variables is formulated and the measure-
ment data of the test drive is analyzed. For every situation
relevant for fuel consumption, all occurring combinations
of the situational variables are obtained. These combina-
tions of the situational variables eventually define the sit-
uations which are detected by the situation detection
module.

For the analysis of the current driving situation, it suffices
to determine the situational variables at the very moment in
time. However, anticipatory situation detection has to predict
the future deployment of the situational variables in order to
ascertain when a situation starts.

The eco-driving assistance system supports the driver in
finding the optimum point in time to decelerate the vehicle
by releasing the accelerator pedal. For this purpose, the veloc-
ity of the coasting vehicle has to be predicted.

Huber [21] proposes to predict the vehicle speed for the
road segments ahead cyclically with a model of the longitudi-
nal dynamics and to use this to determine the coasting phases.
Assuming the vehicle is operated in coasting mode, the veloc-
ity v of the vehicle can be calculated with a simplified longi-
tudinal dynamics model [22, 23].

IM eng

(m + meg)v = —25~mg(a + p)-wv* (1)

m Vehicle mass in kg

me,  Equivalent mass of rotating parts in kg
i Gear ratio including final drive

M, Engine’s drag torque in Nm

r Dynamic rolling radius of the tire in m
g Gravitational constant (<9.81 m/s)

a Slope

1 Coefficient of friction

w Air resistant coefficient in kg/m

By means of the relationship
v=—v (2)
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the equation of the longitudinal dynamics (1) can be expressed
as
dv iM 1

(m + meq) E = I"V(e;jg _@mg(a(x) + y)—wv(x) (3)

depending on the distance x on the path in front of the vehicle.

If the predicted velocity v(x) exceeds a pre-calculated max-
imum velocity vy (x) the vehicle will reach a critical velocity
at which a brake intervention is likely even in coasting mode.
Thus the maximum velocity vy.«(x) is defined as the maxi-
mum velocity a driver will accept without braking, and is
calculated as a function of infrastructure elements lying ahead,
such as speed limits, curve radii, turning angles at crossings,
and street types.

The mere reaction to the maximum velocity would indeed
reduce the fuel consumption most effectively, but may slow the
vehicle down unacceptably during the coasting phase. If, for
example, the speed limitation is situated in a long downhill
slope the vehicle passes the beginning of the downhill slope
very slowly. This driving strategy would both increase the
driving time and interfere with the traffic behind. Therefore a
driving advice is only given if the predicted velocity v(x) al-
ways exceeds minimum velocity vy, (x). This minimum veloc-
ity profile mainly depends on the road type. Only a short dis-
tance before the vehicle is expected to pass a speed limit, the

minimum velocity is adapted to the maximum velocity (Fig. 3).

Furthermore, an advisory message will only be given if the
drop in velocity during the coasting phase is significant. This
avoids driving advice which would lead to only small fuel
savings while putting the driver’s acceptance at risk.

2.1.2 Driving error detection

For every situation relevant for eco-driving, an optimal driv-
ing strategy is defined. If driving behavior differs in a given
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Fig. 3 Detection of a coasting situation. The predicted velocity exceeds
the maximum velocity without dropping below the minimum velocity.
The beginning of a coasting phase is detected in this manner.
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situation from this optimal strategy, a driving error is transmit-
ted to the filtering and prioritization module.

ViDCo’s driving errors and the corresponding advisory
messages are categorized. Two categories of driving errors
are specifically important with regard to processing in the
algorithms: the type of driving error and the time-wise
detectability.

The type of driving error draws a distinction between
strategic and tactical driving errors. Strategic errors occur
with regard to choices and decisions about the mode of oper-
ation (e.g., choice of travel speed, use of longitudinal control
systems). They often persist for a long period of time. Even
though their impact on fuel consumption is rather small in the
short term, they reduce fuel efficiency markedly when
persisting in the long term.

