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Abstract
Purpose The paper studies the progressive occupancy of
parking capacity along the street by candidate users, under
the user equilibrium paradigm. The situation depicted typical-
ly applies to a parking peak period.
Methods In our model, the parking supply is made up of ca-
pacitated lots situated along a spatial axis, while the demand is
disaggregated continuously in both destination place and pre-
ferred time of arrival. Each user selects a parking lot and time
from among options on the basis of their trade-offs between
walking, driving, parking price and schedule delay. Efficient
algorithms are developed and an application instance is dealt
with in detail.
Results The dynamical equilibrium pattern exhibits parking
lots Befficiency regions^ in the plane of destination places
and preferred arrival times. These efficiency regions are dy-
namic market areas with strong yet simple structural charac-
teristics, making it easy to assign each parking user to his
preferred option and to derive the lot saturation times. The
latter are identified as the key state variables for the parking
system, since they induce the lot efficiency regions. The equi-
librium state is characterized as the solution to a fixed-point
problem with respect to the saturation times.
Conclusion Our model improves upon previous parking
models in economic theory, by adopting a higher resolution
in space and time on both supply and demand side. The higher

resolution is enabled by focusing on the street level, thus
restricting the outreach of the model. Further research may
be directed to extend the model to a network of streets, on
the side of traffic assignment, and to study parking manage-
ment policies, on the side of parking economics.

Keywords Parking capacity . Demand-supply equilibrium .
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1 Introduction

Context Making a trip by means of an individual vehicle—
say a private car—requires a parking space at the trip’s end or
near it. Every car user that also holds a garage inside or near
their houses has the opportunity to use it whenever he needs it.
The rest of car users rely on public parking either on street or
off street. However, as public parking is available to anybody,
it may be occupied—hence unavailable—at the instant of user
arrival. A parking user can adapt to the saturation of a parking
lot either (i) by diverting to another lot that is still available—
probably at the expense of more walking, driving or higher
tariffs, (ii) by scheduling the time of his trip in order to park his
car before the lot gets saturated—at the expense of schedule
delay at his destination, or (iii) by some trade-off between
diversion in space and trip scheduling. User costs resulting
from parking congestion impede car trips making the manage-
ment of parking supply an important lever in urban transpor-
tation policies.

Problem statement The filling up of parking capacity (indeed
a storage capacity) is a physical phenomenon, as is the diver-
sion from one parking lot to another. In an urban area on a
typical working day, parking demand has a temporal profile
that can be taken as an exogenous physical condition. Under
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these physical conditions, is there a state equation to describe
the joint evolution of parking supply and demand? Such an
equation would be a partial differential equation since the
phenomenon extends in both time and space. It could be used
to simulate the traffic effects of parking plans and to aid
decision-making in urban mobility planning.

Literature review There are two related scientific streams
that deal with the interplay of parking supply and demand:
network simulation models vs. theoretical economic models.

A network simulation model involves both a supply
representation in terms of lots that are situated, capaci-
tated and priced, and a demand representation in terms
of a population of users with individual behavior for the
selection of a parking lot and maybe also of a parking
time if the setting is dynamic. In such a model, the
Bphysical behavior^ of the lots and the economic behav-
iors of the users are put together on a one-to-many
basis, i.e. each constituent interplays with other ones
but there is no local state equation.

Previous work in this stream includes macroscopic traffic
models of route choice and parking lot choice under user
equilibrium. Huang et al [9] and Li et al [12] modelled a
multimodal network with capacity constraints on both road
segments and parking facilities under user equilibrium: the
system state is characterized by a set of equations, one by
system constituent (or by relation between a choice option
and a user). Related but time-extended formulations have been
developed later on to model system dynamics by Lam et al
[10], Li et al [13] and Li et al [14].

A quasi-dynamic model by Gallo et al [7] addresses
parking choice and cruising by distinguishing three trip phases
of, first, main car path, second, cruising part and, third, pedes-
trian access; each phase is dealt with in a dedicated network
layer. Parking search loops have been modelled in a static,
traffic equilibrium of route choice and parking choice by
Leurent and Boujnah [11]: lot diversion is dealt with explicitly
and each lot has a status either saturated or available, yet with
no timing of the saturation events.

Microscopic, multi-agent traffic models have also been de-
veloped to study the search of a parking space in an area where
some lots are saturated: the Parkagent model of Benenson et al
[5] and Martens et al [15], the Sustapark model of Dieussaert
et al [6] and theMatsim-based parking model of Horni et al [8]
and Waraich and Axhausen [19]. All of these involve a two
stage process of individual behaviour, first for main access to
search starting point then for effective search; each stage has
its own set of specific rules. But the agent paradigm belongs to
the one-to-many kind of interplay between supply and de-
mand and provides no insight into a local state equation.

The other scientific stream pertains to the economic theory
of parking. Models simplified in space and time have been
elaborated to capture the interplay of supply and demand.

Anderson and De Palma [1] modeled a corridor giving access
to a city centre with parking capacity uniformly distributed
along it and that is filled up progressively, starting from the
centre: all of the users are destined to the centre only and park
at the closest available position, yielding a state equation that
is both simple and restricted to this particular situation. Arnott
and Inci [4] put forward a pseudo-dynamic model of parking
choice, more precisely of delay time to get a space under
saturated lots and in stationary regime: their conditions are
homogenous in space as in time and their state equation does
not address diversion in space nor dynamic changes. Qian
et al. [17]) studied a traffic bottleneck giving access to two
parking lots more or less close to one downtown destination,
during the morning peak; his state equation pertains to the
bottleneck rather than to the parking lots and their filling up.
This dynamic user equilibrium is further linked to the parking
market determining parking fees, locations and capacities.
Effects of public regulation on reaching the System Optimal
(SO) are the main concern of this paper.

In a spatial configuration of a uniformly and continuously
distributed parking supply along an access route between a
residential origin and the CBD as a single destination, Zhang
et al [20] extend the model developed by Arnott et al [2],
dealing with the effects of parking fees and road tolling poli-
cies on the morning peak, to study coupled dynamics of morn-
ing and evening commutes linked through the parking loca-
tion choice. Bottleneck dynamics rather than parking satura-
tion is, again, of main concern.

Qian et al [18] study, in a quasi-static framework, discrete
parking lots treated as links between origin and destination
nodes with exogenous time-dependent demand. Time-
varying parking fee, constant during each discrete time period,
and parking search time related to lot saturation, stem the
generalized cost of parking at a given lot, driving temporal
distribution of demand among available lots in a context of
perfect information.

Literature review of the two main scientific streams which
the present work refers to allows us to position the present
work in the following manner.

Network simulation models, although allowing for an ex-
plicit treatment of a detailed spatial configuration of parking
supply as well as cruising for parking, do not lead to local state
equations, requiring a one-to-many treatment of supply/
demand interaction. Parking model presented in this paper
elicits a key state variable: instant of parking lot saturation,
linking supply and demand. This enables to reduce the one-to-
many complexity to the search of a finite vector, governing
supply and demand interaction.

Parking models in the economic theory of parking stream
are mainly analytical models of the supply and demand inter-
action, described through state equations. These models allow
for the study of parking policies and their socio-economic
impacts. This analytical treatment is permitted by a spatial
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simplification of the parking supply. The model presented in
the present paper, seeks to increase the spatial resolution of the
parking supply and the disaggregation both spatial and tem-
poral of the parking demand, but still preserving a reasonable
level of complexity allowing for the treatment of strategic
decisions, such as parking policies, at the local level.

Paper objective This paper brings about a model of parking
supply and demand. Parking supply is broken down into local
lots situated along an axis, each one with given capacity and
tariff. Regarding parking demand, it is made up of a popula-
tion of users disaggregated by destination place along the
spatial axis and by preferred time of arrival, according to a
continuous joint statistical distribution. Every user behaves as
a selfish individual decision-maker to select a parking lot and
a parking time, on the basis of a disutility functionwith respect
to walking distance, in-vehicle distance, schedule delay and
parking price. A single disutility function is taken for all users.
The model further assumes perfect knowledge and therefore
no cruising on behalf on the users.

This setting has medium complexity compared to the simplis-
tic description in an economic model and the realistic one in a
network simulation model. It enables us to derive the salient
features of the parking lots subjected to the users’ arrivals, in
the analytical form of wave propagation in the space-time
plane. The waves delineate the frontiers between the respec-
tive attractive basins of the lots – in other words, their market
areas. Thus our model blends up the kinematic theory of traf-
fic waves à la Lighthill-Whitham-Roberts, together with the
economic theory of market areas à la Alfred Weber (cf. [16]).

Method and outcome Key to our analysis are the lot satura-
tion times, since each user must adapt his parking time to the
period of availability. Assuming a peak parking period where
no user leaves the parking lots, parking capacity is only filled
up and does not become available again during the period
under study. Based on the vector of lot saturation times, we
derive the efficiency regions (i.e. the market areas) of the lots
in a bi-dimensional plane of destination position and preferred
time of arrival – which is an intentional time, distinct from the
physical time of parking. Knowing the efficiency regions, it is
then easy to derive the user flows directed to each lot and to
determine the saturation times. These make up the crucial
variables in the interplay of supply and demand.

It is shown that the problem of deterministic, dynamic user
equilibrium of parking traffic amounts to a fixed point prob-
lem with respect to the lot saturation times. Although the as-
sociated function lacks continuity at some points, it is demon-
strated that an equilibrium must exist provided that the
parking capacity suffices to accommodate the demand vol-
umes. An event-based algorithm is provided to determine
the efficiency regions at a reduced computational cost.

Several computation schemes are put forward to solve the
fixed point problem and to get an equilibrium state.

Paper outline The rest of the paper is organized in seven
parts. After introducing the body of assumptions (Section 2),
we address the uncongested case to reveal the interval struc-
ture of the efficiency domains of the lots under stationary
conditions (Section 3). We then turn to dynamic analysis in
two stages, by dealing first with a single parking lot that pro-
vides timed options to a given user depending on his target
endpoint and preferred instant of arrival (Section 4), second
with the temporal structure of the efficiency regions of the lots
(Section 5). Following that, parking equilibrium is stated and
cast into a fixed-point problem with respect to the saturation
times of the parking lots; the existence of an equilibrium is
demonstrated and computation schemes are put forward
(Section 6). After dealing with an instance (Section 7), we
conclude and point to a range of issues for further research
(Section 8). The Appendix provides the algorithms to deter-
mine the set of efficiency regions, together with some mathe-
matical details.

Notations

ℵ = [tmin,
tmax]

Period under study, encompassing all arrivals at
destination such that no parking occurs outside
this period

α/ β Marginal value of a unit car time / Marginal
value of a unit walk time

γ/ γ+ Marginal value of a unit time of earliness/
lateness

D Schedule cost
Eij / Ei / EI Domain in the ~x;~tð Þ plane where lot i dominates

lot j / Efficiency domain of the option i where it
dominates all other options / Set of efficiency
domains for the lots i ∈ I

Gs(i, t) Generalized cost of the parking option (i, t) to a
user in the segment s ¼ ~x;~tð Þ

gi ~x;~tð Þ Optimal cost of parking at the lot i to a user in
the segment s ¼ ~x;~tð Þ at the optimal parking
time t*i ~x;~tð Þ

H ~x;~tð Þ /
h ~x;~tð Þ

Joint cumulative distribution function of ~x and~t
in the population of users / Joint probability
density function associated to H ~x;~tð Þ

I Set of parking lots numbered i ∈ I
ki/ mi Capacity of the parking lot i / Tariff of the

parking lot i
L Street length
Q Total number of users
~q ~tð Þ / ~qi ~tð Þ Flow rate of users at preferred arrival time ~t /

Flow rate of users at preferred arrival time ~t
parking at the lot i
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qi(t)/ Qi(t) Flow rate of users arriving at the lot i at time t
/ Cumulated flow of arrivals in the lot i up to
time t

s Demand segment given by s ¼ ~x;~tð Þ
t/ t*i ~x;~tð Þ Parking time / optimal parking time at the lot i

for a user in the segment s ¼ ~x;~tð Þ
ti / tI Lot i saturation time, when cumulated parking

flow reaches lot capacity / Vector of lot satura-
tion times

~t / t ' Preferred time of arrival / Effective instant of
arrival at destination endpoint

t#i ~xð Þ Instant on the ~t axis when the saturation wave
will reach ~x. Equivalently arrival time at
destination when parking in a saturated parking
lot

v / w Average car speed / Average walking speed
Vi/ Wi Cost of in-vehicle parking access / Cost of pe-

destrian access from parking lot to destination
endpoint

x / xi Curvilinear abscissa on the street / Position of
the parking lot i on the street

~x Destination location
x̂i j ~tð Þ / x̂0i j Boundary function between domains where i/j

dominates j/i / Initial constant boundary in the
unsaturated configuration

x−i ~tð Þ /
xþi ~tð Þ

Lower/upper boundary of the efficiency domain
Ei of the lot i, function of ~t

2 Model assumptions

The model assumptions pertain to either the parking supply or
the parking demand. The spatial dimension is described by a
curvilinear abscissa along the street, denoted x, which ranges
from minimum value 0 to maximum value L. As for the tem-
poral dimension, the continuous distribution of instants, de-
noted t, is considered during a period under study, ℵ = [tmin,
tmax] encompassing the period of preferred arrival at destina-
tion such that no parking occurs outside this period.

