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Abstract
Introduction As part of the overall goal of carbon emissions
reduction, European cities are expected to encourage the elec-
trification of urban transport. In order to prepare themselves to
welcome the increased number of electric vehicles circulating
in the city networks in the near future, they are expect-
ed to deploy networks of public electric vehicle char-
gers. The Electric Vehicle Charging Infrastructure
Location Problem is an optimization problem that can
be approached by linear programming, multi-objective
optimization and genetic algorithms.
Methods In the present paper, a genetic algorithm approach is
presented. Since data from electric vehicles usage are still
scarce, origin - destination data of conventional vehicles are
used and the necessary assumptions to predict electric vehi-
cles’ penetration in the years to come are made. The algorithm
and a user-friendly tool have been developed in R and tested
for the city of Thessaloniki.

Results The results indicate that 15 stations would be required
to cover 80% of the estimated electric vehicles charging de-
mand in 2020 in the city of Thessaloniki and their optimal
locations to install them are identified.
Conclusions The tool that has been developed based on the
genetic algorithm, is open source and freely available to inter-
ested users. The approach can be used to allocate charging
stations at high-level, i.e. to zones, and the authors encourage
its use by local authorities of other cities too, in Greece and
worldwide, in order to deploy a plan for installing adequate
charging infrastructure to cover future electric vehicles charg-
ing demand and reduce the electric vehicle Bdriver anxiety^
(i.e. the driver’s concern of running out of battery) encourag-
ing the widespread adoption of electromobility.

Keywords Electric vehicles . Genetic algorithm . Facility
location . Charging infrastructure

1 Introduction

1.1 General

Considering the importance of reducing Europe’s dependence
on imported oil and carbon dioxide emissions from road trans-
port by 60% until 2020, the White Paper on Transport in 2011
[1] has set the target for the reduction of conventionally
fuelled vehicles in cities. Cities are expected to establish an
aggressive strategy in order to reduce transport emissions and
enhance the urban environment; and among others they need
to become more sustainable by turning urban vehicle fleet to
more environmentally friendly.

In the recent years, car manufacturers have developed and
produced a new generation of alternatively fuelled vehicles,
advantageous compared to conventional cars in many aspects:
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lower dependence in oil, reduced greenhouse gas emissions
(GHG) and generally significant reduction in air pollution.
Among the most promising of these technologies are
those that fully rely on electricity. Currently, more than
thirty models of electric vehicles are manufactured
while the amount of money invested for the support of
design, construction and promotion of electric vehicles
(EVs) is continuously increasing.

It is highly expected that the EVs will be able to provide, in
time, a viable alternative to conventional vehicles that use
fossil fuels. Although electric vehicles are currently more ex-
pensive to purchase, they offer users the possibility to save
significant amounts of money by reducing the maintenance
and operational costs. However, in order to encourage the
spread of EVs in urban road transport and decrease the tran-
sition time from conventional to EVs, it is essential to elimi-
nate obstacles and encourage policies and actions that promote
the wide use of non-conventional vehicles. As part of this
goal, cities have to prepare themselves to welcome this
impending shift in transport, where EVs have a key role.
The current study is focused on this preparation of the cities.

1.2 Electric vehicles (EVs) and charging facilities locations

EVs are vehicles of very low pollutants, since they do not
directly emit gases from the combustion of a fuel, and are
more efficient and economical than conventionally fuelled
vehicles. Even though, GHGs are produced for EVs construc-
tion and operation, during the production of the necessary
electricity, EVs are much friendlier to the environment and
their carbon footprint is at least 40% of conventional vehicles.

However, EVs require electricity, store energy in internal
batteries and need recharging by plugging in a charger. Battery
range, which often does not allow covering very long dis-
tances (usually up to 100–200 km), and the time required for
recharging (20 min to 8 h) are their major disadvantages.
Charging time of an EV depends on the characteristics of the
vehicle as well as the technology and type of the charging
system. Chargers can be installed in houses, workplaces, pri-
vate facilities and public areas. Installation of chargers in pub-
lic spaces is considered to be crucial for the success of the
electromobility system, as it minimizes the Buser anxiety^
(i.e. the concern of the driver about the exhaustion of the
battery while being away from his house or the workplace).