Tactical driving errors, on the other hand, are typically
committed during transitions of driving state (e.g., accelera-
tion, deceleration). In contrast to strategic errors, tactical driv-
ing errors are of a rather short-term nature. Since their influ-
ence on instantaneous fuel efficiency is high, tactical driving
errors should be corrected immediately.

Tactical driving errors can further be classified into tactical-
predictive and tactical-retrospective driving errors. While
tactical-retrospective errors are not connected to any specific
event, tactical-predictive errors are related to infrastructure
objects (e.g., speed limits, downhill gradient). Therefore, ret-
rospective advice can only be given after the occurrence of the
error, whereas predictive advisory messages are capable of
correcting the driver’s misbehavior in the process of
conducting the error.

Separating situation detection and driving error detection
enhances the robustness of the systems since driving errors
can only be detected during a given situation. On the other
hand, positive driver behavior can be identified if a situation
occurs but no driving error is detected. Therefore driving per-
formance can be assessed independently of the route by eval-
uating the ratio of driving errors with respect to the corre-
sponding situations which have occurred.

2.1.3 Message filtering and prioritization

It is generally accepted that humans’ cognitive capacities for
processing information are limited, which is expressed in sev-
eral theories (for an overview see e.g. [24, p. 12ff] and [25]).
In the context of driving, the primary task itself may be highly
demanding depending on aspects such as traffic, weather, and
road conditions. In this regard, in-vehicle information systems
(IVIS) and advanced driver assistance systems (ADAS) re-
quire additional resources from the drivers’ mental or cogni-
tive workload [26].

Without any kind of filtering module, the Virtual Driving
Coach would issue an advisory message via the display unit
for each and every detected state of suboptimal driving. If a
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driver causes several such detections within a short period of
time, she or he would be confronted with numerous messages.
In order to keep the information flow from the EDAS to the
driver within acceptable limits, a filtering and prioritization
module (FPM) is developed. A limitation of additional mental
workload is expected to have a positive impact on three as-
pects which therefore act as distinctive design objectives dur-
ing the development process of the filtering and prioritization
module (FPM): system safety, user acceptance, and system
impact on learning.

Advanced driver assistance systems (ADAS) or in-vehicle
information systems (IVIS) “should enhance or at least not
reduce road safety” [27, p. 206]. System safety is therefore a
fundamental design objective in the development process of
the Virtual Driving Coach (see also [27, 28]). Furthermore,
ViDCo is capable of exploiting its potential only if the driver
is willing to use the system. Dillon & Morris define user
acceptance as “the demonstrable willingness within a user
group to employ information technology for the tasks it [the
information technology] is designed to support” [29, p. 5].
Since the two objectives system safety and user acceptance
are eminent for the safe and effective operation of the EDAS,
they are classified as primary design objectives of the FPM.

ViDCo issues advisory messages to the driver only when
his operating behavior deviates from optimum behavior. An
optimum driver would not receive any system messages at all.
This strategy of fostering learning is called negative reinforce-
ment in the theory of operant conditioning [30]. As this con-
cept of imparting knowledge does neither aim nor expect the
driver to intentionally produce advisory messages and thus to
learn actively, it may be concluded that ViDCo aims on induc-
ing knowledge implicitly to the driver [31, p. 49].

Thus, the ultimate design goal for the Virtual Driving
Coach would be to be capable of making any driver fully
adopt the system’s driving advice and eventually drive opti-
mally. Without demanding to achieve this ultimate design
goal, the FPM therefore should support the driver’s process
of adopting and learning to drive more efficiently. This

objective of a positive system impact on learning is classified
as a secondary design objective.

In order to achieve the three design objectives system
safety, user acceptance, and system impact on learning, the
algorithms of the FPM decide on the following tasks: which
advisory message should when be transmitted, for how long,
how often, and by which mode (visual or auditory)? The FPM
consists of the three submodules prioritization, filtering, and
output and timing (Fig. 4). In addition, it features a data
memory.