2.1 Supply side

On the supply side, we consider on-street or off-street parking
spaces that are accessible from the street to every user. Parking
spaces with similar position and same tariff conditions are
grouped into a parking lot, say i, of which the main character-
istics are its position xi, capacity ki and tariff, mi.

Thus, by grouping on-street lots similar in position and
sharing the same tariff and management conditions into a
higher-capacity lot, positioned at the mean location along
the street, on-street supply can be described. The criterion
for grouping lots according to their position should be based

on the walking cost. On-street parking supply on very long
streets should therefore be discretized into shorter sections of a
few minutes of walking time.

The description of an off-street parking lot is also simpli-
fied since its internal geometry and access conditions from the
street are neglected. So are the cost of search for an available
space inside the lot and the pedestrian access from lot to street:
however some related user cost can be included in the lot
tariff, which is taken independent from the duration of
parking. This additional search cost could be made dynamic,
depending on the information provided, parking saturation
level and spatial arrangement of the parking lot.

The parking capacity is the residual capacity that stems
from the total capacity minus the number of spaces occupied
at the beginning of the period and not vacated during it.

Due to the users’ arrivals during the period under study, the
parking lot will progressively fill up until its capacity is
reached at some time, denoted ti and called its saturation time.
A default setting of tmax is associated to a lot that does not get
saturated. Thus, parking in lot i occurs at the latest at time tmax.

On the one hand, higher capacity lots, rather than individ-
ualized parking spaces, are made compatible with the macro-
scopic description of the parking flows, discussed below. On
the other hand, discretizing parking supply into a finite num-
ber of lots is necessary to reduce the complexity of the supply/
demand interaction, through state variables—instants of satu-
ration. Both of these conditions are core to the present model
allowing a detailed spatial description of the parking supply
and statistic spatio-temporal description of parking demand,
while preserving analytical tractability of the problem.

2.2 Demand side

On the demand side, the parking users are disaggregated ac-
cording to destination point, denoted ~x∈ 0; L½ �, and preferred
instant of arrival, denoted ~t∈ℵ . Both ~x and ~t are continuous
variables. Their joint cumulative distribution function in the
population of users is denoted H ~x;~tð Þ with joint probability
density function h ~x;~tð Þ. The total number of users is Q. From
these assumptions stems the flow rate of users by preferred

arrival time, ~q ~tð Þ ¼ Q∫~xh ~x;~tð Þd~x, and themarginal probability
density conditional on ~t,

~h ~x ~tjð Þ ¼ h ~x;~tð Þ=∫ xh x;~tð Þdx.
Apart from the endpoint and preferred instant of arriv-

al, a single travel behavior is hypothesized for all users.
Each user chooses an (i, t) pair of parking lot i and
parking time t at that lot. He is assumed to have perfect
information about the lot positions, tariffs and saturation
times—arguably from past experience and reiterated situ-
ations. The hypothesis of perfect information involves no
stress on the part of the user, therefore searching time is
not penalized higher than travel in-vehicle time. Cruising
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for parking is not modelled in the present approach con-
centrating on the street level. A further statistical treat-
ment of dynamic parking conditions on the street level
would allow for the introduction of cruising for parking
at the network level taking into account spatial and tem-
poral diversion incurred by progressive parking saturation
(building on static approaches developed in Leurent and
Boujnah [11]). Imperfect information would result in a
stochastic equilibrium. This approach is left for further
research.

Denote by s ¼ ~x;~tð Þ the particular demand segment of a
user. To a user in segment s, a parking option (i, t) involves
three travel phases as follows: first, car access from street
entry point to lot position, xi; second, pedestrian access from
lot position to destination endpoint, ~x; furthermore, to avoid
saturation the user may adapt his instant of parking hence his
instant of arrival, by re-scheduling his trip thus incurring some
inconveniency.

Each travel phase induces a disutility, or generalized cost,
to the user. First, the cost of parking access is a function Vi that
depends only on the lot position and tariff, both in an increas-
ing way. Let us assume here that entry point is located at x = 0.
For simplicity, let

Vi ¼ mi þ α:xi
v

ð2:1Þ

With v an average car speed, α the marginal value of a unit
car time and mi the parking tariff.

Second, the cost of pedestrian access is a function Wi ~xð Þ
that depends on the distance between the respective positions
of parking lot and trip endpoint. For simplicity, let

Wi ~x
� �

¼ β
~x−xi
��� ���
w

ð2:2Þ

With w an average walk speed and β the marginal value of
a unit walk time.

Third, the schedule cost is a function D t
0
;~t

� �
in which t′ is

the effective instant of arrival at the destination endpoint.
Denoting by t the instant of user parking at lot i, it holds that

t
0 ¼ t þ j~x−xij

w
ð2:3Þ

The schedule cost diminishes with t′ up to ~t and then it
increases. For simplicity, a piecewise linear affine function is
assumed:

D t
0
;~t

� �
¼ γ ~t− t

0
� �þ

þ γþ t
0
−~t

� �þ
ð2:4Þ

Wherein (x)+ = max{x, 0} and γ (resp. γ+) is the marginal
value of a unit time of earliness (resp. lateness).

To sum up, the cost of parking option (i, t) to a user in
segment s ¼ ~x;~tð Þ amounts to

Gs i; tð Þ ¼ Vi þWi ~x
� �

þ D t þ
~x−xi
��� ���
w

;~t

0
@

1
A ð2:5Þ

The disaggregation of demand into several segments with
different socio-economic parameters α, β, γ/γ+ and physical
parameters v,w is discussed at the end of the section 5 (§5.4).

3 Supply and demand interaction in the uncongested
case

Let us derive the consequences of the modeling assumptions
in the uncongested case when no parking lot reaches its ca-
pacity during the studied period.

To a user in segment s ¼ ~x;~tð Þ, option i is available at
reduced cost with no schedule delay on selecting a parking
time t which matches the preferred time of destination arrival,
~t:

t ¼ ~t− ~x−xi
��� ���.w ð3:1Þ

Thus, the schedule cost vanishes and the optimal cost is a
function of ~x;~tð Þ, that depends on ~x only:

gi ~x;~t
� �

¼ Vi þWi ~x
� �

;∀~t ð3:2Þ

Then, the problem of selecting the best parking option
merely amounts to solve:

min gi ~x;~t
� �

: i∈I
n o

ð3:3Þ

This problem is easy to solve at each position ~x along
the spatial axis. Furthermore, there is a collective pattern
of cost minimization due to the shape of the reduced cost
functions. Function gi is a V-shaped, piecewise affine
function with minimum value Vi at point xi. Between
two options i < j to denote xi < xj, as the half lines of their
cost functions are parallel (by side), they do not intersect
so either the two function graphs do not intersect (as il-
lustrated in Fig. 1a) or there is only one intersection point
(as shown in Fig. 1b). The condition for no intersection is
that

gi x j;~t
� �

< V j;∀~t; i:e: i dominates j everywhere ð3:4aÞ
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Or

g j xi;~t
� �

< Vi;∀~t; i:e: jdominates ieverywhere ð3:4bÞ

If gi x j;~t
� �

≥V j and g j xi;~tð Þ≥Vi then there is a unique in-

tersection point, denoted x̂0i j, such that

gi x̂0i j;~t
� �

¼ g j x̂0i j;~t
� �

;∀~t ð3:5Þ

From the V-shapes and the parallel half lines this point
must be located in the region where gi increases and gj de-
creases, i.e. in [xi, xj]. So (3.5) is equivalent to

mi þ α
v xi þ β

w x̂−xið Þ ¼ mj þ α
v x j−

β
w x̂−x j
� �

; yielding
x̂0i j ¼ 1

2 xi þ x j
� �þ w

2β mj−mi þ α
v x j−xi
� �� � ð3:6Þ

Notation ^ indicates the frontier status and B0^ stands for
the absence of congestion.

Denote by Eij the domain of ~x where i dominates j, i.e.
gi ~x;~tð Þ≤g j ~x;~tð Þ. In the absence of intersection, either

Eij = [0, L] and Eji=∅, or the converse, whereas if there is an

intersection then Ei j ¼ 0; x̂0i j
h i

and E ji ¼ x̂0i j; L
h i

. Whatever

the case, Eij is an interval for all~t.
When all parking lots are considered, for all~t, the efficien-

cy domain of lot i on ~x is defined as

Ei ¼ ~x∈ 0; L½ � : gi ~x;~t
� �

≤g j ~x;~t
� �

∀ j∈I
n o

Thus Ei ¼
\

j∈I−i
Ei j

ð3:7Þ

Then being an intersection of intervals, Ei is an in-
terval. Thus the collection of parking choice problems
parameterized by ~x amounts to a sequence of efficiency
intervals: the sequence is ordered by the lot positions
since a larger position induces an efficiency interval
with larger values. Let us denote xi

− = min Ei and xi
+ =

max Ei, with respective default values of L and 0, re-
spectively, if Ei is empty.

The usage pattern of the parking lot i is as follows: at
instant t it receives the users in Ei with preferred endpoint
arrival at ~t ¼ t þ ~x−xij j =w. Formally, their flow rate is

qi tð Þ ¼ Q
Z

x−i ;x
þ
i½ �
h ~x∼; t þ 1

wj ~x∼−xij
� �

d ~x∼ ð3:8Þ

From this stems the cumulative flow of arrival in lot i up to
t,

Qi tð Þ ¼
Z

u≤ t
qi uð Þdu

¼ Q
Z

x−i ;x
þ
i½ �
H

~x
t þ 1

w
~x−xi
��� ���

	 

d~x ð3:9Þ

Wherein H~x tð Þ ¼ ∫ u≤ th ~x; uð Þdu.

Property 1: In absence of parking congestion, the demand
domain is divided into market areas of each parking option,
separated exclusively by spatial limits based on relative posi-
tions of parking lots and tariffs.

In the Appendix, an algorithm Uncongested Efficiency
Frontier is provided to determine the efficiency domains in
the uncongested case.

If there are no tariffs i.e.mi = 0, and if the parameters check

that αv ≤
β
w, then it holds that

∀i < j; gi x j;~t
� �

> g j x j;~t
� �

;∀~t ð3:10aÞ

The reason is that gi x j;~t
� �

−g j x j;~t
� � ¼ β

w −
α
v

� �
x j−xi
� �

,

which is non negative since xi < xj and β/w >α/v by assump-

tion. Conversely, since g j xi;~tð Þ−gi xi;~tð Þ ¼ β
w þ α

v

� �
x j−xi
� �

,

∀ j > i; gi xi;~t
� �

< g j xi;~t
� �

;∀~t ð3:10bÞ

The condition that β/w > α/v is consistent with the individ-
ual behaviors of most users because car speed v should be
higher than walk speed w (which will be identified as H1),
while walk time is likely to be less comfortable than car time,
i.e. β >α (identified as H2). Under the two conditions of null

Fig. 1 Cost of two parking
options w.r.t. destination location.
a. No intersection: option i
dominates option j everywhere. b.
One intersection at x̂i j separates
the respective efficiency intervals
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tariffs and adequate values of the behavioral parameters, it
follows that every parking lot is efficient around its
location. This joint efficiency of all parking options
holds if the structure of tariffs does not Bdistort^ too
much the preference structure of the parking lots based
on their location (which will be identified as H3) (i.e. if
the tariff of an option is too high compared to its neigh-
bors, this option will become preferable only when oth-
er options are saturated). Then, it is not necessary to
apply the algorithm Uncongested Efficiency Frontier.

