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Abstract

Favouring the crossing of Emergency Vehicles (EVs) through intersections in urban cities is very critical for people
lives. There have been several efforts toward developing Traffic Signal Control Systems (TSCS) dedicated to control
efficiently the traffic flow, but few are the efforts toward developing Traffic Signal Priority Systems (TSPS) dedicated
to favour the crossing of EVs (such as ambulances, firefighters, police cars, etc.). Multi-Agent Systems were
considered to develop several distributed TSCS, while very few works have developed distributed TSPS. Such
systems lack on dealing with the EVs crossing issues while maintaining a fluid state of the traffic. In the
literature, the Longest Queue First – Maximal Weight Matching (LQF-MWM) is proved to guarantee a stable
TSCS. Recently, the LQF-MWM technique is increasingly used to benchmarck and assess adaptive TSCS.
Moreover, the preemption is one of the most effective techniques used to prioritise the crossing of EVs.
This paper is the first to rely on LQF-MWM assumptions, preemption technique, and Multi-Agent Systems
to design a distributed TSPS. The suggested system has two main purposes, which are the guidance of EVs
and the control of traffic signals. Nine agents are implemented to govern a network of nine intersections,
where each agent uses the Multi Agent System based Preemptive Longest Queue First – Maximal Weight
Matching. We have referred to VISSIM traffic simulation software for benchmarking and analysis. To assess
the suggested system, we have developed a distributed and preemptive version of VISSIM Optimized Stage-
Based Fixed-Time algorithm. Python is considered to develop the suggested systems, and Spade platform is
considered as agents’ platform. Several Key Performance Indicators are considered to assess the performance
of all controllers including delay time, travel time, vehicles queue occupancy, number of stops, distance
traversed, and speed. Experimental results show a competitive performance of the developed system to
maintain a fluid traffic and guide efficiency EVs.
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1 Highlights

� A distributed, fully heterarchical and adaptive Traffic
Signal Priority System is designed;

� A new preemptive algorithm based on a state-of-
the-art algorithm named the Longest Queue First –
Maximal Weight Matching (LQF-MWM) algorithm;

� Performance is assessed against a customized
distributed and preemptive adaptation of the VISSIM
Optimized Stage-Based Fixed-Time algorithm
(OSBFX);

� Competitive performance in case of stable and
unstable traffic volumes.

2 Introduction
In an inherently non-static environment, vehicular
traffic control on road networks became a complex
decision making task. Two hundred ninety-five mil-
lion vehicles per hour are delayed due to traffic sig-
nals [9]. Traffic in urban areas has many problems
such as congestions, bottlenecks due to peak hours,
accidents, clearing the way to high priority vehicles.
According to the Highway Traffic Safety Administra-
tion & Department of Transportation [11], 35.092
people died due to accidents in the US in 2015, while
thousands of people are dying every day due to emer-
gency vehicles (EVs) delays.

2.1 An overview on traffic signals control and priority
systems
Several Traffic Signal Control Systems (TSCS) were
developed in the literature to maintain traffic fluidity
at signalized intersections. Such systems belong to two
broad classes which are; the traditional control strat-
egy, named fixed-time or pretimed control such as
TRANSYT [29] and MAXBAND [16], and adaptive
traffic control strategy such as SCOOT [30], CRONOS
[3], and RHODES [23]. In spite of the high number of
the developed TSCS, very few works have given atten-
tion to guide EVs to cross smoothly and efficiency an
isolated intersection [4, 14] or multi signalized inter-
section(s) [12, 28, 34, 41]. Previous researchs have fo-
cused on the devoloping of adaptive and pretimed
control techniques without considering signal priority
treatments [22]. Insuring safety especially when distur-
bances occur, become a major concern of efficient and
effective TSCS which is responsible of determining de-
cisions to be sent to traffic signals. These decisions
should improve traffic flow and help in protecting
people lives.
Traffic Signal Priority Systems (TSPS) are giving less

attention in the literature compared to TSCS. Such
systems can be classified into six cathegories [40]
which are; pre-emption versus priority (pre-emption

can be considered as the highest level of priority), one
approach versus conflicting approaches, active transit
signal priority versus passive transit signal priority,
signal mode versus multiple mode, signal intersection
versus coordinated intesection, and one request at a
time versus multiple request. The majority of TSPS in
the literature relies on electronics techology allowing
the detection of EVs, the communication between
those vehicles and traffic signals. Such technology in-
cludes Wireless Sensor Network (WSN) [4], RFID
[31], national transportation communications for In-
telligent Transport System protocol (NTCIP) [5], cen-
tralized server that supportes real traffic information
and calculates the shortest path for EVs to pass by
[13]. Shibuya, et al. [32] have presented an attempt for
traffic management that supports EVs, called FAST
emergency preemption system. Authors here have fo-
cused on the technological aspect to deal with the
problem by introducing the infrared beacon as a key
of a traffic signal control structure. Mirchandani &
Lucas [24] introduced a transit signal priority and rail
emergency preemption. The system suggested by au-
thors, referred as Categorized Arrivals based Phase
Reoptimization at Intersections (CAPRI), integrates a
dynamic programming based real time traffic signal
control. Despite their success and popularity, these
technologies still face some limitations, including the
fact that they did not consider traffic loads and adap-
tation of traffic light per traffic load. Other works did
not focus upon prioritization between EVs. Accord-
ingly, decision needs refinement to make some
changes on the decision process.