1.3 Objective and paper structure

The objective of this study is to analyse the data and compo-
nents associated with deployment of EV charging infrastruc-
ture and to propose a methodology for EV charging facility
location based on a Genetic Algorithm using Origin
Destination (OD) data. The study is focused on EVs for which
the charging infrastructure is essential; however, the proposed

methodology and tool could be used for any type of plug-in
vehicles (e.g. plug-in-hybrid vehicles). The study is followed
by a case study in Thessaloniki, Greece. The remaining of the
paper is structured as follows: following the first introductory
part, the research literature is reviewed. The suggested solu-
tion for EV charging facility location is then presented through
a case study application and the paper ends with the
conclusions.

2 Literature review

The deployment of facilities in general is an issue of critical
importance for a wide range of private and public actions. The
problem of optimal facility location is met at parking spaces
planning, installation of fire stations or siting of emer-
gency stations in a city. Moreover, constant changes in
the population size, market trends, environmental factors
and other elements crate the need for relocation, exten-
sion and adaptation of facilities in order to ensure that
they meet the needs at all times.

In the area of electromobility as well, there is research
interest related to the EVs charging facilities location problem,
and a number of optimization processes have been proposed
and developed. Optimization algorithms that are used to ad-
dress the EV infrastructure location problem are usually based
on maximization of the covered demand or minimization of
the travel costs. Frade et al. [2] developed a maximal covering
model for the optimal allocation of EV chargers in Lisbon.
The day charging demand was derived by the number of jobs
and the night charging demand by the number of households
per geographical unit, as opposed to our approach where OD
data was used. Sweda and Klabjan [3] developed an agent-
based decision support system (DSS) to assist EVs infrastruc-
ture positioning. Hanabusa and Horiguchi [4] developed a
two-step model based on traffic assignment with stochastic
user equilibrium and entropy maximization. In our study, we
ignore the traffic assignment and focus on the demand at the
Origin and Destination. Wang et al. [5] proposed a multi-
objective planningmodel based on the demand of gas stations.
Efthymiou et al. [6] used multi-criteria optimization taking
into account spatial attributes. The proposed approach does
not necessarily cover the near-maximum demand, but is based
on an open, scoring model. Feng et al. [7] proposed a model
for the allocation of stations on the trunk road.Worley et al. [8]
developed an integer-programming model for the simulta-
neous solution of the vehicle routing and charging station
problem, with the objective to minimize the total cost (travel,
recharging and implementation).

Using parking demand as a proxy for EVs charging de-
mand, Chen et al. [9] developed a mixed integer-
programming algorithm with the objective to minimize travel
cost. He et al. [10] used an active-set algorithm for the optimal
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deployment of charging stations for plug-in hybrid vehicles,
with the objective of maximizing of the social welfare. They
recommend that public charging locations and electricity
prices should be taken into account at the planning phase. Xi
et al. [11] found that while location depends on the optimiza-
tion criteria, the service levels are not. Sathaye and Kelley [12]
explored a way to locate stations on highway corridors. They
developed a continuous algorithm that minimizes the devia-
tion of the vehicles from the expected trips. In our approach,
we assume that the chargers can only be deployed in nodes
(OD). Xu et al. [13] employed the particle swarm optimization
(PSO) algorithm to develop a framework for optimal charging
stations configuration, with the objective of minimizing total
transportation distance.