4 A parking lot as a timed option for car users

Having solved the stationary problem with uncongested lots,
let us now address the dynamic setting, at first for a single
parking lot i with saturation time ti < tmax.

A user of segment s ¼ ~x;~tð Þ minimizes his cost of parking
at i by matching his instant of parking, t, to~t in the following
way (recall eqn. (3.1)): t ¼ ~t− ~x−xij j =w.

This is possible only if t≤ ti hence if~t≤ t#i ~xð Þ≡ti þ ~x−xij j=w.
Of course the shorthand t#i ~xð Þ, which defines the saturation

wave in the demand space, is conditional on ti. If~t≥ t#i ~xð Þ then
the parking times that would match ~t are not available to the
user. After parking at t the user arrives at his destination at

t
0 ¼ t þ j~x−xij=w, which is less than ~t, meaning an early ar-

rival, hence a schedule delay D t
0
;~t

� �
which is minimized by

minimizing jt0−~tj, yielding t
0 ¼ ti ~xð Þ or equivalently t ¼ ti.

Late arrival could only occur after some parking capacity be-
comes available anew.

Property 2: To a user in segment s ¼ ~x;~tð Þ, the optimum

instant of parking at i is either t*i ~x;~tð Þ ¼ ~t− ~x−xij j=w if ~t≤ t#i
~xð Þ or t*i ~x;~tð Þ ¼ ti if ~t≥ t#i ~xð Þ. So, in general,

t*i ~x;~t
� �

¼ min ti; ~t−
1

w
~x−xi
��� ���

� �
ð4:1Þ

This optimal parking time gives rise to the optimal cost of
parking at i to the user,

gi ~x;~t
� �

¼ Vi þWi ~x
� �

þ D t*i ~x;~t
� �

þ 1

w
~x−xi
��� ���; ~t

	 

ð4:2Þ

Given~t > ti, on the spatial interval~x∈xi � w ~t−tið Þ, the user
in segment s ¼ ~x;~tð Þ must arrive early at his destination and
he incurs a schedule cost D ti þ 1

w ~x−xij j�
; ~tÞ which decreases

when ti þ 1
w ~x−xij j increases hence when ~x−xij j increases. It is

highest at ~x ¼ xi. So its variations are opposite to those of
Wi ~xð Þ, which stems from the walk distance between the

parking lot and the trip endpoint (time needed to walk from
the parking lot to the destination partly reduces earliness). The
overall effect of ~x on gi depends on the respective coefficients
in Wi and D in the detailed formula:

gi ~x;~t
� �

¼ mi þ α
v
xi þ β

w
~x−xi
��� ���

þ γ ~t−ti−
1

w
~x−xi
��� ���

	 
þ
ð4:3Þ

If β ≥ γ thenWi prevails uponD and gi is V-shaped as in the
uncongested case, yet with reduced slope around its minimal
point (Fig. 2). But if γ > β then gi is W-shaped with two min-
imum points and a local maximum at xi between them. In the
rest of the paper we shall keep to the assumption (identified as
H4) that β ≥ γwhich not only makes things easier but also and
above all is more behavioral since a unit walking time is less
useful—hence more costly – to the user than a unit time at the
destination where he can undertake a short complementary
activity.

5 The temporal structure of efficiency domains

We are now ready to address the general case with several
parking lots and eventual saturation. In this section, the main
working assumption is to take the lot saturation times as ex-
ogenous parameters in order to derive from them the structure
of the lots’ efficiency domains with respect to time: a bi-
dimensional efficiency domain along time ~t as well as space
by location ~x will be called an efficiency region.

We shall first study the bilateral competition between two
lots (§ 5.1) and then the multilateral competition between all
lots (§ 5.2). Next, the traffic consequences are established by
deriving the lot instantaneous and cumulative flows (§ 5.3).
Lastly, we will present the treatment of multiple classes of

Fig. 2 Generalized cost in the congested case for three values of
preferred arrival time: when ~t > ti, the slope is modified around xi
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demand (§ 5.4). In the appendix, an event-based algorithm is
provided to compute the efficiency regions in an efficient way.

5.1 Bilateral competition

Bilateral competition between two lots is analyzed according
to parameter ~t and proceeds in 3 stages: first, departing at an
initial~t while both lots are unsaturated, then, while~t increases
it reaches the saturation wave of one lot which gets saturated
while the other one remains unsaturated, thenwhen the second
lot reaches saturation two alternative outcomes are discussed.
So the parametric analysis is conditioned by the saturation
times of the two lots, which thus constitute fundamental
parameters.

5.1.1 Initial uncongested configuration

Take two lots i and j in I such that xi < xj, which can be denoted
also as i < j. Assume that each lot has a non-empty efficiency
domain at the initial instant~t ¼ tmin -a preferred time of arriv-
al. As described in section 3, from their respective positions,

lot i has an initial domain 0; x̂0i j
h i

and that of lot j is x̂0i j; L
h i

.

Each domain is a specific side, left or right, with respect to the

pivot value x̂0i j where the lot costs are equal. Point x̂
0
i j must lay

between the two lots to ensure the joint efficiency; so the cost

function gj decreases with ~x on 0; x̂0i j
h i

whereas function gi

increases with ~x on x̂0i j; L
h i

(as illustrated in Fig. 3). As ~t

increases, under the behavioral condition that β ≥ γ (H4), the
respective efficiency domains are maintained since, as de-
scribed in section 3, the cost structure is independent of~t until
schedule delay is introduced due to saturation.

5.1.2 Unilateral saturation of a lot

Efficiency domains start evolving when x̂0i j is reached by a

saturation wave from one lot (introduced in section 4), at in-

stant t#i x̂0i j
� �

. For users in the saturation area, parking time in

the saturated lot is constrained by the saturation time ti which
leads to an additional delay cost making the unsaturated lot
more attractive. Some users will then switch from the saturat-
ed lot to the unsaturated lot to avoid the delay cost, moving the
x̂i j frontier as to extend the efficiency domain of unsaturated
lot (see the x̂i j ~tð Þ curve in Fig. 3 where lot i is saturated first).

This holds because, until the saturation wave reaches x̂0i j, any

congested point of option say i has position ~x≤ x̂0i j and an

option cost less than that at x̂0i j. From the latter fact, it stems

that

gi ~x;~tð Þ≤gi x̂0i j;~t
� �

¼ g j x̂0i j;~t
� �

,

whereas the condition that ~x≤ x̂0i j implies that

g j ~x;~t
� �

≥g j x̂0i j;~t
� �

On combining, it follows that

gi ~x;~t
� �

≤g j ~x;~t
� �

Let us then consider the first instant when lot saturation

reaches x̂0i j:

t*i j ¼ min t#i x̂0i j
� �

; t#j x̂0i j
� �n o

Assuming that ti
# < tj

# (case 1) at x̂0i j, after tij
∗ and at ~x around

x̂0i j the cost of lot i is increased yet still V-shaped whereas that
of lot j is maintained along a half-line where it decreases with~x
(as shown in Fig. 3). So there is a unique intersection of the

two cost functions, at x̂i j ~tð Þ≤ x̂0i j.

5.2 Bilateral frontier evolution in case of unilateral
saturation

For case 1, x̂i j ~tð Þ is a decreasing function of ~t (as shown in
Fig. 3), it is defined by the equality of the congested cost of i
and the uncongested cost of j, as follows: gi x̂;~tð Þ ¼ g j x̂;~tð Þ or

mi þ α
v
xi þ β

w
εi x̂−xi
� �

þ γ ~t−ti−
εi
w

x̂−xi
� �� �

¼ mj þ α
v
x j þ β

w
ε j x̂−x j
� �

ð5:1Þ
Fig. 3 Bilateral competition between saturated lot i and unsaturated lot j:
as preferred arrival time increases, x̂i j ~tð Þ moves towards the saturated
option, reducing its efficiency domain
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Wherein εi = + 1 if x̂ > xi or -1 if x̂≤xi and εj = + 1 if x̂ > x j
or -1 if x̂≤x j.

Let us denote α′ =α/v, β′ = β/w, γ′ = γ/w and ζk
′ = ζ′. εk for

ζ ∈ {α, β, γ} and k ∈ {i, j}.
In abridged form,

mi þ α
0
xi þ β

0
i x̂−xið Þ þ γ ~t−�ti

� �
−γ

0
i x̂−xið Þ ¼ mj þ α

0
x j þ β

0
j x̂−x j
� �

So β
0
i−β

0
j−γ

0
i

� �
x̂ ¼ mj−mi þ α

0
x j−xi
� �þ β

0
ixi−β

0
jx j−γ

0
ixi−γ ~t−�ti

� �

ð5:2aÞ

After t#i x̂0i j
� �

, the function ~t↦x̂i j ~tð Þ decreases at slope −

wγ/(2β − γ) as long as x̂i j≥xi, then at slope − w (since
βi
′ = βj

′ = − β′ and γi′ = − γ/w if x̂i j < xi ). The instant at which

x̂i j ¼ xi is t
#
i x̂0i j
� �

þ 2β−γ
γw x̂0i j−xi

� �
.

Conversely in case 2, if ti
# ≥ tj# then the function x̂i j ~tð Þ in-

creases with~t after t#j x̂0i j
� �

. It is defined by interchanging the i

and j indices in (5.1), which yields that mi þ α
0
xi þ β

0
i x̂−xið Þ

¼ mj þ α
0
x j þ β

0
j x̂−x j
� �þ γ ~t−�t j

� �
−γ 0

j x̂−x j
� �

, hence that

β
0
j−β

0
i−γ

0
j

� �
x̂ ¼ mi−mj þ α

0
xi−x j
� �

þ β
0
jx j−β

0
ixi−γ

0
jx j−γ ~t−�t j

� �
ð5:2bÞ

After t#j x̂0i j
� �

, the function x̂i j ~tð Þ increases with ~t at slope
wγ/(2β − γ) up to value xj at time t#j x̂0i j

� �
þ x j−x̂0i j
� �

2β−γ
γw ,

then at slope w.

5.2.1 Joint saturation of both lots

There remains the issue of the joint saturation of both lots.
From previous arguments, this has an effect at time ~t only if
it affects the limit point x̂i j ~tð Þ: in that case, the equality of the
two lot costs will be maintained there at all subsequent times
(leading to domain stabilization of the saturated lot) since each
cost function at ~x will increase with time at slope γ. The limit
time satisfies that

~t ¼ t#j x̂i j ~t
� �� �

if x̂i j ~t
� �

is decreasing case 1ð Þ ð5:3aÞ

Or

~t ¼ t#i x̂i j ~t
� �� �

if x̂i j ~t
� �

is increasing case 2ð Þ ð5:3bÞ

In the latter case, as the saturation wave from lot i has slope
w, the equality can take place only at x̂≤x j since beyond xj the
x̂ has the same slope so there can be no intersection. A similar
condition applies to the former case.