For a description of the FPM’s working principals, let us
consider the general case of multiple detected and hence active
driving errors. The logics of the FPM can best be understood
by starting with the functionalities of the output and timing
module.

Even if multiple driving errors are detected, the output and
timing module issues a single message exclusively to the out-
put unit. On the transmission of a newly detected driving error,
a synthesized voice message informs the driver and an advi-
sory message is displayed for a minimum period of time.

Due to the characteristics of the different categories of driv-
ing errors (Subsection 5.1.2), the output and timing module
handles the minimum period of time as follows:

» If only a single strategic driving error is active, it will be
displayed until the driver adapts the driving advice (e.g.,
reduces travel speed to max. 85 km/h).

» Tactical-retrospective errors are displayed for at least 10 s
(aperiod of 10 s is implied by van der Voort [32, p. 81] and
was adopted after positive initial testing).

» Tactical-prospective driving errors are issued until the in-
frastructure object is passed through (e.g., beginning of
speed limit).

Additionally, the output and timing module will initiate the
repeated transmission of the synthesized voice message if a
single strategic driving error is detected continually. This is
meant to regain the driver’s attention and to draw it back to the

Prioritization module

Filter module

Output and timing module

Active driving

errors

Driving error
detection

@ o)
L&

Display unit
(MAN DriverPad)

O
S D

@] <)

Saved driving
errors

Data memory

Fig. 4 Submodules of the filtering and prioritization module (FPM)
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display unit. In order to retain a high level of user acceptance,
intervals between repeated transmissions are expanded. In the
context of learning this strategy is called expanded retrieval
[33] and is thus also implemented to support the driver’s pro-
cess of learning.

The filter module ensures only a single driving error is
forwarded to the output and timing module. The filter blocks
driving errors regardless of the priority assigned by the prior-
itization module. In general, blocked errors are saved in the
data memory. The data memory thus enables the FPM to issue
advisory messages even though the error was committed in
the past and is not active anymore. However, a delayed sub-
mission makes only sense within a restricted time period after
the detection. The filtering therefore also eliminates errors
which are considered inactive for too long without writing
these to the data memory.

Furthermore, the module detects and filters refusal by the
driver. If a specific advisory message is ignored repeatedly, it
must be assumed that the driver is not willing to follow this
kind of driving advice. Therefore, this advisory message will
be blocked and not be displayed on the current trip anymore.

The priority of the driving errors is determined dynamically
by the prioritization module. It receives active errors from the
driving error detection and reads saved ones from the data
memory. An algorithm assigns a rating score to each error. The
higher the score, the higher the priority of the error. The rating
score consists of a constant term, which is specific for each
driving error, and a dynamic term. While the constant term
reflects the importance of the driving error with regard to its
influence on fuel consumption as well as its criticality regard-
ing a transmission in a timely manner, the dynamic term of the
score will increase over time. The dynamic rating of a saved
driving error is set to an even higher score, when its status
changes from active to inactive (i.e., the very same error is not
detected by the driving error detection anymore). By doing so,
newly inactive, saved errors are handled with a higher priority
in comparison to active driving errors and are thus more likely
to be issued to the driver before expiration. Only after the
advisory message of a corresponding driving error has been
submitted to the display unit or the error has been considered
inactive for too long, the driving error is removed from the
data memory. As a result, the rating score is reset to its con-
stant value.

3 Evaluation and testing

For the development of ADAS an iterative development pro-
cess has been established [34, p. 30]: In an initial step the
technical feasibility has to be proven, before, in a second step,
human factors have to be considered. Finally, a proof of con-
cept ensures the practical suitability of the advanced driver
assistance system.

@ Springer

In this paper, we present results of the first two phases of
the evaluation process of the Virtual Driving Coach. First, we
introduce the procedure and results of a real-world field test.
Afterwards, we describe the methods and results of surveys
which were conducted during a driving simulator experiment

[11].