2.2 An overview on intelligent control approaches
With regard to artificial intelligence techniques, few
works have given attention to EVs issues when devel-
opping TSCS. The majority of these works used the
preemption technique, such as, Huang, et al. [14] that
integrated preemption rules into a Petri Nets based
system to allow queud vehicles with the same direc-
tion of the EV to cross the intersection. Furthermore,
Qin & Khan [28] adopted two-phases algorithm that
enables signal transitioning from normal operation to
EV signal preemption and vice versa. The first phase is
a relaxation method, while the second phase is a step-
wise search strategy. The preemption mechanism
switchs from a current phase to a new selected phase
once an EV is detected by sensors, through a preemp-
tion device located in the vehicle. This device has as
role to send a request to the preemption system asking
to favour the crossing of the EV in which is located.
Houli et al. [12] used Reinforcement Learning tech-
nique to develop a multiobjective control algorithm
for urban traffic signal control. The proposed system
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needs intelligent vehicles equiped with vehicular ad
hoc network communication devices. The exchange of
information regarding traffic and vehicles is based on
a vehicular ad hoc network. The objectives investigu-
ated in [12] include vehicle stops, average waiting
times, and the maximum queue length within inter-
sections. Marcianò et al. [20] developed a signal set-
ting model based genetic algorithm that takes into
concideration the vehicular flow and the congestion at
intersections. In this latest work, authors have dealed
with an evacuation case. They have developed a dy-
namic model based on a path choice model by using a
behavioural rules of different users. However, they
have just concidered urban evacuation as emergency
without considereing EVs types.
With regard to the EV types, very few works have speci-

fied the type of the EV, such as buses [10, 12, 15], police
cars [32], ambulances [4, 14]. While other works have
merged several types of EV at the same time, such as in
[39] where the authors have defined an EV as a vehicle
that need priority to serve public needs, like fire trucks,
ambulance, police cars, or in [24] where authors have con-
cidered buses, tram, police cars, and ambulance as EVs.
Recently, several research efforts focused on develop-

ing distributed TSCS using multi-agent technology [7],
but not on developing distributed TSPS. In this paper,
the main reasons for considering multi-agent systems
(MAS) are as follows:

� This work aims to enable complex problem
modeling and resolution in order to achieve a
distributed control;

� The MAS paradigm alone is not able to achieve
capabilities specifically dedicated to EVs
management and the reason behind that is because
of their generic conceptual framework and lack of
built-in adaptation mechanisms [7];

� Several computational intelligence techniques were
combined with MAS to achieve reactive and
adaptive control of traffic signals [8, 33];

� Despite their success and popularity, these
approaches still face some limitations, including
control of disturbances related to EVs and
assessment of performance under real life
situations [21].

2.3 Problem statement
This article relies on the Longest Queue First – Max-
imal Weight Matching (LQF-MWM) [37, 38] as a de-
sign guideline. We are referring to the LQF-MWM to
design an intelligent TSPS capable to control traffic
signals and favour the crossing of EV for several rea-
sons, which are:

� The LQF-MWM is adopted often to control traffic
signals [37, 38];

� It helps in creating and improving data base of
signal control decisions [18];

� It provides easy adaptation to cover and control
signals at a single intersection [17, 19], and at a
network of multi-intersections [7]. Fourth, it is con-
sidered as adaptive and capable to stabilise vehicles
queues [1];

� According to Wu et al. [36], LQF-MWM showed a
competitive performance compared to several ap-
proaches existing in the literature, such as the First
Come First Serve policy (FCFS) and Colony System
(ACS);

� Several recent references have used the LQF-MWM
for comparison purposes and assessment [1, 6, 36];

� The experiment in [7] shows that the LQF-MWM is
able to deal with a disturbed network made of mul-
tiple intersections;

� The LQF-MWM promotes the minimization of both
queue lengths and vehicles delay [1, 18].

Several limitations rises from the cited references:

� There is no reference that have considered
prioritisation between vehicles and all vehicles are
treated uniformly;

� It is assumed that the preemption is the most
used technique to prioritise the crossing of EVs,
but this technique is not yet integrated into the
LQF-MWM;

� The majority of works that have referred to LQF-
MWM have considered a single intersection, while
those whom have considered more complex
network of several intersections lack in communication
technique and cooperative control between signals, in
order to ensure a fluid network;

� There is no reference that have integrated the
preemption technique into MAS;

� They lack in-depth analysis and assessment;
� There is a need for systems that are able to

maintaining the traffic fluidity while favouring the
crossing of EVs.

To overcome these limitations, developing an intelli-
gent TSPS that ensure safety and improve traffic fluid-
ity is a challenging problem for which adaptation
mechanisms need to be developed to deal with EVs in
an intelligent way. This article addresses the MAS, the
preemption technique, and the LQF-MWM approach
to develop an adaptive TSPS to control traffic signals
and favour the crossing of EV at signalized intersec-
tions. An effective model of communication and collab-
oration between agents that guarantees an efficient
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decision making is introduced. A novel hybridization
and a detailed comparative analysis using innovative
and technological implementation choices are provided.
The remainder of this article is organized as follow:

Section 3 details the modelling and the concepts of
the suggested system. Section 3 introduces the adap-
tation and the control algorithms toward developing
the suggested system. Section 5 details the architec-
ture of the system. Section 6 details the tools and the
technologies adopted for the development of all sys-
tems considered in this work. Section 7 describes the
experimental framework. Section 8 analysis and assess
the performance of all controllers. Finally, Sections 9
concludes the paper.