By continuity, the condition for a limit time to exist is that
the saturation wave of the other lot should reach the lot posi-
tion before it is passed by the frontier function:

t#j xið Þ≤ t#i x̂
0

i j

	 


þ 2β−γ
γw

x̂
0

i j−xi
	 


if x̂i j ~t
� �

is decreasing case 1ð Þ ð5:4aÞ

Or

t#i x j
� �

≤ t#j x̂
0

i j

	 


þ 2β−γ
γw

xj−x̂
0

i j

	 

if x̂i j ~t

� �
is increasing case 2ð Þ ð5:4bÞ

5.3 Two alternative outcomes: domain stabilization
or domain closure

From (5.4), the event of domain stabilization can easily be
predicted. If it occurs, then the efficiency region of each lot
is defined by a frontier function~t↦x̂i j ~tð Þ in three pieces, first a
constant at x̂0i j, then an affine function, third another constant

at x̂max
i j characterized by (5.3). This configuration is shown in

Fig. 4a where the saturation wave of lot i is first to reach x̂0i j
(case 1). If the saturation wave of lot jwas the first to reach x̂0i j
(case 2), the graph would be symmetrical.

The alternative situation without domain stabilization is
another kind of efficiency region for each lot: the frontier
function is still in three pieces (corresponding to the
Bundisturbed^ bilateral frontier described in the section 5.1.2),

first at x̂0i j, then an affine function with slope εbwγ/(2β − γ),

third another affine function with slope εbw (εb = + 1 in case 2
and -1 in case 1). This second possible configuration of effi-
ciency regions is shown in Fig. 4b (again, case 1 is illustrated,
the graph for the case 2 would be symmetrical).

In both situations, the function ~t↦x̂ ~tð Þ is piecewise affine
and continuous (Fig. 4a and b for case 1, symmetrical figures
for case 2). At any~t the efficiency domain of each option is an
interval.

5.3.1 Synthesis

Summarizing previous results, under the behavioral condition
β ≥ γ (H4) and on the basis of property 1, in the initial config-
uration both lots have an efficiency domain, which is main-
tained until its frontier is reached by the saturation wave from
one lot (as discussed in section 5.1.1). A parametric analysis
with respect to~t yields the evolution of the bilateral frontier in
the demand space ~x;~tð Þ (as described in section 5.1.2). This
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frontier is only modified when it is met by the second lot’s
saturation wave, as discussed in section 5.1.3. Altogether,
based on this parametric study, two possible configurations
are identified in section 5.1.3: domain stabilization of the first
saturated lot or its closure, based on the moment when the
second lot saturates. This analysis results in the following
proposition.

Proposition 1. In a situation of bilateral competition, the effi-
ciency domains of the competing options are separated by a
frontier in three affine pieces. For a given set of saturation
times and parking lot positions, there are only two possible
configurations for this frontier (depicted in Fig. 4): efficiency
domain stabilization or definitive elimination of one option.

These properties depend crucially on the initial joint effi-
ciency of all options (H3). If only one lot is efficient at the
beginning, then after its saturation instant the saturation wave
could make the other lot efficient, but on a specific interval
that would split the efficiency domain of the first lot in two
parts, thereby breaking the interval structure.

5.4 Multilateral competition

Let us denote the efficiency regions of the lot i that result from
the bilateral competition between options i and j such as j < i
as Eij

− and the efficiency regions of the lot i in its competition
with lots j such as j > i as Eij

+.
In the general case, the efficiency region of lot i is the

domain in the ~x;~tð Þ plane where gi is less than any other gj
for j ∈ I:

Ei ¼ ~x;~t
� �

: gi ~x;~t
� �

≤g j ~x;~t
� �

∀ j∈I
n o

ð5:5Þ

From its definition, Ei ¼ ∩ j∈I ~x;~tð Þ : gi≤g j

n o
. Note that

given ~t, ∀~x, ∃ i such that ~x;~tð Þ∈Ei.
Definition that can also be written as:

Ei ¼
\

j< i
E−
i j

� �
∩

\
j>i
Eþ
i j

� �
ð5:6Þ

A s E−
i j ¼ ~x;~tð Þ : ~x≥ x̂i j ~tð Þ


 �
, i t t u r n s o u t t h a t

∩ j< iE−
i j ¼ ~x;~tð Þ : ~x≥max j< ix̂i j ~tð Þ


 �
.

Let us define x−i ~tð Þ ¼ max j< ix̂i j ~tð Þ (or 0 if i has the smallest
xi). Then it holds that:

\
j< i

E−
i j ¼ ~x;~t

� �
: ~x≥x−i ~t

� �n o

Similarly, as Eþ
i j ¼ ~x;~tð Þ : ~x≤ x̂i j ~tð Þ


 �
it turns out that

∩ j>iEþ
i j ¼ ~x;~tð Þ : ~x≤min j>ix̂i j ~tð Þ


 �
Let us define xþi ~tð Þ ¼ min j>ix̂i j ~tð Þ (or L if i has the largest

xi). Then it also holds that:

\
j>i
Eþ
i j ¼ ~x;~t

� �
: ~x≤xþi ~t

� �n o

By combination of the two sides, it follows that

Ei ¼ ~x;~t
� �

: ~x∈ x−i ~t
� �

; xþi ~t
� �h in o

ð5:7Þ

Hence

Ei ~t
� �

¼ x−i ~t
� �

; xþi ~t
� �h i

ð5:8Þ

As the x̂i j functions are piecewise affine and continuous, so
is the maximum (or the minimum) of a subset of them: thus
the xi

− and xi
+ as functions of ~t are piecewise affine and

continuous.
The width function ~t↦ xþi ~tð Þ−x−i ~tð Þ� � þ is also piecewise

and continuous. It decreases to zero on ℵ only if there is a
limit instant from which option i is no longer efficient. In the
Appendix, it is shown that each efficiency region is a single
connected region.

5.5 Assignment functions

Knowing the respective efficiency regions of the parking lots,
it is easy to assign each user with ~x;~tð Þ to the option which is
optimal to him. For every lot, the user flow results from the
aggregation of the flow elements across the population of
users.

Fig. 4 The two possible
configurations of efficiency
domains, illustrated for case 1. a.
With domain stabilization. b.
Without domain stabilization
leading to a definitive elimination
of the option i
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Denote by ~qi ~tð Þ the flow rate of users with ~t as preferred

arrival time and that select lot i: ~qi ~tð Þ ¼ ~q ~tð Þ:1 xþi ~tð Þ≥ x−i ~tð Þf g:
∫ x

þ
i
~tð Þ

x−i ~tð Þ ~h ~xj~tð Þ d~x, hence

~qi ~t
� �

¼ ~q ~t
� �

: ~H xþi ~t
� ����~t� �

− ~H x−i ~t
� ����~t� �� �þ

ð5:9Þ

By construction, ∀~t all demand elements Q~h ~xj~tð Þ are
assigned between the parking lots, so that ∑i∈I~qi ~tð Þ ¼ ~q ~tð Þ.

By time integration we get the cumulative flow of users
selecting i up to a ceiling value t of ~t:

~Qi tð Þ ¼
Z

~t ≤ t
~qi ~t
� �

d~t ð5:10Þ

The total demand for option i based on the lot saturation

times amounts to ~Qi tmaxð Þ.
By aggregation over~t, it stems that∑i∈I

~Qi tð Þ ¼ ∫~t ≤ t~q ~tð Þd~t,
hence that:

X
i∈I
~Qi tmaxð Þ ¼ Q

Formulae (5.9) and (5.10) combined to the regularity prop-
erties of x−i ~tð Þ and xþi ~tð Þ yield obvious regularity properties for
the option flow rate and cumulative flow.

These flows depend on the preferred time of arrival at the
destination: this time is intentional in nature.

With respect to the time of parking, let us distinguish be-
tween times prior to saturation i.e. t < ti and the saturation
time, ti. Prior to saturation, the parking time and the preferred
arrival time are linked by~t ¼ t þ ~x−xij j=w. Given ~x, there is a
time shift with no effect of time distortion between t and ~t so
the flow of users with ~t that park at t in lot i is simply

qi ~x; t
� �

¼ ~qi ~x;~t
� �

¼ ~q ~t
� �

:~h ~x
���~t� �

; wherein~t

¼ t þ ~x−xi
��� ���.w ð5:11Þ

Define the frontier set Fi;t ¼ ~x;~tð Þ : ~t ¼ t þ w−1 ~x−xij j
 �
.

The users who park at t are those in Ei∩ Fi,t, so

qi tð Þ ¼
Z

Ei

T
Fi;t

~qi x;~tx
� �

dx

¼
Z

Ei

T
Fi;t

~q ~tx
� �

:~h x
���~tx

� �
dx ð5:12Þ

The cumulative flow at t stems from the region below the
frontier, i.e. set Ei ≤ Fi,t:

Qi tð Þ ¼
Z

Ei ≤ Fi;t

~q ~t
� �

:~h ~x
���~t� �

d~xd~t ð5:13Þ

At a given t, define the functions y−it ~tð Þ ¼ xi−w ~t−tð Þ and yþit
~tð Þ ¼ xi þ w ~t−tð Þ of~t≥ t. A point ~x;~tð Þ is below Fi,t if~t < t or
if ~t≥ t and ~x∉�y−it ~tð Þ; yþit ~tð Þ½. So

Qi tð Þ ¼ ~Qi tð Þ þ
Z

~t>t
~q ~t
� �Z

x−i ~t

� �
;xþi ~t

� �h i
−
i
y−it ~t

� �
;yþit ~t

� �h ~h ~x
���~t� �

d~x

2
4

3
5d~t

ð5:14Þ

The inner integral amounts to:

1
xþi ~t

� �
≥ x−i ~t

� �n o: ~H xþi ~t
� ����~t� �

− ~H yþit ~t
� ����~t� �� �þ

þ ~H y−it ~t
� ����~t� �

− ~H x−i ~t
� ����~t� �� �þ� �

As for the flow of users that park at the saturation time ti, it

is cumulated over the time interval of~t≥ t#i ~xð Þ for each desti-
nation point ~x. With respect to ~t, ~x must belong to
x−i ~tð Þ; xþi ~tð Þ� �

∩ y−it ~tð Þ; yþit ~tð Þ
� �

for t ¼ ti. So each ~t≥ ti yields
flow rate of

zi ~t
� �

¼ ~q ~t
� �

:

Z
x−i ~t

� �
;xþi ~t

� �h iT
y−it ~t

� �
;yþit ~t

� �h i ~h ~x
���~t� �

d~x

ð5:15Þ

Then the cumulative flow is (under t ¼ ti ):

Zi tð Þ ¼
Z

~t ≥ t
zi ~t
� �

d~t

¼
Z

~t ≥ t
~q ~t
� �Z min xþi ~t

� �
;yþit ~t

� �n o

max x−i ~t

� �
;y−it ~t

� �n o ~h ~x
���~t� �

d~x

2
4

3
5d~t
ð5:16Þ

Based on these formulas, regularity properties for zi ~tð Þ and
Zi(t) follow from those of their operands.

At ti the overall cumulative flow is

Qi ti
� �

¼ Zi ti
� �

þ lim
t→t

−

i

Qi tð Þ ð5:17Þ

5.6 Multiple demand classes

Sections 5.1 to 5.3 apply specifically to one class of demand,
say A, sharing the same behavioral characteristics (α, β, γ, v,
w) and entry point (the 0- extremity). From an exogenous set
of lot saturation times, the treatment derives the dynamic
market areas of the parking lots and the assignment of demand
to their preferred parking options. At the street level it is easy to
deal with multiple classes of demand, for instance a class B of
users entering by L, sharing parameters (α′, β′, γ′, v′,w′) and

distributed along time and space with h
0
~x;~tð Þ and H

0
~x;~tð Þ.

We also assume, as in sections 5.1 to 5.3, the set of lot
saturation time is exogenous, therefore demand classes do not
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interact directly in their choice of preferred parking option.
Parking quality of service and resulting market areas for each
demand class are entirely derived from the parking saturation
times and the class-specific behavioral characteristics as well as
entry point. The first step is then to adapt the algorithm deter-
mining parking options efficiency domains.

5.6.1 Class-specific parking costs

In general, for a class B of users, the costs of parking at one of
the lots offered on the street level would be specific:

V
0
i;W

0
i ~xð Þ;D0

t″;~tð Þ. Transposing previously presented reason-
ing for the class A to the characteristics of the class B would
provide class-specific efficiency domains E’i.