3.1 Real-world field test

Real world driving situations are complex and can hardly be
covered solely by a driving simulator experiment. A real-
world field test can prove the technical feasibility of the Vir-
tual Driving Coach and forms the basis for the following
stages of the development process. The objective is thus to
evaluate the technical feasibility of detecting consumption-
relevant driving situations in real-world scenarios without
compromising drivability. This ensures a version of the EDAS
is examined at the subsequent driving simulator experiment
which is characterized by a practicable design. Therefore,
ViDCo is integrated into a test vehicle and tested on public
roads.

3.1.1 Vehicle and test track

The eco-driving assistance system is integrated into the tractor
(MAN TGZX, P,,,.=324 kW) of a tractor-trailer combination
(Fig. 5) as such a combination is commonly used for long-haul
transport in Germany [35, p. 24]. The tractor is equipped with
an adaptive cruise control system based on a radar sensor and
an automatic gearshift system. Therefore no driving advice for
manual gearbox is issued. In order to intensify the system
response, the trailer is equipped with additional weight to
achieve a gross vehicle weight of 40 t.

Information about infrastructure elements, slope gradient
and curvature are obtained from a digital map using commer-
cially available software (ADASRP: Advanced Driver Assis-
tance System Research Platform). Via a GPS sensor, the ve-
hicle position is matched on the map and the relevant map data

Fig. 5 Experimental vehicle
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in the vicinity of the vehicle is transmitted to a prototype
control unit as Electronic Horizon [36, 37] (Fig. 6).

A high-accuracy fuel consumption measurement system is
used for system evaluation. All data, including fuel flow rate,
vehicle states, internal states of the prototype control unit and
the GPS-position, are recorded synchronously and combined
with a video image of the driving environment.

Using the vehicle data along with the vehicle’s states and
the driver’s input, the prototype control unit performs the cal-
culation of ViDCo’s modules and triggers the output of driv-
ing advice on the display unit (Fig. 7).

The Virtual Driving Coach is evaluated on a demanding
test track consisting of almost equal parts of highway and
overland driving with an overall length of about 95 km
(Fig. 8). The test track is driven six times by expert drivers
to validate the functions of ViDCo.

3.1.2 Results

Altogether 205 advisory messages are issued on the six trips
on the test track; on average 48 advisory messages per trip,
which translates to one piece of driving advice per 2 km.

Driving style has been influenced by advising re-
duced travel speed and the usage of cruise control and
speed limiter. This resulted in a sufficient headway dis-
tance to preceding vehicles (Table 2).

MAN DriverPad

GPS-Receiver ADASR

- e

Autobox

Fuel
consumption
measurement

Camera Vehicle

Fig. 6 System setup including data recording

L Fia
LA DR

Fig. 7 Display unit of the Virtual Driving Coach in the vehicle

At operational level, each single piece of driving advice is
issued (Table 3). Most advisory messages addressed insuffi-
cient usage of the wear-free braking system.

On average, 17 advisory messages are displayed for antic-
ipatory driving, leading to a coasting length of 11.1 km
(11.7 % of total test track length). Speed limits contribute a
major share to the coasting length with 5.4 km (Fig. 9).

No driving advice for coasting before a slow preceding
vehicle is issued. It could be assumed that improved driving
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Table 2 Average frequency of driving advice per trip on the test track
for the category driving style

Driving advice Avg. freq. per trip

Reduce travel speed below 85 km/h 42

Maintain sufficient headway distance 0.0
to preceding vehicles

Maintain uniform velocity by using 6.3

cruise control and speed limiter

style leads to sufficient headway distance and thus to less
relevant situations. In addition, on curvy road sections the
detection range of the radar sensor and driver are equally
limited. On straight road sections, drivers are able to perceive
preceding vehicles prior to the radar sensor.