3 Preemptive LQF-MWM control algorithm
The preemptive LQF-MWM (P-LQF-MWM) should
maintain the fluidity of the traffic at acceptable level
if there is EVs or not. Congestion, bottlenecks, unbal-
anced traffic load, high traffic load, and more can dis-
turb EVs to cross smoothly intersections. Indeed, the
suggested system generates suitable decisions in order
to eliminate non-desired traffic status and solve emer-
gency cases. The algorithms are detailed in the flow-
ing subsections.

3.1 The basic LQF-MWM algorithm
To develop the P-LQF-MWM the LQF-MWM algo-
rithm proposed by Wunderlich et al. [37, 38] is con-
sidered. The LQF-MWM algorithm gives priority to
approaches with the longest vehicle queues. It is
based on the following assumptions:

� At each approach of the intersection, the amount of
traffic does not exceed the capacity of the approach;

� It is not allowed to overload any of the destination
approaches;

� All queues are served in accordance with the policy
fixed by the signal control algorithm;

� At time t = 0, there is no loopback traffic, all Q(t0) = 0;
� The evolution of the queue occupancy can be

expressed as:

Q t þ 1ð Þ ¼ Q tð Þ þ A tð Þ−D tð Þ ð1Þ

� The weight produced by the LQF-MWM algorithm
at time t is given by:

W tð Þ ¼< Q tð Þ; S j;k tð Þ >¼
X

j;k

Qj;k tð Þ S j;k tð Þ ð2Þ

� The average rate of vehicles moving through the
intersection from input approach j destined for
output approach k.

The LQF-MWM algorithm is summarized in Fig. 1.

3.2 Preemptive LQF-MWM algorithm
The suggested algorithm referred as P-LQF-MWM in-
cludes the following steps:

Fig. 1 LQF-MWM algorithm
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� Step 1 - Reception of the local traffic data at each
time t;

� Step 2 – Use the LQF-MWM (see Section 3.1) to
control traffic under normal situation;

� Step 3 – Analyze data in order to detect possible
EV(s);

� Step 4 – If EV(s) is/are located at the local
intersection:

◦ Step 4.1 – Analyze the EV(s) information
(number of EVs, type(s),
destination(s));

◦ Step 4.2 – According to the number of EVs,
create a local decision (phase
sequence) using the following cases:

▪ Step 4.2.1 – If there is more than one EV:
– Step 4.2.1.1 - If the EVs have different types:

serve the EV with the highest
priority, then the lowest, and
finally the normal priority;

– Step 4.2.1.2 - If the EVs have the same type:
Step 4.2.1.2.1 – Analyze the local

queue occupancies;
Step 4.2.1.2.2 - Serve the EV located

at the approach having
the lowest queue
occupancy and the
nearest to the signal
head;

▪ Step 4.2.2 – If there is just one EV: Serve it;
◦ Step 4.3 – Request the traffic fluidity data of the

neighbouring intersection(s);
◦ Step 4.4 – Reception of the traffic fluidity data

from the neighbouring intersection(s);
◦ Step 4.5 – Evaluate and compare the traffic

fluidities of the neighbouring
intersection(s) (queue occupancies);

◦ Step 4.6 – Create a global decision: choose the
next intersection that will receive the
EV according to two factors; the EV
destination and the collected traffic
fluidities data of neighbours. The

intersection with the lowest queue
occupancies will be chosen;

◦ Step 4.7 – Outputs: deliver the control decision
(local and global decisions) to be
applied by the agent;

� Step 5 – Go to step 1.

The inputs and outputs used by the suggested algo-
rithm which are described in the previous steps are
highlighted in Fig. 2.

4 System modelling and concepts
In this section, a detailed description is provided of the
system modelling and concepts including emergency
cases, control decision, EVs detection, and priority rules
related to EVs types.

4.1 Assumptions
In this work, three types of EV priority are denoted,
which are:

� Type 1 ‘HS’: this type of EV is considered as the
highest priority. For example ambulance;

� Type 2 ‘H’: this type of EV is considered as the high
priority. For example fire-trunk;

� Type 3 ‘N’: this type of EV is considered as the
normal priority. For example Police car.

The MAS-P-LQF-MWM has two main tasks:

1. Monitor the traffic and adapt both phase durations
and sequences to variations of traffic volumes;

2. Prioritize the crossing of EVs whenever located at
any of the approaches.

Let’s define the following nomenclature:

� I is the number of intersections (9 intersections);
� INi (i = 1,…, I) is the ID of an intersection;
� M is the number of approaches at an intersection

(4 approaches per intersection);

Fig. 2 Preemptive LQF-MWM
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� APm(m = 1,…,M) is the ID of the approach m;
� TEV is the type of the EV;
� P is the priority rule assigned to the EV

(HS = highest priority; H = high priority; N = normal
priority);

� DIi (i = 1,…, I) is the destination intersection i that
an EV should reach;

� DApm(m = 1,…,M)is the destination approach m
that an EV should reach;