In the particular case of a class B, differing from the class A
by the entry point only, the in-vehicle cost of parking access to
a given lot is solely modified. Indeed, Vi ¼ mi þ α:xi

v becomes

V
0
i ¼ mi þ α L−:xið Þ

v , therefore increasing the minimal cost of

parking at lots such that xi < L
2 and decreasing it for lots

xi > L
2. Therefore following properties of the bilateral frontier

between two lots can be easily derived.

5.6.2 Class-specific efficiency domains

Property 3: In the uncongested case, the position of the bilat-
eral frontier between lots i and j depends on the user class. The
B-frontier is closer to 0-extremity than the A-frontier.

The reason for that is that lot j, being closer to the L-extremity,
has a larger efficiency interval for class B than for class A.

This is summarized in the following expression, to be com-
pared with the equation (3.6) pertaining to the class A:

x̂00i j ¼
1

2
xi þ x j
� �þ w

2β
mj−mi−

α
v

x j−xi
� �h i

< x̂
0

i j

Then, since the saturation wave of a parking lot depends
only on the saturation time and walking speed (shared by the
classes A and B) it is identical for both classes A and B. Indeed,

recalling its expression (case 1, lot i saturates first), t#i ~xð Þ≡ti
þ ~x−xij j =w and keeping in mind that xi < x̂00i j < x̂0i j, leads to,

since t#i ~xð Þ is increasing on this interval:

t#i x̂00i j
� �

< t#i x̂
0

i j

	 


Conversely, in the case 2, when lot j saturates first, t#j ~xð Þ is
decreasing for ~x < x j leading to t#j x̂00i j

� �
> t#j x̂0i j

� �
. This

leads to property 4.

Property 4: In the case of unilateral saturation of the lot
i (case 1), the saturation wave will be met sooner by
users in class B – they will switch earlier to the unsat-
urated lot j which is closer to their entry point.
Conversely, in the case of unilateral saturation of lot j
(case 2), the saturation wave will be met later, users in
the class B are keeping their preference for lot j, closer
to their entry point, for a longer period.

This stronger preference for the lot closer to the entry point
L is also seen in the further evolution of the bilateral frontier. It
has the same piecewise structure and conserves the character-
istic slopes. After t ' ij

*, the function ~t↦x̂0i j ~tð Þ evolves at slope
εbwγ/(2β − γ) as long as x̂0i j≥xi, then at slope εbw (where εb =
− 1 for case 1 and εb = + 1 for case 2).

Property 5: These slope expressions lead to identical values
as for class A, since behavioral characteristics are kept

identical. Although, the instant at which x̂0i j ¼ xi is t#i
x̂00i j

� �
þ 2β−γ

γw x̂00i j−xi
� �

, lower than for class A (case 1).

Conversely, in case 2, the instant at which x̂0i j ¼ x j is t#j

x̂00i j
� �

þ x j−x̂00i j
� �

2β−γ
γw , higher than for class A.

Domain stabilization of the first saturated lot can also
occur if the condition (5.4) is met. Although, the gen-
eral shift to the left of the bilateral frontier (property 3),
and subsequent modifications of the moment at which
the saturation waves meet this frontier (properties 4 and
5) lead to the following property 6:

Property 6: The general shape (stabilized or closed) of the
efficiency domains might be different for users in the classes
A and B.

5.6.3 Joint assignment and cumulated flows

Property 7: Once the parking lots efficiency domains are
established independently for the demand classes, based on
common lot saturation times, the demand classes are assigned
jointly to their preferred options.

Then for every lot, the user flow results from the aggrega-
tion of the flow elements across the population of users,
summed over the demand classes:

~qi ~tð Þ ¼ ~qi;A ~tð Þ þ ~qi;B ~tð Þ using equation (5.9) and specific

efficiency frontiers and joint cumulative distribution
functions.

With respect to time of parking, using equations (5.12),
(5.13) and (5.16) to define respective contributions of catego-
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ries A and B, the instantaneous flow of users parking at a lot i
is:

qi(t) = qi,B(t) + qi,B(t), the cumulative flow at t is Qi(t) =
Qi,A(t) +Qi,B(t) for t < ti, and the cumulative flow at the sat-
uration moment is Zi tið Þ ¼ Zi;A tið Þ þ Zi;B tið Þ.

Dealing with the particular class of users entering through
the L-extremity of the street is a step towards route choice
integration, though, to be complete, it would need to take into
account departure time choice due to dynamically varying
traffic conditions at the network level, possibly different for
each entry point according to the route choice. Hints of further
developments are presented in the conclusion section.

6 Parking traffic equilibrium

A parking user makes his decision of parking lot and parking
time based on the costs of the options available to him. He
evaluates the option costs from their physical characteristics, in-
cluding the saturation time but probably not the capacity which
he is unlikely to know accurately. Thus the saturation times are
macroscopic parameters that induce the assignment of demand to
parking options. This makes the demand side of parking traffic
equilibrium. On the supply side, by parking lot the saturation
time is determined by the filling up of the lot capacity.

We shall first define precisely the traffic equilibrium of
parking demand and supply, then analyze it mathematically
as a Fixed Point Problem and demonstrate the existence of an
equilibrium state, and lastly provide a solution algorithm.

6.1 Demand and supply in equilibrium

Conditional on the vector tI ¼ ti : i∈I½ � of lot saturation times,
the determination of the efficiency regions EI = [Ei : i ∈ I]
yields the preferred option (is, ts) of each demand segment
s ¼ ~x;~tð Þ. As each demand segment has a flow element
Qh ~x;~tð Þ, the assignment of the flow elements to the preferred

options induces the lot flow functions ~qi ~tð Þ and ~Qi ~tð Þ with
respect to preferred time of arrival and qi(t) and Qi(t) with
respect to parking time. Let QI = [Qi : i ∈ I] be the vector of
cumulative flow functions with respect to parking times.

Definition: Parking Traffic User Equilibrium (PTUE) is a
system state tI ;EI ;QI such that

(i) The efficiency regions EI are based on tI .
(ii) ∀ i ∈ I, function t↦Qi(t) satisfies (5.14) and (5.17) based

on tI .
(iii) ∀ i ∈ I, ti ¼ inf t≤ tmax : Qi tð Þ≥kif g.

Condition (i) states that every demand segment is
associated to its preferred option. Condition (ii) means
that the lot flows stem from demand assignment under
the principle of selfish user behavior. Condition (iii)
states that the saturation time of lot i is the instant at
which lot i saturates due to the demand flows.

6.2 Mathematical analysis

Denote by tI−i ¼ t j : j∈I ; j≠i
� �

the vector tI deprived from its

i-th component, ti. Let us also define from (5.10),

Q̂i t tI−i
���� �

¼ ~Qi

�
tmax tI

���� with tI ¼ ti; tI−i
� �

and ti ¼ t ð6:1Þ

Conditional on tI−i, Q̂i evaluated at t ¼ ti yields the flow of
lot i cumulated over the period and conditional on

tI ¼ tI−i; tð Þ. From its definition, function Q̂i increases with
t. It is continuous everywhere except at critical points where a
change in t induces a radical shift from one typical situation of
bilateral competition to the other, i.e. when some x̂i j or x̂ ji
reaches a lot position xi or xj (cf. § 5.1).

Time t ¼ ti is a correct saturation time for lot i con-
ditional on the other saturation times tI−i if and only if
it solves the following conditions of complementary
slackness:

t≤ tmax ð6:2aÞ
Q̂i t tI−i

���� �
≤ki ð6:2bÞ

tmax−tð Þ : ki−Q̂i t tI−i
���� �� �

¼ 0 ð6:2cÞ

For this set of conditions (notably 6.2b) to hold, it

requires that Q ≤ ∑i ∈ Iki. Recalling that Q ¼ ∑i∈I
~Qi tmaxð Þ

from subsection 5.3. This condition will be identified as
H5.

Proposition 2. Given tI−i, as Q̂i is monotone there is a unique
solution to (6.2), namely

Ti tI−i
� �

¼ inf t≤ tmax : Q̂i t tI−i
���� �

≥ki
n o

ð6:3Þ

Proof. Existence. Given tI−i, Q̂i is monotone increasing. If

there is a t < tmax for which Q̂i tð Þ ¼ ki, then t is a solution to

(6.2). Else Q̂i increases without reaching the lot’s capacity
ki, then tmax verifies the conditions (6.2) and is therefore
a solution to the problem. Uniqueness. Following the
definition (6.3) points to the minimal solution, hence
unique.
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Definition: the Fixed Point Problem (FPP) on saturation
times, tI , is made up of the set of conditions as follows:

ti ¼ Ti tI−i
� �

;∀i∈I ð6:4Þ

Proposition 3. For PTUE to have a solution, it must hold that

∑
i∈I

Q̂i tð Þ ¼ Q (where Q is the total demand), hence that

Q≤∑
i∈I

ki. Under that condition, the FPP and the PTUE prob-

lem are equivalent in that any solution to the FPP gives rise to
a solution of the PTUE and any solution to PTUE satisfies the
FPP.

Proof.Avector tI that solves the FPP satisfies (6.2) on each of
its components: so its ti is a correct saturation time for lot i.
From the definition of Ti and in turn of Q̂i, the efficiency
regions EI based on tI and the associated flow functions QI

jointly satisfy conditions (i), (ii) and (iii) that define a PTUE.
Conversely, a traffic equilibrium must check (6.2) for
every lot, hence (6.4) which is equivalent to the system of
(6.2) ∀ i ∈ I.

6.2.1 Set of assumptions

& H1: v >w Car speed is higher than walk speed
& H2: β >α A unit walk time is less comfortable than a unit

drive time
& H3: The tariff structure allows for initial joint efficiency of

all lots
& H4: β ≥ γA unit walk time is less useful (more costly) than

a unit (early) time at destination
& H5: Q ≤ ∑i ∈ Iki Total demand does not exceed total

capacity

Proposition 4. Given the set of assumptions, there exists an
equilibrium state for the parking problem.

Proof. The mapping TI = (Ti)i ∈ I is defined on the closed con-
vex domain ℵI and onto it. Also ∀tI ;TI tIð Þ is a singleton,
hence non void and closed. Additionally, we show in the

Appendix that, under complementary assumption of ~H xj~tð Þ
being continuous, TI is upper semi continuous with respect
to tI . Therefore the Kakutani theorem applies and TI must
have a fixed point, which is an equilibrium state. Thus an
equilibrium must exist.

6.3 Solution algorithm

A parking equilibrium may be computed using any of the
following iterative schemes.

First, a naïve algorithm is to compute a sequence t nð Þ
I

� �
n≥0

such that

t
nþ1ð Þ
i ¼ Ti t

nð Þ
I−i

	 

;∀i∈I ð6:5Þ

This simple scheme can work well if the TI mapping is a
contraction.

Second, a slightly more sophisticated scheme is to get the
next state by progressive updating the components in it, à la
Gauss-Seidel:

t
nþ1ð Þ
i ¼ Ti t

nþ1ð Þ
j< i ; t

nð Þ
j>i

	 

;∀i∈I ð6:6Þ

In (6.5) or (6.6), function Ti is evaluated by solving for (6.3)
which amounts to search for t such that Q̂i is equal to the

capacity or t = tmax. As Q̂i is increasing, this can be done
simply e.g. by dichotomy.

Third, a more sophisticated and more robust algorithm is a
Method of Successive Averages that updates only a fraction of
the current state. It utilizes a sequence (ζn)n ≥ 0 of positive
numbers that decrease to zero and on the following updating
rule:

t
nþ1ð Þ
i ¼ 1−ζnð Þ : t

nð Þ
i þ ζnT i t

nð Þ
I−i

	 

;∀i∈I ð6:7Þ

As each of the equilibration schemes deals with the satura-
tion times as basic variables, it is a dual approach to parking
equilibrium. Whatever the scheme, the FPP formulation pro-
vides a convergence criterion which is both simple and rigor-
ous:

C ¼ TI t
nð Þ
I

	 

−t

nð Þ
I

����
���� ð6:8Þ

The relaxation scheme was used to obtain the equilibrium
demonstrated in the next section.