Baouche et al. [14] used OD data to develop an integer
linear programming algorithm mixed with a dynamic con-
sumption demand model, for the City of Lyon. The proposed
model aims at minimizing the fixed charge charging station
and the vehicle travel cost. The authors computed a minimum
time distance between the demand clusters of the area, and
enriched the data with information about the consumption.
They found that semi-fast chargers should be installed at pub-
lic parking spaces, and fast at petrol stations. Ghamami et al.
[15] modelled the optimal number of chargers and the loca-
tions they should be installed in existing parking lots. Sun
et al. [16] investigated the impact of the remaining battery life,
and therefore the driver’s behaviour, on the way they charge
their EVs, using stochastic frontier analysis. Location-routing
problem (LRP) is the optimization problem where the facility
location and vehicle routing are solved simultaneously. The
decision of location and routing differ, since they are strategic
and tactical respectively. The electric charger facility location
problem is modelled as LRM in a number of studies (Nagi and
Salhi, 2007). For computational reasons (i.e. GE is already
computationally demanding), in our study we focus on the
location problem and assume routing as static.

Chen et al. [17] investigated the impact of charging loca-
tions on the network performance. By incorporating charging
requirements in a distance constrained equilibrium model,
they evaluated alternative charging locations. Lee et al. [18]
developed a bi-level optimization framework with the objec-
tive of minimizing fail distance and total network travel time.
The model uses a probabilistic distribution function of the
remaining fuel range. Jung et al. [19] employed a bi-level
stochastic queuing model to locate charging stations for elec-
tric taxis. Long et al. [20] proposed a graph theoretic model
based on demand and supply, that minimizes the total cost
(investment and operation).

Jarmillo et al. [21] published an exhaustive research about
genetic algorithm applications to solve facility location prob-
lems. They examined all the capacitated/un-capacitated fixed
charge, maximum covering, p-median and centroid problems.
They found that GAs require more time to generate a solution

than other optimization algorithms, without this being a limi-
tation for strategic decisions such are the facility location
problems; moreover, the results are in many cases superior
(except in the fixed charge location problem). For the same
reason, we have decided to develop a GA for the purposes of
the current study, as presented below. The applicability of
GAs to the electric vehicle charging facility location problem
has been explored in a number of research papers. Ge et al.
[22] proposed a methodology for electric vehicle charging
locations, based on grid partitioning and genetic algorithm.
Li et al. [23] employed genetic algorithm for facility location
to minimize the total costs. Dong et al. [24] proposed a genetic
algorithmic framework to minimize Brange anxiety ,̂ defined
as the total number of missed trips in the network, employing
GPS data from conventional vehicles and a household travel
choice survey.

Our objective was to develop a framework that would be
very easily applicable and in contrast to the above mentioned
approaches would be based, since data from electric vehicles
usage are limited, on easily accessible OD data. The current
paper continuous the research of Efthymiou et al. [25], who
investigated the Electric Vehicle Charging Infrastructure
Location Problem using OD data of conventional vehicles
for Thessaloniki. The authors used the open-source FLP
spreadsheet solver [26] developed by the VeRoLog working
group of EURO (Association of European Operational
Research Societies). They employed a maximum coverage
algorithm and performed a sensitivity analysis to find the op-
timal number of stations required to cover the needs of
Thessaloniki. They found that the covered demand increases
by 4.4% on average for every extra station used, while 80% of
the demand can be covered by 15 stations.

3 EV penetration in Greece

The rate of EVs penetration in Greece is low due to the fol-
lowing factors [27]: 1) the purchase price of an EV is higher
than the price of a conventional; 2) the vehicle purchase po-
tential of Greeks depends on imported vehicles; 3) there are no
EVs of the most popular vehicle type categories of the market
(economy and compact cars) available in the Greek market; 4)
there are not EVs charging facilities in the Greek terri-
tory; 5) the consumers postpone the purchase of a new
vehicle due to the uncertain economic situation; 6) the
consumers are reluctant to buy an EV considering that
the technologies are still immature.

Nowadays, there are very few EVs in the Greek streets,
mainly for research or experimental purposes, while the legal
framework about the electrification is under development.
Based on the data of the National Statistical Service of
Greece [28], Table 1 shows the increase of the number of
current passenger cars during the last decade in Greece. It

Eur. Transp. Res. Rev. (2017) 9: 27 Page 3 of 9 27



appears that the upward trend in the number of circulating
vehicles that prevailed in recent years, seems to be tem-
pered in the years of the economic recession and is
estimated that in the forthcoming years will be stabi-
lized at these levels. Table 1 also shows the passenger
car sales in Greece over the last ten years. The table
shows that the number of new vehicles has reduced.