� DSt is the distance to the signal head of an EV at the
detection instant t;

� ORm is the order of the phase associated to
approach m;

� NI is the next chosen intersection to receive the EV;
� Qm is the queue occupancy of an approach m;
� Q(t) =Qm(t) (m = 1,…,M) is the queue occupancy

vector represented in number of vehicles currently
queued at time t;

� Sjk(t) is the allowable intersection configurations
considered by the algorithm where; Sjk(t) = 1 if input
approach j is selected by the control algorithm to
connect to output approach k; otherwise Sjk(t) = 0;

� W(t) is the weight produced by the LQF-MWM
algorithm at time t;

� D(t) is the number of vehicles departed from
approach i to approach j during time slot t;

� A(t) is the number of vehicles arriving to the queue
at time t;

4.2 Emergency case representation
An emergency case is a vector of attributes (see Table 1)
related to one or more EV(s) located at any approach of
a signalized intersection. These attributes include indi-
cators related to the ID of the approach where the EV
is detected, the type of the EV, its destinations (inter-
section and approach), the distance to the signal head
at the moment of detection, and the queue occupancy
of its approach.
Table 2 illustrates a detailed example of an emergency

case of an intersection which has EVs detected at its
approaches.
According to Table 2:

� An ambulance with highest priority is located at
the approach 4 of intersection 1. The ambulance
should reach a hospital at the approach 3 of
intersection 7 (see Fig. 3). This vehicle is 350 m
from the signal head, and its approach has 15
vehicles queued.

� Approach 2 of intersection 1 has no EV;

� A fire-trunk with high priority located at
the approach 1 of intersection 1. The vehicle
should reach an accident located at the
middle intersection which is number 5
(see Fig. 3).

� Another ambulance with highest priority is
located at the approach 3 of intersection 1,
the vehicle should reach a fire in a forest
located at the approach 2 of intersection 6
(see Fig. 3). This vehicle is 220 m from the
signal head, and its approach has 10 vehicles
queued.

4.3 Control decision representation
The control decision is a vector of two attributes that
should solve a detected emergency case (see Section
4.2). Table 3 illustrates the representation of the control
decision, which includes a local and a global decisions.
The local decision is related to the phase sequence of an
intersection signals, while the global decision represents
the next intersection that should receive the EVs.
As an example, we concider the emergency case de-

scribed in Section 4.2 and we assign a control decision
to this emergency case (see Table 4).
According to Table 4, the values of the local decision

means:

� Approach 4 of intersection 1 is the second to be
served with a green light;

� Approach 2 of intersection 1 is the fourth to be
served with a green light;

� Approach 1 of intersection 1 is the third to be
served with a green light;

� Approach 3 of intersection 1 is the first to be served
with a green light.

The values of the global decision means:

� The ambulance located at the approach 4 of
intersection 1 should take intersection 2 as next
intersection toward its destination;

� Nothing for approach 2 of intersection 1;
� The fire-trunk located at the approach 1 of intersec-

tion 1 should take intersection 4 as next intersection
toward its destination;

Table 1 Emergency case representation

INi APm TEV P DIi DApm DSt Qm

Table 2 Example of an emergency case

INi APm TEV P DIi DApm DSt Qm

1 4 Ambulance HS 7 3 350 15

1 2 NULL NULL NULL NULL NULL NULL

1 1 Fire − trunk H 5 NULL NULL NULL

1 3 Ambulance HS 6 2 220 10
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� The ambulance located at the approach 3 of
intersection 1 should take intersection 2 as next
intersection toward its destination.

4.4 Detection and creation of emergency case
The EVs are detected using sensors placed at the begin-
ning of the North, South, East, and West approaches of
the network (see Fig. 3). Once an EV penetrates any of
these approaches, an emergency case (see Section 5)
is created for all approaches of the intersection. The
creation of the emergency case contains the following
steps:

1. Get data from sensors placed at the beginning of
each approach;

2. Analyze data;
3. In case of EV(s) detection at any approach of the

intersection, create an emergency case according to
the following cases:
a. Case 1: If one EV is detected at just

one approach: fill the emergency case

with the intersection ID, the approach ID,
the type of the EV, and its destination.
The rest of the emergency case attributes are
giving NULL;

b. Case 2: If there is more than one EV having
different types: fill the emergency case with the
intersection ID, the approach ID, the type of
each EV, their priorities, and their destinations.
The rest of the emergency case attributes are
giving NULL;

c. Case 3: If there is more than one EV
having the same type: fill the emergency
case with the intersection ID, the approach
id, the type of EVs, their priorities, their
destinations, their distances from the
signal head, and the queue occupancies
of the EVs approaches.

A graphical illustration of the suggested concepts is
presented in Fig. 4.

5 Heterarchical multi-agent system based P-LQF-
MWM
The architecture provided in this paper is fully heter-
archical, flat, and no hierarchy between agents. We
associate an agent to each intersection, which com-
municates and coordinates with its adjacent

Fig. 3 The simulated network with illustrative scenarios

Table 3 Control decision representation

Emergency case Control decision

Local decision Global decision

INi APm TEV P DIi DApm DSt Qm ORm NI
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neighbours by exchanging two main information. The
first information is related to the traffic fluidity,
while the second information is related to the existence
of an EV at any of the intersection approaches. The
decision making process of an agent is based on three
main aspects; the P-LQF-MWM algorithm (Section 3.1),
the data collected from the intersection, and the informa-
tion exchanged with adjacent neighbours. The control
architecture of the suggested MAS based preemptive
LQF-MWM (MAS-P-LQF-MWM) is illustrated in Fig. 5.