The real-world field tests demonstrate the technical feasi-
bility to detect consumption relevant situations in real-world
scenarios and that the driving advice leads to a more efficient
driving style. Feedback of expert drivers gives a first indica-
tion of drivability which is evaluated more detailed in the
driving simulator experiment.

3.2 Driving simulator experiment

In order to evaluate the concept of ViDCo and its efficacy, a
driving simulator experiment was conducted. The methods of
the experiment and the results of the objective measures are
reported in detail by Daun et al. [11].

3.2.1 Overview of the driving simulator experiment

ViDCo’s efficacy and aspects of driving behavior were eval-
uated by making use of a dynamic driving simulator. Partici-
pants were assigned to one of two groups: comparison group
or experimental group. While both groups performed four
runs on four tracks, only subjects of the experimental group
were supported by ViDCo on the third run. N=40 datasets (20
per group) were available for the analysis of the results. The
functionalities output interval adaptation and refusal
detection of the filtering and prioritization module were
deactivated during the experiment as they were expected to
negatively affect comparability (Section 5.1.3).

Table 3  Average frequency of driving advice per trip on the test track
for the category operational level

Driving advice Avg. freq. per trip

Avoid kick down 1.0
Accelerate at high engine torque 1.8
Decelerate using wear-free braking systems 3.8
Stall engine at long idling phases 0.3
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Fig. 9 Average frequency of anticipatory driving situations and
corresponding coasting lengths on test track

The experiment proved that ViDCo’s concept is capable of
reducing fuel consumption significantly. Furthermore, the re-
sults indicate that drivers—at least in the short term—adapt
driving advice of the system and therefore drive more effi-
ciently without the EDAS after having been exposed to it
(learning effect due to system experience). Both, system effi-
cacy as well as the positive learning effect, were shown by
means of a regression analysis of a linear mixed model
(LMM). In this regression model, EDAS Usage and System
Experience served as predictors (among three other predic-
tors) on the regressand Average Fuel Consumption.

3.2.2 Survey methods

Several surveys were conducted during the experiment. Some
of the surveys’ questionnaires were designed to evaluate the
design objectives system safety, user acceptance and system
impact on learning. As an exposure to the system is indispens-
able in order to evaluate these aspects, the relevant question-
naires were only asked to subjects of the experimental group
(n=20).

System safety is a necessity before introducing an IVIS to
the market. System safety is evaluated in the context of two
explorative questionnaires (EQ 1 and EQ 2). These question-
naires mainly contain items evaluating aspects of user accep-
tance. EQ 1 consists of 12 items, EQ 2 of 15 items. Items are
selected from multiple sources ([38, 39], and own design).
Seven of the 27 items ask questions regarding distraction
and disturbance due to the EDAS and therefore provide a first
assessment of system safety. The first of the two question-
naires is deployed after the system run (run 3) following the
after-measurement of the SAS. The second questionnaire (15
items) is used as part of a survey which is conducted after all
four runs.

Emphasis is put on the evaluation of user acceptance in this
early stage of the development process. If ViDCo and its
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concept were not accepted, at worst it would not yield any
improvements of fuel efficiency. In this case, the concept
would need to be re-designed to a great extent.

In order to analyze user acceptance, the System Acceptance
Scale (SAS) of van der Laan et al. is used [40]. The English
version of this scale consisting of nine items was translated
into German. The before-measurement was performed after
describing the EDAS as follows:

“Imagine a new driver assistance system is installed in your
truck. The system can help you to drive more fuel efficiently.
The system provides you with instructions during certain sit-
uations on how to adjust your driving style. Please specify
what you would feel about such a system?”

Afterwards the subjects perform the system run (run 3),
before conducting the after-measurement of the SAS (System
Acceptance Scale). The after-measurement represents the ac-
tual assessment of the Virtual Driving Coach with regard to
system acceptance.