The Hellenic Ministry of Environment, Energy and
Climate Change [29] has estimated that the penetration of
EVs by 2020 will be between 2 and 7% depending on the
scenario (optimistic or realistic). The examined scenarios are
largely dependent on the political support for the penetration
of clean vehicles. Considering a conservative prediction that
5,2 million cars will be circulating in Greece in 2020 and
based on the penetration forecast of the Ministry -that by
now, with the economic crisis still enduring, seems too
optimistic- in 2020 there will be between 104.000 and
364.000 electric passenger cars in Greece.

4 Methodology

4.1 Study area

Thessaloniki is the second largest city in Greece, with a pop-
ulation of 322.240, while in the Metropolitan area lives ap-
proximately 1.1 million of people. About 1.300.000 trips are
performed on a daily basis, 51% of which is made by private
cars, 39% by public transport and the rest by bicycle and on
foot. The only public transport mode in Thessaloniki is a ser-
vice run by buses, while a metro network is under construc-
tion. The road network consists of 2.200 km of streets, while
there is a bicycle network of 12 km and a bike-sharing system.

The municipality of Thessaloniki is the economic, cultural
and administrative centre of the region of Central Macedonia.
It attracts visitors from the surrounding areas and
neighbouring countries. The increased traffic congestion, en-
ergy consumption and air pollution generated by the private
transport over the past years, has activated the authorities to
recognize the importance of promoting sustainable transport.
Therefore, a Sustainable Urban Mobility Plan (SUMP), an
adaptive traffic management and control system, that supports
the reduction of fuel consumption and information services
provided to travellers to promote low energy route
choices and sustainable transport modes, have been ini-
tiated. In the context of transforming Thessaloniki into a
sustainable city, local authorities aim to foster
electromobility in the city, giving financial incentives
and providing public charging options.

The current research addresses the location of fast charging
infrastructure in the Municipality of Thessaloniki (Fig. 1),
which concentrates the majority of daily trips in the
Metropolitan Area.

4.2 Data

In order to estimate the future demand for EVs charging in the
Municipality of Thessaloniki, traffic data from the most recent
trip Origin – Destination study (2011) and the traffic simula-
tion model of the city were used. Both data and model were
collected and developed by the Hellenic Institute of Transport
(HIT) of the Center for Research and Technology Hellas
(CERTH) wi th in the f ramework of the pro jec t
BThessaloniki’s Intelligent Urban Mobility Management
System^. The ODmatrix for the city is based on data collected
by a wide phone survey addressed to 5.000 residents of
Thessaloniki wider area whose daily trips were recorded.

Table 1 Number of passenger
cars in Greece (2004–2016) Year Total passenger cars Passenger cars that were bought between from 2004 to 2016

Total New 2nd hand Total

2004 4.093.951 281.841 28.597 310.438

2005 4.269.569 267.683 33.440 301.123

2006 4.509.456 265.892 36.862 302.754

2007 4.764.970 278.022 37.745 315.767

2008 4.990.384 265.251 28.517 293.768

2009 5.098.400 218.776 23.795 242.571

2010 5.181.313 139.514 12.790 152.304

2011 5.170.031 96.916 10.037 106.953

2012 5.133.997 57.817 5.911 63.728

2013 5.090.648 58.165 6.064 64.229

2014 5.077313 70.188 13.432 83.620

2015 5.074.060 74.985 20.200 95.185

2016 5.126.496 78.332 27.082 105.414
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Trip generationmodels were developed based on the results of
this survey. Then, attractors and generators were allocated
using a gravity model, creating the initial OD matrix for the
area. In order to estimate the final matrix, real OD data were
used for calibration purposes. 24 hourly OD matrixes have
been created for a typical day, totalling in 889.000 vehicles.