5.1 Agent behaviours
In the suggested system, each agent relies on three be-
haviours, which are:

� P-LQF-MWM behaviour (see Section 3.2): this
behaviour allows the agent to control its intersection
and deliver control decisions using the data of the
intersection and the data received from the Receiver
behaviour;

� Sender behaviour: this behaviour takes as input
the global decisions delivered by the P-LQF-
MWM behaviour. Then it creates messages
with destination addresses and send them to
neighbouring agents;

� Receiver behaviour: this behaviour reads messages
received from the neighbouring agents. Then, it
extracts the order from the messages, and place the
order at the P-LQF-MWM behaviour.

Table 4 Example of control decision

Emergency case Control decision

Local decision Global decision

INi APm TEV P DIi DApm DSt Qm ORm NI

1 4 Ambulance HS 7 3 350 15 2 2

1 2 NULL NULL NULL NULL NULL NULL 4 NULL

1 1 Fire − trunk H 5 NULL NULL NULL 3 4

1 3 Ambulance HS 6 2 220 10 1 2

Fig. 4 A graphical illustration of the suggested concepts
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More technical details in Section 6.3 about the oper-
ation of agents behaviours, and more details about agent
coordination in Section 5.2.

5.2 Agent coordination
In the suggested system, the neighbours of an agent x
are those sharing with it a common approach. Agent
x communicates with its neighbours whenever it de-
tects at its intersection one or more EV(s). On an
event of an EV located at its intersection, Agent x
collects data from this vehicle (number of EV(s), type,
and destination(s)). This data will be used as a part
of the P-LQF-MWM inputs (see Section 3.2). Then,
agent x communicates with its neighbours asking for
their traffic fluidity information (queues occupancy).
These information are collected by agent x and used
to complete the P-LQF-MWM inputs. Whenever the
P-LQF-MWM made a control decision, agent x ap-
plies it and informs the chosen neighbour that is
about to receive the EV. Figure 6 details the agent
state transition diagram.

6 Tools and technologie adopted
In this section, we describe how agents are implemented,
the tools used for implementation, and the software con-
sidered for the simulation and assessment.

6.1 VISSIM traffic simulator and sensors setup
VISSIM is a powerful state-of-the-art traffic simula-
tion software. It is the leading simulation program for
modelling multimodal transport operations and is be-
ing used worldwide by public sector, consulting, and
universities [26]. It offers a module called Component
Object Model (COM) that provides the preparation of
data, the efficient control of examined scenarios, the
inclusion of control algorithms, and the access to all
network object attributes.
With regard to sensors technology, VISSIM offers

several types of sensors that can be positioned accord-
ing to the user need. We highlight three main sensors
used in our simulations. The first type of sensors al-
lows the detection of new EV entry and provides data
about this vehicle. This type of sensors is placed at

Fig. 5 Architecture of MAS-P-LQF-MWM
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the beginning of each approach. The second type of
sensors collects data regarding queue occupancies, ve-
hicles stops and delays at each approach. This type of
sensors is placed at the signal head of each approach.
The third type of sensors measure the travel time of
EVs. This type of sensors has two sub-sensors each,
one is placed at the beginning of each approach and
the second one is placed at the end of all other ap-
proaches. However, in a real world implementation,
inductive loops technology is the cheapest technology

[25] that can be used to determine vehicle queue oc-
cupancy, vehicle stops and delays, while RFID technol-
ogy is the cheapest technology that can be used for
the detection and tracking of EVs [31].

6.2 Agent implementation tools
To implement the suggested MAS-P-LQF-MWM, Py-
thon programming language is considered. Python pro-
vides a very powerful programming language for direct
execution in the VISSIM context [26].

Fig. 6 Agent state-transition diagram

Fig. 7 Agent model
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To develop agents, Smart Python multi-Agent Devel-
opment Environment called SPADE platform [27] is
used. SPADE is based on XMPP/Jabber technology and
it offers several facilities allowing the use of existing
communication channel besides its extensible communi-
cation protocol based XML. Agents in SPADE are im-
plemented as users and the platform where the agents
communicate are implemented as servers.

6.3 Agent design
An agent has a unique identifier called Jabber ID and
has three components (see Fig. 7), which are the connec-
tion mechanism to the platform, the message dispatcher,
and a set of behaviours.
Agent x in Fig. 7 uses its Jabber ID to eastablish a con-

nection with the platform. The Jabber ID includes the
username, the adresse, and the server domain. After a
successeful registration, Agent x creates an open and
persistent steam of communication with the platform,
and loads its behaviours. As we can see in Fig. 7, Agent
x has three behaviours, one for the suggested
P-LQF-MWM to control its intersection (internal deci-
sion), one for sending messages and/or orders delivered
by the P-LQF-MWM behaviour (queues occupancy and/
or global decision), and the last one for reading and
extracting messages and/or orders from other agents
(queues occupancy and/or global decision). When a
global decision is delivered by the P-LQF-MWM be-
haviour, the sender behaviour creates a message with
a destination and puts it in the the internal message
dispatcher which works as a mailman. The dispatcher
place the message in the Agent x communication
steam in order to be sent to neigbouring agent(s). In
case of order reception, the message sent to Agent x
by a neighbouring agent is received by the communi-
cation steam. Then the dispatcher receives this mes-
sage and place it in the receiver behaviour, which
reads the message and extracts the order. Finally, the
receiver behaviour places the order in the
P-LQF-MWM behaviour in order to be used as in-
puts during the decision making process.