A straightforward yes-no question is asked to obtain a self-
assessment of the subjects, whether they believe they learned
anything from ViDCo. We call this the participants’ judgment
of learning.

3.2.3 Methods of LMM refitting

In order to analyze whether the results of the survey with
regard to system acceptance and the self-reported judgment
of learning help to explain parts of the variances for the

Fig. 10 Results of the seven

items of EQ 1 and EQ 2 asking for While driving, | was

average fuel consumption, the LMM is refitted with data of
the survey. The refittings are done by replacing the original
variable System Experience either by the SAS scores or Judg-
ment of Learning. Other explanatory variables of the original
model remain unchanged. Evaluation of the quality of the
model is done by fitting the model with a maximum log-
likelihood (ML) approach and analyzing the corrected Akaike
information criterion (4/Cc) [41, 42]. For the estimation of the
fixed-effect values regarding the specific predictors, their t-
and p-values, the restricted maximum log-likelihood
(REML) method is used.

3.2.4 Results

As there is no control condition existing for the evaluation of
EQ 1 and EQ 2, the results of the items regarding system
safety are analyzed qualitatively. As illustrated in Fig. 10,
the overall rating of the system is positive (M from 1.10 to
2.15 on a 5-point Likert scale, with 1 representing a positive
and 5 a negative rating).

The results of the SAS questionnaire’s before- and after-
measurement are presented in Table 4. For both measurements
(before and after) as well as for both scales (Usefulness and
Satisfying) the values of Cronbach’s « indicate a high internal
consistency with « coefficients ranging from 0.89 to 0.93.
Usefulness and Satisfying Scale improve both from the before
to the after measurement. While a paired-samples t-test indi-
cates a significant before—after difference for the Satisfying

distracted from traffic by  2.15(1.31)] 40.0%  35.0 % 0.0 % 20.0 % 5.0 %
aspects of system safety. The the system more than usually
scales of the two items labbeled
with * are reversed for )
comparison reasons. Scale: “does | elt dlsturbeds%tt:ni 1.90 (1.17) 250% 15.0% 5.0 % 5.0 %
not apply” = 1 (positive rating),
“undecided” £ 3 (neutral rating),
“does apply” = 5 (negative There were situations in Percent
rating). Items are translated from which | was Stamms%téhrﬁ 1.30 (0.57) 20.0 % 5.0 % 0.0 % 0.0 % 100
German.
75
There were situations in
which | was irritated by the ~ 1.95 (1.43) 15.0 % 5.0 % 10.0%  10.0%
system 50
| always had enough time to 25
read the instructions of the  1.15 (0.37) 15.0 % 0.0 % 0.0 % 0.0 %
system* 0
| knew immediately for all
instructions what  am ~ 1.10 (0.31) 10.0 % 0.0 % 0.0 % 0.0 %
expected to do*
Due to the system, | felt
prompted to unnecessarily
frequent reactions and 211 (1.24) 421% 263% 158% 105% 5.3 %
thereby drove more restlessly
Mean (SD) does not does undecided does does
apply rather rather apply
not apply apply
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Table 4 Results of the SAS

questionnaire Usefulness scale

Satisfying scale

n mean  median  SD min max mean median  SD min max
Before 20  0.68 0.90 .00 —2.00 200 -0.11 -0.12 095 —2.00 1.75
After 20 094 1.30 098 —1.60 2.00 0.49 0.88 1.17 =2.00  2.00

Scale (#(19)=2.875, p=0.01), the difference of the Usefulness
Scale is statistically not significant (#19)=1.407, p=0.18).

14 subjects out of the 20 participants of the system group
answered with “yes” to the question whether they believe they
have learned anything from the system while six truck drivers
answered in the negative. Figure 11 shows a boxplot/beanplot
comparison of the combined SAS over these judgments of
learning. The combined SAS is the arithmetic mean of the
Usefulness and Satisfying Scale. Each of the two scales alone,
Usefulness Scale and Satisfying Scale, leads to similar results
as the combined SAS of Fig. 11. However, the combined SAS
is able to improve the LMM quality of the refitting better then
Usefulness Scale and Satisfying Scale.