7 Instance

An instance of application of the model developed in this
paper will be presented in this section. For clarity reasons,
we will keep to one class of demand only, entering through
the 0-extremity of the street. First the theoretical case study
will be described and hypothesis on parameter values will be
introduced. Then the model will be applied to the case study
and the analysis of the results will be presented.
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7.1 Case study and hypotheses

In this example users are willing to park in a street of 400
meters of total length where 3 parking lots are available. The
parking options are numbered 1,2 and 3 and located respec-
tively at 50, 200 and 300 meters from the entry node. Their
respective capacities are 30, 10 and 60 vehicles during the
parking period and to make this example easier to interpret,
tariffs were taken null.

Total demand for parking is 80 vehicles and users’
destination locations are uniformly distributed on the en-
tire street stretch. Additionally, users are willing to arrive
at destination between 8 h and 9 h and demand is also
uniformly distributed in time during this one-hour period.
Such a demand can be characterized by a rectangular de-
mand domain in the ~x;~tð Þ plane with a uniform demand

density function ~h ~x;~tð Þ ¼ ~h constant over the entire de-
mand domain and null elsewhere.

All users are assumed to have identical walking and driving
speeds given by: w = 4km/h and v = 20km/h. Users are also
assumed to value their time identically and characteristic pa-
rameters of their generalized cost function are given as fol-
lows: α = 1, β = 1.5 and γ = 0.5.

Figure 5 shows on the ~x;~tð Þ plane the configuration of the
demand domain and the efficiency domains of the three lots in
the first iteration of the algorithm, where saturation has not
been detected. In this case, the choice of parking lot is exclu-
sively based on its location with respect to the destination
location and entry node. The efficiency conditions between
the three parking options divide the demand domain in three
domains of roughly similar width.

The assignment of the demand to the parking lots accord-
ing to the efficiency domains, leads to a progressive filling of
the parking lots. The time evolution of the cumulated parking
flow on each parking option is represented in Fig. 6. As ex-
pected, the demand is almost evenly distributed among
parking options.

Table 1 gives the total number of vehicles received in each
parking lot. These numbers can be compared with the capacity
of each parking option:

& Lot 1 received less vehicles than its maximum capacity
and therefore is not saturated;

& Lot 2 received more vehicles than allowed by its capacity,
it is expected to be saturated in the solution;

& Lot 3 received less vehicles than its maximum capacity
and is not saturated.

It is obvious that, given the capacity of parking lot 2, all
vehicles will not be able to park at this parking lot and some of
them will transfer to other available options. Final equilibrium
is not trivial though, as vehicles could transfer to lot 1 and lead
to its saturation or transfer to lot 3, in which case options 1 and
3 will not be saturated whereas lot 2 will reach its capacity. We
will now apply the algorithm presented in this paper and an-
alyze resulting equilibrium.

7.2 Results and analysis

The search for a solution consists of looking for a vector of
saturation times of the three parking lots that jointly provide a
parking assignment within the parking capacity constraints.
As explained previously this problem is essentially a fixed-
point problem. Table 2 provides the final values of the satura-
tion times and Fig. 7 illustrates the convergence of the satura-
tion times during the application of the relaxation algorithm. It

Fig. 5 Demand and efficiency
domains at the first iteration

Fig. 6 Cumulated parking flows on the three parking lots
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should be reminded that in the algorithm, whenever a parking
is not saturated, its saturation time is assigned the value of the
maximum preferred arrival time in the demand domain, as it
has no consequence on the assignment process. A saturation
time of 9 h is therefore equivalent to no saturation.

It can be seen that saturation times stabilize approximately
after 60 iterations. The most constrained parking lot 2, is sat-
urated at 8 h22’ approximately (8.3605 hours). The parking
option 1 is second to be saturated at 8 h45’ approximately
(8.757 hours). The third option is never saturated as its capac-
ity allows it to absorb the remaining users.

Figure 8 shows the efficiency domains of the three parking
lots, at the solution of the fixed-point problem. In particular
the frontier between lot 1 and lot 2 is made up of two segments
(out of three present in the entire frontier resulting from bilat-
eral competition between these options): a vertical segment

where x̂012 is a constant and a tilted segment where dx̂12=d~t
¼ wγ= 2β−γð Þ ¼ 0:8km=h. The corresponding bilateral
frontier is incomplete as it is intersected by the bilateral fron-
tier x̂23 ~tð Þ which is made up of three linear segments of which
the last one, which intersects x̂12 ~tð Þ, has a characteristic slope
of dx̂23=d~t ¼ −w ¼ −4km=h meaning that x̂23 ~tð Þ decreases
w.r.t. preferred time of arrival. Once the efficiency domain
of lot 2 is closed, competition occurs between options 1 and
3 and results in a bilateral frontier x̂13 ~tð Þ made up of three

segments (in order of increasing ~t ): constant x̂013; tilted seg-
ment with slope dx̂13=d~t ¼ −wγ= 2β−γð Þ ¼ −0:8km=h; and
t i l ted segment wi th s lope dx̂13=d~t ¼ −w ¼ −4km=h.

Saturation waves t#1 ~xð Þ, t#2 ~xð Þ and t#3 ~xð Þ present a character-
istic slope d~t=d~xj j ¼ 1=w ¼ 0:25h=km or equivalently
d~x=d~tj j ¼ w ¼ 4km=h.
As the third lot is closer to the second lot (their relative

distance is 100 meters) than the first one (150 meters away
from the second lot), a simplistic reasoning would suggest that
all users who cannot park in the second lot would transfer to
the third lot leaving the first parking lot unsaturated. As it turns

out, users’ transfers are more complex. If we compare the
configuration of efficiency domains presented in Fig. 8 with
the very simple efficiency domains of the first iteration pre-
sented in Fig. 5, the following kinematics of transfer can be
inferred:

& When lot 2 gets saturated, vehicles are partly transferred to
lot 1 and, in almost equal proportion to lot 3;

& This additional parking flow on lot 1 leads to its saturation,
subsequent users are then transferred from lot1 1 to lot 3.

Once efficiency domains are built, users (characterized by
their destination point ~x and preferred arrival time~t ) choosing
each parking option are known and it is possible to perform
parking assignment on the three parking options. Figure 9
provides the time evolution of the cumulated parking flow
on each parking lot, calculated at discrete times, where the
solid lines guide the eye. A few general observations on this
time evolution:

& Cumulated flows of parking lots 1 and 2 present a steady
increase up to their saturation times where a discontinuity
appears: a group of users arrive to the parking at the same
time in a Bfinal rush^;

& Saturation of lot 2 is followed by an increase of the cumu-
lated flow slopes for parking lots 1 and 3: users transferred
from the saturated parking lot 2, add to the users willing to
park at the parking options 1 and 3;

& In the same manner when parking lot 1 gets saturated, it is
followed by an increase in lot 3 cumulated flow’s slope.

As a reminder, users choose not only the parking option but
also the parking time, within time saturation constraints of the
parking option, allowing them to minimize their generalized
cost. It is equivalent to minimizing the gap between their pre-
ferred arrival time and possible early arrival. When uncon-
strained, they will park at a time such that walking time from
the parking lot to their destination will make them reach their

Table 1 Cumulated parking flows on the three parking lots and their
respective capacities

Parking
lot 1

Parking
lot 2

Parking
lot 3

Cumulated parking flow at the first
iteration (vehicles)

27 24 29

Total capacity during the
parking period (vehicles)

30 10 60

Table 2 Saturation times of the three parking lots

Parking lot 1 Parking lot 2 Parking lot 3

Saturation times (hours) 8.757 8.3605 9

Fig. 7 Convergence of the saturation times
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destination exactly on time. When constrained they will park
at the saturation time of the parking option. Constrained users
will therefore arrive at the same time, forming a group of
Bfinal rush^ to the parking lot, saturating it completely. This
group is formed by approximately 6 vehicles for the parking
option 1 and 1 vehicle for the parking option 2.

Table 3 provides total cumulated parking flows on the three
parking lots. Parking lots 1 and 2 are saturated and their total
cumulated flow is equal to their capacity of 30 and 10 vehicles
respectively. Parking lot 3 is not saturated, its total cumulated
flow is equal to 40 vehicles, less than its capacity of 60 vehi-
cles. Compared to the initial demand given in the table 1, net
variation of the demand was calculated. 14 users were trans-
ferred from the parking option 2 to the other lots, 3 net addi-
tional vehicles were transferred to lot 1 (the actual positive
transfers might be more important but negative transfers occur
too), 11 additional vehicles were transferred to lot 3 (both
from parking lots 1 and 2 as described in Fig. 8).

Assignment at equilibrium leads to the generalized cost for
different users that is depicted in Fig. 10. Continuity of the
generalized cost at the efficiency domains boundaries between
the three options can be noted. Lower values of generalized
cost are observable for abscissae equal to the location of the
parking lots at respectively 50, 200 and 300 meters, in the

unconstrained region of these lots. Indeed for users in these
points, generalized cost is only due to driving time from the
entry node to the parking lot. In the unconstrained regions,
generalized cost increases when destination location is located
further away from the parking lot due to the additional walk-
ing time from there to the destination. In the constrained re-
gions additional cost is due to the gap between preferred ar-
rival time and early arrival time.

Maximum cost is observed for users whose destination is
the entry node and who are willing to arrive at 9 h. These users
either have to park at the parking lot 1 at 8h45min, which
implies driving 50 meters (0.15 minutes with a marginal cost
of 1/min), walk 50 meters back (0.75 minutes with a marginal
cost of 1.5/min) and arrive very early at the destination (ap-
proximately 14 min early with a marginal cost of 0.5/min)
leading to a generalized cost of approximately 9 min or
0.15 hours. Alternatively they can park at the parking lot 3
located at the opposite end of the street, which implies driving
there and thenwalking back 300meters (4.5-minute walk with
a marginal cost of 1.5/min and approximately 1-min drive
with a marginal cost of 1/min) leading to a generalized cost
of approximately 8 min or 0.13 hours. Parking at the parking
lot 2 is even more costly as it would imply parking at 8 h22’
with a preceding 0.6-min drive and a subsequent 3-min walk,
arriving approximately 35 min early, which would lead to a
generalized cost of 23 min or 0.38 hours. This result is
counter-intuitive as parking lot 2 is closer to the entry node
than the parking lot 3, it would therefore be expected that users
choose between parking lots 1 and 2 rather than between lots 1
and 3.

Fig. 8 Demand and efficiency
domains, solution of the fixed-
point problem

Fig. 9 Cumulated parking flows on the three parking lots, solution of the
fixed-point problem

Table 3 Cumulated parking flows, solution of the fixed-point problem

Parking
lot 1

Parking
lot 2

Parking
lot 3

Cumulated parking flow, solution
of the fixed-point problem

30 10 40

Net variation between final iteration
and initial demand

+3 -14 +11

Total capacity during the parking period 30 10 60
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8 Conclusion

To summarize, the interplay of parking supply and demand
has been modeled in a framework of deterministic, dynamic
user equilibrium. Parking demand is continuously disaggre-
gated according to destination point and preferred time of
arrival. Every user behaves as a selfish, individual decision-
maker in the choice of parking lot and time. The pattern of
preferences for the options’ attributes is homogenous. Parking
supply is made up of a set of lots each with a position, a
capacity and a saturation time. Based on the saturation times,
to each lot is associated an efficiency region in the plane of
destination places and preferred times. In turn, the aggregation
of user flows according to their selected lot and parking time
yields the lot saturation times. The user equilibrium of parking
traffic amounts to a fixed point problem with respect to the
saturation times: when parking capacity exceeds demand vol-
ume then there exists an equilibrium state. Computation
schemes have been provided for efficiency regions and for
equilibrium saturation times.

The two main properties are, first, the structure of the lots’
efficiency regions in space and time, second, the fundamental
role of the saturation times as the basic state variables of the
parking system. These endogenous variables act as dual var-
iables for market coordination. A lot saturation time bears
some resemblance to a critical time at which a traffic bottle-
neck gets saturated: parking capacity, however, is a storage
capacity that enables for the joint arrival of the last customers,
contrarily to the bottleneck capacity which is a flow capacity
that preserves the order of vehicles [3].