6.4 Code structure
In this section, a brief description is given of the classes
considered to implement agents:

� Agent.py: in this file the agent class are
implemented. This class contains the agent
behaviours (see Fig. 7). The sender and receiver
behaviours are explicitly implemented into the agent
class, while the P-LQF-MWM behaviour recall P-
LQF-MWM.py file;

� P-LQF-MWM.py: the suggested algorithm is
implemented in this file;

� Com.py: this file establish the communication
between VISSIM simulator and Python. Thus, it
loads the intersections network, and it sets the
preferences of the user regarding the simulation
settings;

� Decision.py: this file allows to save the detected
emergency cases (see Section 5) and the control
decisions (see Section 4.3) giving by the suggested
system during the simulation. This data is saved for
future research purposes;

� Main.py: this is the file where the main program is
implemented. This file works as runner allowing the
initiation of VISSIM simulator (see Section 6.1), the
connection with SPADE platform, and the starting
of agents.

7 Experimentation
A network of nine signalized intersections are consid-
ered in this work (see Fig. 3). Each intersection has four
approaches. We assigned two lanes and 400 m length
for each approach [18, 37, 38]. In each approach vehicles
can traverse the intersection according to the related
green time and direction of the phases. Two lanes are
associated to each approach, the first lane is for turning
right and the second lane is a shared for straight and
turning left movements.

7.1 MAS preemptive optimized stage-based fixed-time
controller
A reference algorithm called the “Optimized Stage-Based
Fixed-Time controller” (OSBFX) [26] is considered for the
assessment of the suggested MAS-P-LQF-MWM. OSBFX
algorithm is a VISSIM tool that allows the determination
of the optimal phase duration of an intersection signals.
First, the algorithm requires as input the desired cycle
time and the number of phases of the intersection. In
this manuscript, we have considered two different
cycle time. The first cycle time is 60 s, and the

Table 6 Stops, speed, and distance results of EVs in scenario S1

EVs KPIs MAS-P-LQF-MWM MAS-P-OSBFX-60s MAS-P-OSBFX-240 s

AVG No Stops 2.493 7.177 11.938

AVG speed 30.678 20.824 15.169

AVG distance traversed 1417.183 1784.533 5467.309

AVG: Average
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second cycle time is 240 s, [2]. Second, VISSIM exe-
cutes several simulations with different vehicles distri-
bution in order to test different combinations of
phase duration. Finally, VISSIM gives an optimized
cycle time with an optimal phase duration for each
approach of the intersection.
The requirements, methodology and assumptions of

the OSBFX [26], are as following:

� VISSIM determines the average delay of all vehicles;
� For optimizing, the signal group in which the

vehicles have the highest delay is determined for
each stage;

� The stage with the lowest maximum average delay is
selected as the best stage;

� The stage with the highest maximum average delay
is selected as the worst stage;

� A second of green time is deducted from the best
stage;

� A second of green time is added to the worst stage;
� If a second can no longer be deducted from the best

stage, the second best stage is used. If this can no
longer be shortened, the next worst stage is always
taken iteratively. If no other stage can be shortened,
the optimization is terminated;

� A signal program is considered to be better than
another if one of the following criteria is met:

If the flow formed by the total number of
vehicles driven through the node during the
simulation run has increased significantly by at
least 25 vehicles or by 10% if this is less;

If the flow has not significantly decreased by 25
vehicles or by 10% and the average delay across all
vehicles has decreased;

� If a signal program is better than the best rated, it
replaces this as the best. The optimization is
continued with the next step;

� The optimization is terminated if one of the
following criteria is met:

Once the signal program does not improve
within 10 simulation runs;

Once the flow decreases by more than 25%
compared to the best signal program;

Once the average delay increases by more
than 25%.

For the particular needs of our assessment, we de-
signed a distributed and Preemptive version of the
OSBFX controller, referred as MAS-P-OSBFX. The pre-
emptive module integrated within the OSBFX brakes the

Fig. 9 AVG total delay per EV for scenario S1

Fig. 8 Average total travel time per EV for scenario S1
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current cycle time and assign green light to the approach
where the EV is detected. The MAS-P-OSBFX is imple-
mented in each agent to control its intersection and to
favour the crossing of EVs. Each agent is autonomous
and independent of other agents.

7.2 Simulated scenarios
Two scenarios are considered for the assessment with
3 h duration each:

� Scenario S1: has 12.000 generated vehicles. S1 allows
the assessment of the performance of the controllers
under stable traffic condition characterized by the
same traffic density;

� Scenario S2: has 15.600 generated vehicles. S2 allows
the assessment of the performance of the controllers
under unstable traffic condition characterized by
variable traffic loads.

Table 5 details the loads assigned to each approach per
scenario.