The higher overall SAS rating for the subjects answering
with “yes” (M=1.21, SD=0.49) is statistically significant
compared to the scores for “no” (M=-0.44, SD=0.95). This
can be shown by means of an independent-samples t-test
(#(6.2) = 4.019, p=0.007).

Table 5 contains the results of the original model fitting of
the linear mixed model (LMM) [11] as well as two refittings
regarding the predictor System Experience. When replacing
System Experience by SAS scores, model quality is improved
(as AICc becomes smaller). The original model has a proba-
bility of exp ((658.3—659.7)/2)=0.50 compared to the refitted
model to minimize the information loss [42, p. 74]. However,
this improvement is less strong then the one using Judgment

Would you say you have learned anything from the system?

Combined SAS
o
\

yes no
Judgment of Learning

Fig. 11 Combined SAS over the subjects’ judgment of learning due to
EDAS usage

@ Springer

of Learning as predictor. In this case the likelihood of the
original model is reduced to not even 0.12.

Analyzing the estimations of the fixed-effect 3, the orig-
inal model assesses the learning effect due to System
Experience a fuel consumption reduction of —1.04 L/
100 km or —2.53 % compared to a run without EDAS
(run 2) [11]. Using the SAS scores as predictor suggest
an average fuel consumption reduction of 1.21:(—0.90)
L/100 km=-1.09 L/100 km or —2.67 % for those subjects
answering with “yes” on the judgment of leaming and an
increase of 0.4 L/100 km (0.97 %) for the subjects answer-
ing in the negative. When a positive learning effect is only
considered for those participants stating they have learned
something by the system (Judgment of Learning), fuel con-
sumption is reduced by —1.64 L/100 km or —4.01 %.

One might think system acceptance ought to be a better
predictor for the variance in fuel consumption of the system
run (run 3) instead of the after-system run. However, when
replacing EDAS Usage in the original model with the results
of the SAS model, quality decreases sharply. In this case, the
best fit is achieved by means of the Usefulness Scale (com-
pared to Satisfying Scale and combined SAS). However, even
this best fit is less than 0.001 times as likely as the original
model.

4 Discussion and conclusion

The real-world field test proved the technical feasibility of a
predictive eco-driving assistance system. Especially digital
maps increase drivers’ perception and lead to an improved
anticipatory driving style.

Table5 Results of different LMM predictors for the fixed-effect on run
4. Average fuel consumption is the response variable. System experience
is the predictor of the original model [11]. Other predictors of the original
model remain unchanged

8] DF t p AlCc
System experience -1.04 98 -2.077 0.040 659.7
SAS scores —0.90 98 —2.397 0.018 658.3
Judgment of learning ~ —1.64 98 —2.943 0.004 6554

3 in L/100 km for System experience and Jdg. of learning
{3 in L/100 km per SAS score for SAS scores
f3, t, p fitted by REML, AICc fitted by ML
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The first assessment of ViDCo’s system safety can be
regarded positive in total (Fig. 10). However, answers to spe-
cific items of the questionnaire call for attention. One quarter
of the participants stated that they were distracted by the sys-
tem more than usually. As there are no control conditions for
EQ 1 and EQ 2, a quantitative assessment of this “more than
usually” seems to be difficult. Therefore, in future studies
which focus specifically on the evaluation of system safety,
a control condition with a well-established advanced driver
assistance system (ADAS) or in-vehicle information system
(IVIS) could be introduced. Other solutions include the usage
of validated and standardized questionnaires (e.g., NASA-
TLX [43]) or the measurement of drivers’ eye glance behavior
[44].