Our model contributes to bridging a gap between theoreti-
cal economic models of parking, on the one hand, and net-
work simulation models, on the other hand. The microeco-
nomic theory of parking relies upon simplified models where
supply is stylized with one or two places or a uniform distri-
bution along an interval, whereas demand is stylized with one
or two destination places and a homogenous pattern of behav-
ior. Our model of supply is much richer as it can accommodate
any set of lots along an axis – yet for trips from one or two

origins only and with no route choice, while network simula-
tion models cover multiple origins and routes. Our model of
demand is richer than in economic models, too, as both the
destination places and the preferred times of arrival are disag-
gregated continuously: yet with homogenous behavior and no
issue of parking duration, while network simulation models
can address several types of behaviors and distributed
duration.

Further research along our lines can be developed in di-
verse directions:

& To model the influences of complex parking tariff
schemes on the efficiency regions, by adapting our
event-based algorithm.

& To model a network structure with multiple routes and
origin-destination pairs.

& To theorize system optimum for the modeled parking sys-
tem, paying consideration to optimal pricing and capacity
sizing.

& To theorize imperfect information and compare it to the
present model under perfect information

& To differentiate several user classes in terms of walk /
drive / delay / tariff preferences and of parking duration.

& To model within-day dynamics and the tidal cycle of
parking lots during the day and night.

& Keeping to the street level, to model parking supply con-
tinuously in order to derive local state equations.
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Appendix

Notations introduced in the Appendix

dμ ¼ ~q ~tð Þd~t Lebesgue measure, used in the integration of
f tIj~tð Þ

e Vector of efficient lots, of size N
e(n) Efficient lot of rank n, e(n) ∈ I
Ei ~tð Þ Efficiency interval of the lot i at the time e(n)
f tIj~tð Þ Auxiliary function, used to simplify notations
gi
∗ Minimal cost of parking at the lot i
gi ~xð Þ Uncongested cost of parking at the lot i for a

user with the preferred destination ~x
hyp(.) Hypograph of a function
μ/λ Auxiliary variables, μ ∈ℜ and λ ∈ℜ
N Number of nonempty efficient domains
n Sequenced efficiency rank of the parking

option e(n)

Fig. 10 Generalized cost (hours) incurred by different users according to
their preferred arrival time and destination location
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P Intersection point between x−i ~tð Þ and xþi ~tð Þ
π(i)/ σ(i) Active predecessor/successor of the lot i at

the current base time t̂i
ℜ Set of real numbers
t̂i Current base time defining the current state of

the lot i
ti
−/ ti

+ Predicted moment (from the current state of
the lot i) when saturation wave from the lot i
reaches lower/upper efficiency frontier xi

−/ xi
+

ti
max Minimal time when xi

−(ti
max) = xi

+(ti
max), or

equivalently when the width function of the
efficiency domain of the lot i becomes null

x:−i / x:þi Derivatives of the lower/upper boundary
function x−i ~tð Þ / xþi ~tð Þ with respect to ~t

An algorithm to determine the efficiency domains

Let us provide an algorithm to determine the sequence of
efficiency domains.

Endogenous variables are the number of nonempty effi-
cient domains, N, and a vector of integers, e = [e(n) : n =
1,.. |I|], such that n is the efficiency rank of the parking option
e(n) ∈ I in the ordered sequence of nonempty efficiency do-
mains. Provisional values are progressively updated by con-
sidering every parking option in turn. Let also i, j, k be work-
ing variables for options under consideration.

The algorithm Uncongested Efficiency Frontier consists in
the following steps.

Initialization.

Main step. While

Loop step. {Let k

While ( ) do  // k is inefficient with respect to j

If 0n Then {Let 1:n , jne :)( , ji : , 1: ij , exit Loop step}

}

// at that stage k is efficient with respect to j

While ( jk x )(g ) do  // j is inefficient with respect to k

{ 1: jj ; 

If |I|j Then {exit Main step}

}

// At that stage k and j are efficient with respect to each other

Let 1: nn , jne :)( , ji : , 1: ij }

}

Output. Return n , e // End of the algorithm

Denote N the number of nonempty efficiency intervals (the
value of n at the end of the algorithm). Once the sequence of
efficient options is known given by the vector e, it only re-
mains to evaluate the limit values x̂i j for i = e(n), j = e(n + 1),
for n ∈ {1,..N − 1} on the basis of (3.6). From these stem the

xi
− and xi

+ values of nonempty efficient domains, to be com-
pleted by x1

− = 0 and xN
+ = L.

In the performance of the Main step, the i variable is
incremented so that there are at most |I| such steps. Within a
main step, there are two Repeat loops that are mutually exclu-
sive; any iteration of an internal loop dismisses an option that
is inefficient, so it will not be considered any further. The
number of such elementary loops is equal to the number of
inefficient options. Furthermore, as each Main step yields an
efficient option, there are at most |I| of them. So the computa-
tional cost of the main steps save for their repeat steps is O(|I|),
as is that of the repeat steps throughout the algorithms. To sum
up, the overall complexity is O(|I|).

An event-based algorithm to build the efficiency regions

To build the efficiency regions, a naïve algorithm is to build
the efficiency domains of a predetermined sequence of say K
preferred times, hence to scan the time axis for such domains.
At a given instant, that search would amount to the
Uncongested Efficiency Frontier algorithm provided in §
3.1. So the overall complexity of the naïve algorithm will be
O(K. |I|). Furthermore, between two successive times of scan-
ning the efficiency domains must be interpolated, yielding
approximate results only.

A more clever, event-based algorithm is to build the effi-
ciency regions in a progressive way on the basis of Bcritical
instants^ at which significant events may occur.

For a parking lot i, starting from its initial efficiency do-
main [xi

−(tmin), xi
+(tmin)], the major events are respectively:

(i) initial saturation at xi, at time ti: starting point of the sat-
uration wave from lot i,

(ii) upper saturation at xi
+: saturation wave from lot imeeting

the upper efficiency frontier,
(iii) lower saturation at xi

−: saturation wave from lot i meet-
ing the lower efficiency frontier,

(iv) closure of the efficiency domain when xi
+ = xi

−.

Event (i) must occur prior to (ii) and (iii), which must
both be accomplished for (iv) to occur (apart from meet-
ing an external bound i.e. xi

− = 0 or xi
+ = L). These events

are generated from the lot itself on the basis of a current
state characterized by a base time t̂i and the associated
timed values of xi

−, x−i , xi
+, xþi . These data enable one to

predict the critical instants: for instance, when t̂i > ti and
saturation wave has not yet reached the lower bound xi

−,
then under constant conditions the occurrence instant of
lower saturation can be predicted as ti

− such that the
position of the predicted lower bound at that time,

x−i t−i
� � ¼ x−i t̂i

� �
þ x:i− t̂i

� �
: t−i −̂ti
� �
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would be reached by lot saturation wave, which would
occur at time ti þ xi−x−i

� �
=w since the lower bound lies under

the lot position. Thus t−i ¼ ti þ xi−x−i −x
:−
i : t−i −̂ti
� �Þ�

=w under
the current values of xi

− and x:−i , leading to

t−i ¼ wt̂i þ x:−i : t̂i−x−i
wþ x:−i

While t̂i < ti it is useless to predict ti
−. To describe the state

of lot i completely it suffices to add the current Bactive
neighbors^ i.e. predecessor π(i) and successor σ(i) at t̂i, and
to indicate by binary variables whether central saturation, lower
saturation and upper saturation, respectively, has already
occurred.

Aside from its own major events, the lot can be affected by
events minor to it but major to an immediate neighbor, π(i) or
σ(i): a change in x:þπ ið Þ or x

:−
σ ið Þ will induce an equal change in x

:−
i

or x:þi , respectively.
The closure of lot i as an efficiency region will lead

to reassign active neighbors, by letting σ(π(i)) := σ(i),
π(σ(i)) := π(i) and evaluating the intermediary speed x:þπ ¼ x:−σ
on the basis of the current state of both active lots.

To correctly enumerate the critical instants, it suffices to
maintain a list of the next critical times, one by active lot,
and to deal with the event of minimum critical time in the
list. The treatment of the event involves the associated lot
and its two active neighbors, of which the current time will
be updated as well as their current states and prediction of
next events; their position in the waiting list must be re-
vised accordingly.

An initialization step is needed to determine the initial ef-
ficiency domains and the related states. It is performed in
O(|I|).

Each treatment involves at most three lots and a small num-
ber of operations for each of them – by lot, at most two next
critical instants need to be reevaluated. By dealing with the
waiting list as a binary heap, the search for the minimum has
a computational cost of O(ln |I|), as has the deletion of an out-
dated Bnext^ event and the insertion of an updated next event.

As there are atmost 4 treatments by lot, the overall complexity
of the event-based algorithm isO(|I|. ln |I|). Not only can the term
in ln |I| be expected to be much lower than the number of
predetermined times in the naïve algorithm, but also the treat-
ment of one event is much more economical than the search of
the efficiency domains at a given time and the interpolation of
efficiency domains between successive instants of scanning.
Overall, the event-based algorithm is a greedy algorithm that will
perform much better than the naïve one.

The connectedness of an efficiency region

In section 5.2 we established that an efficiency domain of a
parking lot i, Ei, is bounded on the left side by function xi

− and

on the right side by function xi
+, both of which are continuous

and affine:

Ei ¼ ~x;~t
� �

: ~x∈ x−i ~t
� �

; xþi ~t
� �h in o

Let us now consider the efficiency domain Ei of lot i. If
it is not empty, then it comprises at least one connected
region including its efficiency interval at the initial instant
(as postulated from Section 3). Two situations may hold,
depending on whether the width function ~t↦ xþi ~tð Þ−x−i ~tð Þ� �
þ remains strictly positive or reaches zero on the demand
domain. In the former case, at every ~t the efficiency inter-
val of i, Ei ~tð Þ, is an interval and there can be no point ~x;~tð Þ
outside of it where lot i would be efficient. In the latter
case, let ti

max denote the minimum time at which xi
−(t-

i
max) = xi

+(ti
max) and P denote the intersection point between

x−i ~tð Þ and xþi ~tð Þ. The following proof by contradiction will
show that the width function cannot become positive at a
later moment, thereby proving the connectedness of the
efficiency region. We shall study the case where P is lo-
cated in the ~x≥xi region and symmetrical reasoning will
hold in the ~x≤xi region.

Let us consider three moments t1 < t2 = ti
max < t3 such that

(illustrated in Fig. 11):

& At t1 and until t2, xi
− is defined through bilateral competi-

tion between lot i and j1 and xi
+ is defined through bilateral

competition between lot i and k1. And the width function
~t↦ xþi ~tð Þ−x−i ~tð Þ� � þ is strictly positive (first efficiency re-

gion). Therefore x−i t1ð Þ ¼ x̂i j1 t1ð Þ < x̂ik1 t1ð Þ ¼ xþi t1ð Þ.
& At t2 = ti

max, the width function reaches zero for the first
time: x−i t2ð Þ ¼ x̂i j1 t2ð Þ ¼ x̂ik1 t2ð Þ ¼ xþi t2ð Þ.

& At t3, by assumption, the width function has become pos-
itive again (second efficiency region): xi

− stems from bi-
lateral competition between lots i and j2whereas xi

+ comes
from bilateral competition between lots i and k2. This can
be expressed as: x−i t3ð Þ ¼ x̂i j2 t3ð Þ < x̂ik2 t3ð Þ ¼ xþi t3ð Þ.