7.3 Settings and KPIs
In this section, the different settings considered in the
experiments are detailed:

� Regarding the probability distribution function
used for vehicle arrivals, the default random
seed value assigned by VISSIM which is 25
is used;

� Regarding the traffic demand, we used the
dynamic assignment in VISSIM which gives a free
choices to drivers to choose the path from their
origin start until their final destination;

� Regarding driver behaviours, VISSIM uses the
psycho-physical perception model of Wiede-
mann [35];

� Regarding the maximum speed limit, two different
speed values are used which are:
◦ 50 km/h as a desired speed distribution for
ordinary vehicles which is a default value defined
by VISSIM;
◦ 90 km/h as a desired speed distribution for the
EVs.

Moreover traffic data are collected form VISSIM as
follows:

� Queue lengths are collected each 10 s;
� Vehicle stops are collected each 10 s;
� Delays are collected each 10 s;
� Travel times are collected each 10 s;

Fig. 11 Total delay of all EVs for Scenario S1

Fig. 10 Total travel time of all EVs for Scenario S1
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� Vehicles speed are collected each second.

The KPIs considered in this work are inspired from
the works in [7, 17, 19]. To evaluate the controllers re-
garding EVs guidance, we investigated seven Key Per-
formance Indicators (KPIs):

� The average number of stops of EVs. This refers
to the number of times that EVs have stopped to
reach their destinations. The algorithm who
reduces the average number of EVs stops is
considered the best;

� The average speed of EVs since located in the
network until leaving it. The algorithm allowing
the highest average speed for EVs is considered
the best;

� The average distance traversed of EVs since located
in the network until leaving it. The algorithm
allowing EVs to reach their destinations with the
minimum distance traversed is considered the best;

� The average total travel time per EV. This refers to
the mean travel time spent by an EV since located
in the network until reaching its destination. The
algorithm who reduces the average total travel time
of each EV is considered the best;

� The average total delay per EV. This refers to the
time spent by an EV since located in the network
until reaching its destination. The algorithm who
reduces the average total delay of each EV is
considered the best;

� The total travel time of all EVs. This refers to the
total travel time of all EVs spent since located in the
network until reaching their destinations. The
algorithm who reduces the average total travel time
of all EVs is considered the best;

� The total delay of all EVs. This refers to the total
delay of all EVs spent since located in the network
until reaching their destinations including queue
delay. The algorithm who reduces the average total
delay of all EVs is considered the best.

To evaluate the controllers regarding traffic fluidity,
we investigated five KPIs:

� The average total travel time per vehicle in the
network. This refers to the mean travel time of a
single vehicle spent until leaving the network. The
algorithm who reduces the average total travel time
of all vehicles in the network is considered the best;

� The average total delay per vehicle in the network.
This refers to the mean delay of a single vehicle
spent until leaving the network. The algorithm who
reduces the average total delay of all vehicles in the
network is considered the best;

� The total travel time in the network. This
represents the total travel time spent by all
vehicles in the network. The algorithm who
reduces the total travel time of all vehicles in the
network is considered the best;

� The total delay in the network. This represents the
total time spent by all vehicles in the network, the
average queue delay of vehicles, and the time taken
by vehicles to leave the network. The algorithm who
reduces the total delay of all vehicles in the network
is considered the best;

� The average queue occupancy per intersection.
This represents the mean number of vehicles
queued in each approach of the network. The
algorithm who reduces the average queue
occupancy in the network is considered the best;

Table 7 Stops, speed, and distance results of EVs in scenario S2

EVs KPIs MAS-P-LQF-
MWM

MAS-P-OSBFX-60s MAS-P-OSBFX-
240 s

AVG No Stops 1.114 31.716 5.305

AVG speed 39.851 4.855 11.319

AVG distance
traversed

495.763 2885.373 1075.417

AVG Average

Fig. 12 AVG total travel time of EVs for scenario S2

Fig. 13 AVG total delay of EVs for scenario S2
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8 Results
In this section, we evaluate the suggested systems
with respect to two criteria. The first criteria relies
on the systems capability to manage the crossing of
EVs, while the second criteria relies on their
capability to maintain a fluid traffic. The results are
divided into two main subsections. The first subsec-
tion details the results of EVs KPIs, while the
second subsection details the results of the network
KPIs.

8.1 EV results
This section details the results of EVs KPIs. We eval-
uates the performance of the suggested systems for
all scenarios with regard to seven KPIs, which are the
average number of stops of EVs, the EVs average
speed of EVs, the average distance traversed of EVs,
the average total travel time per EV, the average total
delay per EV, the total travel time of all EVs, and the
total delay of all EVs.

8.1.1 Scenario S1
In scenario S1 (see Table 6) where the distribution of
vehicles are stable and equitable, the EVs have to stop
arround 2 times until reaching their destinations with

MAS-P-LQF-MWM while they have to stop 7 and 12
times with MAS-P-OSBFX-60s and MAS-P-OSBFX-240 s,
respectively. EVs speed is very critical for people lives,
MAS-P-LQF-MWM allows a higher average speed which
is 30 km/h, while MAS-P-OSBFX-60s and MAS-P-OS
BFX-240 s give lower speed, which are 20 km/h and
15 km/h, respectively. The MAS-P-LQF-MWM has an ef-
ficient agent communication system that allows to reduce
the average distance traversed by 20.6% compared to
MAS-P-OSBFX-60s and by 74.07% compared to MAS-P
-OSBFX-240 s.
Figures 8 and 9 measure the average travel time and the

average delay per EV, respectively. The MAS-P-LQF-
MWM gives better performance compared to the MAS-P
-OSBFX-60s and the the MAS-P-OSBFX-240 s.
With regard to the total travel time and the total delay

of EVs represented in Figs. 10 and 11, the MAS-P-LQF
-MWM has a comparable performance with the
MAS-P-OSBFX-60s but it still the best performer. The
MAS-P-OSBFX-240 s is a poor performer.