The Virtual Driving Coach’s results of the driving simula-
tor experiment with respect to system acceptance scale (SAS)
seem promising. This applies also in comparison to other sys-
tems’ scores. In Fig. 12, ViDCo is benchmarked with eight
other systems’ Usefulness and Satisfying Scales of the SAS
after measurement. ViDCo achieves scores comparable to an
intelligent cruise control [40], a curve-speed warning system
[45], a forward collision warning system [45], and, most sat-
isfactory, another EDAS [46].

Even though this first assessment of system acceptance can
be rated positively, the significance of these results is restrict-
ed. The main reason for this restriction is the lack of knowl-
edge regarding the relationship between short-term accep-
tance and long-term acceptance of ADAS and IVIS. Adell’s
evaluation of two intelligent speed adaptation systems lead her
to the conclusion that drivers need more than 1 month to adapt
to a system without being able to specify the end of this ad-
aptation process [47, p. 58].

Very remarkable are the results of the subjects’ judgment of
learning due to the EDAS. While this judgment alone does not
leave much space for interpretation, its relationship with other
aspects of the experiment does. There seems to be a very clear
relationship of this judgment with system acceptance
(Fig. 11). This relationship, however, does not say anything
about the causality. Furthermore there is the possibility that the

question about the judgment of learning and the SAS ques-
tionnaire inadvertently measure the same construct (operation-
al confounding).

On the supposition that no operational confounding ap-
plies, we believe the most likely explanation of the causality
for a system which aims on implicit transfer of knowledge, as
ViDCo does, is as follows: system acceptance is a prerequisite
of learning. Therefore, only if the system is accepted by the
users are they open for adapting their behavior according to
advice of the system. For the Virtual Driving Coach, this ad-
aptation translates into a reduction of fuel consumption which
can be interpreted as a positive learning effect.

We support this theory since the self-reported judgments of
learning serve as much better predictor of the fuel-
consumption reduction between run 2 and run 4 of the exper-
imental group than the results of the SAS questionnaire
(Table 5). Firstly, this indicates that the self-reported judg-
ments of learning are plausible since these judgments help to
explain more of the variance of the measured data. Secondly,
these results might be interpreted in such way, that it appears
system acceptance is “further” away from the actual outcome
of a positive learning effect: a reduction in fuel consumption.

On the one hand we cannot rule out the possibility of op-
erational confounding. On the other hand the explanatory
power of the questionnaires and the model refitting might very
well be limited due to the sample size of #n=20. Thus, the
results of the model refitting cannot be regarded as proof for
our hypothesis about the causality between system acceptance
and learning. However, they represent a first positive indica-
tion. In order to fully understand the relationship between
system acceptance and the learning effect of systems aiming
at the implicit transfer of knowledge, more research is needed.
Therefore, future studies might focus on the causality of ac-
ceptance and learning. This includes showing that the self-
reported learning effect and system acceptance can indeed
be measured as two independent, latent constructs.

Furthermore and similar to the restrictions of the results
with regard to system acceptance, the observed effects on
learning are of a short-term nature. For a lasting improvement

Fig. 12 Usefulness scale over 2 T

satisfying scale for different

systems compared to the Virtual
Driving Coach (with data from 15+
[40, 45, 46])

<

Usefulness Scale
T

ViDCo (shift from before
to after measurement)
1) Autonomous Intel. 5). -
Cruise Control (1994) 6)

2) Intelligent Cruise
Control (1994)

3) Collision Avoidance N

(1993) 3) /7)’;) 8) .
. 4) Forward Collision A ° 6) Lat.eral Drift

Warning (2005) 2) Warning (2007)
0.5 5) Adaptive Cruise 1) e 7 Cu_rve—speed 7

Control (2005) L4 Warning (2007)

8) EDAS (2013)

O 1 1 1 1 1 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Satisfying Scale
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of fuel efficiency however, the long-term effects are of inter-
est. In order to analyze the long-term effects, costly longitudi-
nal studies represent the means of choice.
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