The Metropolitan area of Thessaloniki is divided in
339 tra ff ic zones , 124 of which belong to the
Municipality of Thessaloniki. Due to the economic crisis
that Greece is facing since late 2009, it is considered that
in the design year 2020, the number of passenger vehicles
in Thessaloniki will be at the 2010 levels. Similarly, the
number and allocation of the trips to the traffic zones will
be the same. Based on the above, the total number of
passenger vehicles with destination to one of the 124 traf-
fic zones of the Municipality, but also the average travel
distance between the zones were computed. Based on the
Hellenic Ministry of Environment, Energy and Climate
Change [29] report the penetration rate of EVs will be
2–7%. Choosing an intermediate scenario, we assume that
5% of the passenger cars will be electric in 2020. The
penetration of electric vehicles is assumed to be uniform
across all areas of Thessaloniki. Moreover, it is assumed
that the use of EVs will not affect the behaviour of com-
muters and thus their trips. However, not all EVs will
require charging when they arrive at a destination zone.

For the purpose of this research, we assume that the
EVs with destination to one of the 124 zones of the
Municipality of Thessaloniki will need to get charged
if they have travelled more than a certain number of
km from their origin, and thus have consumed most of
their stored energy. In the present context being uncer-
tain of whether drivers will unplug their vehicles imme-
diately after they get charged or if vehicles may stay
plugged for hours before the driver returns, we consider
each charger to be able to serve one vehicle only.
Taking into consideration the current potential autonomy
of vehicles available on the market and based on the
worst case scenario (vehicle of lowest autonomy), it is
assumed that the vehicles that originate from a zone
50 km away from their destination will require charg-
ing. Moreover, it is assumed that the vehicles that begin
their trip from a zone 10 km from their destination will
not need to get charged, while the demand for charging
of vehicles that start their trip from a zone between 10
and 50 km from their destination, decreases linearly
(Fig. 2). For simplicity reasons, it is assumed that the
travel distance is for all vehicles the shortest path be-
tween the zone centroids. As a result of the above as-
sumptions, the demand for charging per zone at the
peak time of a typical daily (8:00–9:00) was computed
and used for the purposes of this research.

Fig. 1 Municipality of Thessaloniki (orange colored area)
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4.3 Genetic algorithm and tool

Genetic Algorithm (GA) is an artificial optimization algorithm
that can be successfully applied on different combinatorial
optimization problems. The idea of GAs was introduced by
Holland [30]. GA is a stochastic search heuristic based on the
natural selection and evaluation. Due to the genetic roots of
the algorithm, the terminology of the optimization parameters
follows the same pattern. An initial set/population of
solutions/chromosomes is generated. Each chromosome is a

solution, usually but not necessarily binary bit string, of the
problem. The initial population evolves in new generations
through an iterating process. The fitness function (equivalent
to objective function) is used to evaluate the Bfitness^ of each
individual in every generation. The parents and offspring that
result in higher fitness values are selected to form the next
generation, while those of lower are rejected, in order to main-
tain the size of the population. The offspring are created either
by mutation (modification of a parent chromosome) or cross-
over (merging of parent chromosomes).

For the purposes of this research, a GA and a tool were
developed in R [31] using the GA packages [32], ggplot2 [33],
ggmap [34] and gWidgets [35]. The tool requires as input two
CSV data files: 1) a list of candidate EV charging points (po-
tential locations), their XY coordinates in WGS 84 and the
expected charging demand (data columns: [Location ID],
[Longitude], [Latitude], [Demand]); 2) the distances between
the potential charging locations (data columns: [Location ID
1], [Location ID 2], [Distance]). The expected demand per
location is given as input by the analyst (input file 1) and could
represent either the real EV charging demand or be an approx-
imation (e.g. based on the number of jobs/households in the
area). The between-location distances are the shortest paths,
average drive distances or cost-weighted distances in km.
Prior to the initiation the optimization algorithm, the user