From their definitions in section 5.2, x−i ~tð Þ ¼ max j< ix̂i j ~tð Þ
and xþi ~tð Þ ¼ min j>ix̂i j ~tð Þ, the following relations can also be
established:

x̂i j1 t3ð Þ≤ x̂i j2 t3ð Þ and x̂ik1 t3ð Þ≥ x̂ik2 t3ð Þ (property A.3.1)

Fig. 11 Hypothesized respective positions of the efficiency domains
boundaries
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For x−i ~tð Þ to cross xþi ~tð Þ in region ~x≥xi, the segment
resulting from the competition between i and j1 crossing xþi
~tð Þ must have the slope w since this is the only way to pass xi
in a bilateral competition between i and any lot j < i.
Therefore, at P lot i must be saturated and further evolution
of the bilateral competition frontier x̂i j1 ~tð Þ is strictly monoto-
nously increasing (bilateral competition of type shown in
Fig. 4b). This leads to x̂i j1 t3ð Þ > x̂i j1 t2ð Þ. Therefore, using
property A.3.1, x̂i j2 t3ð Þ > x̂i j1 t2ð Þ

Consider now the lot k1 > i that induces the segment of xþi
~tð Þ intersecting x−i ~tð Þ. Either it is saturated at P (case 1) and its
competitive frontier with i has the type shown in Fig. 4a: then
the segment of x̂ik1 ~tð Þ intersecting x−i ~tð Þ is vertical (upper sta-
ble frontier) and its further evolution (for ~t > tmax

i ) can be
considered as monotonously decreasing. Or, it is unsaturated
at P (case 2), in which case the intersecting segment has slope
− wγ/(2β − γ) and the further evolution of the bilateral
frontier x̂ik1 ~tð Þ is also monotonously decreasing. This
leads to x̂ik1 t3ð Þ≤ x̂ik1 t2ð Þ. Therefore, using property A.3.1,
x̂ik2 t3ð Þ≤ x̂ik1 t2ð Þ.

As a consequence x−i t3ð Þ ¼ x̂i j2 t3ð Þ > x̂i j1 t2ð Þ ¼ x̂ik1 t2ð Þ≥
x̂ik2 t3ð Þ ¼ xþi t3ð Þ, leading to xi

−(t3) > xi
+(t3), in contradiction

with the initial hypothesis.
Thus Ei is reduced to its initial region –meaning that it is a

connected sub-space.

Regularity properties of TI

In this section we will turn to the analysis of a lot i and in
particular to the analysis of the regularity properties of func-

tion Ti tI−ið Þ ¼ inf t≤ tmax : Q̂i t tI−ijð Þ

≥kig in order to de-

rive those of function TI.
Lot i has potentially neighbouring lots j < i and/or k > i.

With these neighbours the lot i shares a bilateral frontier
respectively x̂i j ~tð Þ and x̂ik ~tð Þ.

From the analysis of the expressions given in the sec-
tion 5.1, it is easy to derive following properties for the two
functions x̂i j ~tð Þ and x̂ik ~tð Þ:

& Recalling section 5.1, for a given set t j; ti; tk
� �

, x̂i j ~tð Þ and
x̂ik ~tð Þ are piecewise affine, continuous and monotonous

(either increasing or decreasing). In particular x̂0i j and x̂0ik
are constants, independent of t j; ti; tk

� �
.

& Their expressions are valid only for certain values of
ti relative to t j and tk . See Figs. 12 and 13 showing
schematically the four regions of ti with respect to t j
and tk and corresponding types of bilateral frontier,
referring to the Fig. 4a and b and their symmetrical

graphs. Let us denote βr ¼ 2β−γ
γw then these expres-

sions become :

& For tmax > ti≥ t j þ βr x̂0i j−x j
� �

−w−1 xi−x̂0i j
� �

, x̂i j ~tð Þ is de-
creasing and is of type presented in Fig. 4b. Equivalently

for tmax > ti≥ tk þ βr xk−x̂0ik
� �

−w−1 x̂0i j−xi
� �

, x̂ik ~tð Þ is in-
creasing and of type symmetrical to the one presented in
Fig. 4b.

& For t j þ x̂0i j−x j

w − xi−x̂0i j
w ≤ ti < t j þ βr x̂0i j−x j

� �
− xi−x̂0i j

w , x̂i j ~tð Þ
is decreasing and is of type presented in Fig. 4a.

Equivalently for tk þ xk−x̂0ik
w − x̂0ik−xi

w ≤ ti < tk þ βr xk−x̂0ik
� �

− x̂0i j−xi
w , x̂ik ~tð Þ is increasing and of type symmetrical to the

one presented in Fig. 4a.

& For t j þ x̂0i j−x j

w −βr xi−x̂0i j
� �

≤ ti < t j þ x̂0i j−x j

w − xi−x̂0i j
w , x̂i j ~tð Þ

is increasing and of type symmetrical to the one presented

in Fig. 4a. Equivalently for tk þ xk−x̂0ik
w −βr x̂0ik−xi

� �
≤ ti < tk þ xk−x̂0ik

w − x̂0ik−xi
w , x̂ik ~tð Þ is decreasing and is of type

presented in the Fig. 4a

& For tmin≤ ti < t j þ x̂0i j−x j

w −βr xi−x̂0i j
� �

, x̂i j ~tð Þ is increasing
and of type symmetrical to the one presented in Fig. 4b.

Equivalently for tmin≤ ti < tk þ xk−x̂0ik
w −βr x̂0ik−xi

� �
, x̂ik ~tð Þ is

decreasing and is of type presented in Fig. 4b

From this stems that for a given ~t, x̂
~tð Þ
i j ti; t j
� �

is continuous

everywhere except for two parametric curves

ti ¼ t j þ x̂0i j−x j

w −βr xi−x̂0i j
� ��

; t jÞ and ti ¼ t j þ βr x̂0i j−x j
� ��

− xi−x̂0i j
w Þ ; t jÞ, t j∈ℵ , defined above (it can be easily shown that

x̂
~tð Þ
i j ti; t j
� �

is continuous upon crossing

ti ¼ t j þ x̂0i j−x j

w − xi−x̂0i j
w ; t j

� �
, t j∈ℵ ). Since x̂

~tð Þ
i j ti; t j
� �

isdecreas-

ingwith ti and increasingwith t j, by crossing such a curve in the
left-upper direction (see schematic representation Fig. 12) the

following piece of the function x̂
~tð Þ
i j ti; t j
� �

is continuous, and

the value x̂
~tð Þ
i j ti; t j
� �

decreases: the function is right-continuous

in the upper-left direction, see Fig. 12 in particular.

Equivalently x̂
~tð Þ
ik ti; tkð Þ is continuous everywhere except

for two parametric curves ti ¼ tk þ xk−x̂0ik
w −βr x̂0ik−xi

� ��
; tkÞ

and ti ¼ tk þ βr xk−x̂0ik
� ��

− x̂0i j−xi
w ; tkÞ, tk∈ℵ (see Fig. 13).

Since x̂
~tð Þ
ik ti; tkð Þ is increasing with ti and decreasing with tk ,

the function x̂
~tð Þ
ik ti; tkð Þ is right-continuous in the upper-left

direction upon crossing such a curve, and the value x̂
~tð Þ
ik

ti; tkð Þ increases (see in particular Fig. 13).

This analysis proves that ∀ j < i, x̂
~tð Þ
i j ti; t j
� �

is lower semi-

continuous (l.s.c.); whereas ∀ k > i, x̂
~tð Þ
ik ti; tkð Þ is upper semi-

continuous (u.s.c.).
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These properties extend to x−i ~tð Þ ¼ max j< ix̂i j ~tð Þ and

xþi ~tð Þ ¼ mink>ix̂ik ~tð Þ, therefore x−i ti; tI−ið Þ is decreasingwith ti
and increasingwith t j,∀ j < i, and is l.s.c.;whereas xþi ti; tI−ið Þ is
increasingwithtianddecreasingwithtk ,∀ k > i,andisu.s.c.

For a given ~t, ~h xj~tð Þ is non-negative. Further let us

assume that its integral function ~H xj~tð Þ is continuous.

This holds notably when ~h xj~tð Þ is piecewise continuous.
Then by composition of an u.s.c. function and a contin-

uous function, ~H xþi ti; tI−ið Þj~tð Þ is increasing with ti and

decreasing with tk , ∀ k > i, and is u.s.c. Whereas ~H
x−i ti; tI−ið Þj~t� �

is decreasing with ti and increasing with

t j, ∀ j < i, and is l.s.c. Hence − ~H x−i ti; tI−ið Þj~t� �
is increas-

ing with ti and decreasing with t j, ∀ j < i, and is u.s.c.

Then, as the sum of two u.s.c. functions, ~H xþi ti; tI−ið Þj~tð Þ
− ~H x−i ti; tI−ið Þj~t� �

is increasing with ti and decreasing

with t j, ∀ j, and is upper semi-continuous.
Let us then denote (recalling (6.1) and (5.9)):

Q̂i t tI−i
���� �

¼ ~Qi tmax tI
���� �

¼
Z
t ≤ tmax

~q ~t
� �

:
~H xþi ~t; t; tI−i

� �� ����~t� �

− ~H x−i ~t; t; tI−i
� �� ����~t� �

0
BB@

1
CCA

þ

d~t

Given ~t, denote f tIj~tð Þ ≡ ~H xþi ~tð Þj~tð Þ�
− ~H x−i ~tð Þj~t� �Þ þ the

u.s.c. function of tI .
Using suitable conditions of smoothness on the non-

negative function ~q ~tð Þ, we can assume that for every tI,
f tIj~tð Þ as a function of ~t is Lebesgue-integrable with
respect to the measure dμ ¼ ~q ~tð Þd~t. Then the integration
of f tIj~tð Þ with respect to ~t and that measure, preserves
the previously noted properties of u.s.c. with respect to
tI and of specific monotonicity with respect to ti and
tI−i.

The u.s.c. property of function t; tI−ið Þ↦Q̂i t tI−ijð Þ is equiv-
alent to the closedness of its hypograph set: recall that hyp

Q̂i

� � ¼ t; tI−i;μð Þ∈ℵ I �ℜ : Q̂i t; tI−ið Þ≥μ
 �
is closed.

As the intersection of closed sets is a closed set, the inter-
section of the hypograph with the closed set { μ = ki}, namely

t; tI−i; kið Þ : t; tI−ið Þ∈ℵ I ; Q̂i t; tI−ið Þ≥ki

 �

, is closed, too.

So is its projection onto ℵI, t; tI−ið Þ∈ℵ I : Q̂i t; tI−ið Þ≥ki

 �

.

Thus the product set t; tI−ið Þ∈ℵ I : Q̂i t; tI−ið Þ≥ki

 ��

ℜ is closed, too: it can be rewritten as t; tI−i;λð Þ∈ℵ I�

ℜ : Q̂i t; tI−ið Þ≥kig.

As set t; tI−i;λð Þ∈ℵ I �ℜ : t≤λ

 �

is closed, so is its

intersection with the previous one: t; tI−i;λð Þ∈ℵ I�

ℜ : Q̂i t; tI−ið Þ≥ki ; t≤λg.

a b

Fig. 13 Schematic representation

of x̂
~tð Þ
ik ti; tkð Þ evolution with

respect to ti and tk

a b

Fig. 12 Schematic representation

of x̂
~tð Þ
i j ti; t j
� �

evolution with

respect to ti and t j
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Thus the restriction to every t ∈ℵ, Rt ¼ tI−i;λð Þ∈ℵ I−1
 �
ℜ : Q̂i t; tI−ið Þ≥ki; λ≥ t g is closed.

Now, let us take the intersection over {t ≤ tmax } of the
collection of such sets parameterized by t ∈ℵ: it is a closed

set as an intersection of closed sets. Furthermore, as Q̂i t; tI−ið Þ
is increasing with respect to t, the most stringent condition of

inequality involving Q̂i applies at the minimal value of t, so
the intersection set amounts to

\
t ≤ tmax

Rt ¼ tI−i;λ
� �

∈ℵ I−1 �ℜ : λ≥ inf t≤ tmax : Q̂i t; tI−i
� �

≥ki
n on o

¼ tI−i;λ
� �

∈ℵ I−1 �ℜ : λ≥Ti tI−i
� �n o

¼ hyp T ið Þ

This shows that the hypograph of mapping Ti is closed,
hence that Ti is upper semi-continuous.

Lastly, themappingTI = (Ti : i ∈ I) is u.s.c. with respect to tI
as the product of u.s.c. mappings.
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