Fig. 2 Estimation of electric vehicles charging needs in 2020 based on
the assumptions made in this approach
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should specify the desired number of stations (0 – total num-
ber of locations in the input file) for the examined scenario, the
average cover distance radius per station, the charging speed
and the average generalized cost per km. The output of the
algorithm, namely the locations and coverage nodes of the
stations, are visualized in Google Maps. The user should enter
the coordinates of the minimum and maximum latitude and
longitude (bounding box) of the area. Additional parame-
ters that need to be specified by the user are the: 1) size
of the initial population, 2) crossover probability be-
tween the pairs of the chromosome and 3) mutation
probability in a parent chromosome. Figure 3 below
shows the GUI (Graphical user Interface) of the tool.

In this research, the chromosome is a sequence of binary
bits that take the value 1 to the locations that have been
selected for implementation of EV charger, and 0 to the
others. The size of the initial population was set to 400; the
probability of crossover between the pairs of chromosome
was set to 0.8 (i.e. the offspring is made 80% from crossover
– the new generation is 20% similar to the old) and the prob-
ability of mutation in a parent chromosome to 0.1 [i.e. 10% of
the chromosome is changed (mutation should not occur very
often in order to avoid having a completely random new
population)]. Coverage distance for EV chargers is assumed
to be 500 m. A sensitivity analysis was performed assuming
5, 10, 15 and 20 EV charging stations. The initial population
was composed by randomly generated chromosomes with
sum of bits equal to the number of stations, in order to restrict
the search area of the algorithm and increase the optimization
speed. Assuming the time, number of stations and the cover-
age distance as given, the optimization parameter is the total
demand served.

The results of the optimization process are presented in
Table 2 and are compared with Efthymiou et al. [25]. The
GA algorithm used in this research results in better solutions
than Efthymiou et al. [25] for the scenarios of 5 and 10 sta-
tions, while the covered demand for 15 stations is the same
(80%) in both cases. The marginal demand coverage from 15
to 20 stations is decreasing; this implies that taking into con-
sideration the additional cost per station established,
implementing 15 stations would be a decent policy decision
to be taken.

Figure 4 shows the best vs. the average fitness value found
during the GA optimization search. The number of iterations
required reaching the optimal solution increases between 5

and 15 stations and then decrease from 15 to 20 stations.
Figure 5 shows the location of chargers per solution, and the
points (zone centroids) that they serve. The 500 m service-
distance assumption leads to many unserved zones. By in-
creasing the perceived service-distance, the optimal solution
would be reached earlier in the iteration process, and the cov-
ered demand would increase.

Table 2 Results
No. Stations Demand Covered (EVs) Demand Covered (%) Efthymiou et al. [25]

5 20.3 54% 36%

10 25.2 68% 57%

15 30.0 80% 80%

20 30.8 83% –
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Fig. 4 Best fitness value among the current and all previous generations
vs average fitness values per generation of the GA
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5 Conclusions and future prospects

European countries are expected to encourage the electrifica-
tion of their urban transport networks. In order to reduce the
electric vehicle Bdriver anxiety^ (i.e. the driver’s concern of
running out of battery), public charging networks should be
implemented. In this context, the objective of this research is
to propose a solution for optimal EV charging infrastructure
deployment, based on Genetic Algorithms and OD data. The
results of a case study in Thessaloniki indicate that 15 stations
are required in order to cover 80% of the expected demand.
The estimation of charging demand is based on assumptions
due to the scarce availability of EV data in Greece. The pro-
posed optimization algorithm has been implemented in a user-
friendly tool developed in R and is freely available. Since low

EV penetration rates are more or less the case in all EU coun-
tries (as well as the whole world) this approach as well as the
tool could be used to allocate charging stations at high-
level in other cities too, in Greece and worldwide, in
order to deploy a plan for installing adequate charging.
The authors intend to further develop the tool in order
to increase its capabilities and render it a flexible policy
evaluation platform for the local Authorities.
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