8.1.2 Scenario S2
In scenario S2 (see Table 7) where the distribution of ve-
hicles are unstable, the EVs have to stop arround 1 times
until reaching their destinations with MAS-P-LQF-M
WM, while they have to stop 31 and 5 times with
MAS-P-OSBFX-60s and MAS-P-OSBFX-240 s, respect-
ively. The MAS-P-LQF-MWM allows higher average

Fig. 15 Total delay of EVs for scenario S2

Fig. 16 AVG total travel time per vehicle in the network of
scenario S1

Fig. 14 Total travel time of EVs for scenario S2

Fig. 17 AVG total delay per vehicle in the network of scenario S1
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speed (40 km/h), while MAS-P-OSBFX-60s and MAS-P
-OSBFX-240 s provide lower speed which are 5 km/h
and 11 km/h, respectively. The third KPI which is the
distance traversed of EVs shows the effeciency of the
suggested MAS-P-LQF-MWM. Indeed, due to the ef-
fective communication and collaboration in decision
making between agents, the MAS-P-LQF-MWM have
reduced the distance traversed by EVs by 82.81%
compred to MAS-P-OSBFX-60s and by 53.9% compared
to MAS-P-OSBFX-240 s.
It is worth noting through Figs. 12 and 13 that the gap

between the MAS-P-LQF-MWM and the other control-
lers become bigger compared to scenario S1 (see Section
8.1.1). This fact shows the efficient coordination between
the agents of the suggested system which coordinate
efficiency with the instability of the traffic load in
order to reduce the travel time and the delays of EVs.
The MAS-P-LQF-MWM is the better performer in
scenario S2.
With regard to the total travel time and the total

delay of EVs represented in Figs. 14 and 15,
MAS-P-LQF-MWM is the best performer, while the
MAS-P-OSBFX-60s is the poorest performer.

8.2 Network results
Giving priority to EVs should not damage the fluidity of
intersections. In this section, the impact of all algorithms
on the network fluidity is investigated.

8.2.1 Scenario S1
Figures 16 and 17 show that the MAS-P-LQF-MWM re-
duces both travel time and delay in the network.
MAS-P-LQF-MWM reduces the total travel time by
47.5% and 50.02% compared to MAS-P-OSBFX-240 s
and MAS-P-OSBFX-60s, respectively. Furthermore,
MAS-P-LQF-MWM reduces the total delay by 35.7%
and 53.92% compared to MAS-P-OSBFX-240 s and
MAS-P-OSBFX-60s, respectively.
Figures 18 and 19 show that MAS-P-LQF-MWM

achieve lower travel time and delay since the 20th mi-
nute until the end of the simulation. MAS-P-OSBFX-60s
and MAS-P-OSBFX-240 s continue increasing the lower
travel time and delay during the 3 h of simulation.
With regard to the average queue occupancy per inter-

section for scenario S1 (see Fig. 20), MAS-P-LQF-MWM
provides lower average queues compared to all controllers.
If we do a pairwise comparison, MAS-P-LQF-MWM
reduces the average queue length in 7 intersections of the
9 intersections compared to both controllers, MA
S-P-OSBFX-60s and MAS-P-OSBFX-240 s.

Fig. 19 Total delay in the network of scenario S1

Fig. 20 AVG queue occupancy per intersection for scenario S1

Fig. 18 Total travel time in the network of scenario S1

Fig. 21 AVG total travel time in the network of scenario S2
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8.2.2 Scenario S2
Figures 21 and 22 show that the MAS-P-LQF-MWM
react very well to the unstable traffic load and reduces
both travel time and delay in the network. The
MAS-P-LQF-MWM is the best performer. It reduces
the total travel time by 11.7% and 27.02% compared to
MAS-P-OSBFX-240 s and MAS-P-OSBFX-60s, respect-
ively. Thus, MAS-P-LQF-MWM reduces the total delay
by 12.72% and 28.9% compared to MAS-P-OSBFX-240 s
and MAS-P-OSBFX-60s, respectively.
The unstable traffic load don’t effect the perform-

ance of MAS-P-LQF-MWM which still achieve the
lower travel time and delay during the 3 h of simula-
tion (see Figs. 23 and 24). The MAS-P-OSBFX-240 s
shows interesting performance and stay close to the
MAS-P-LQF-MWM, while the MAS-P-OSBFX-60s

controller continues increasing the lower travel time
and delay during the 3 h of simulation.
It is interesting to investigate the queue occupancy

per intersection under an unstable traffic load during
3 h of simulation. Figure 25 shows that MAS-P-LQF
-MWM achieves lower average queues length in 4
intersection compared to MAS-P-OSBFX-240 s con-
troller, and in 7 approaches compared to the MAS-P
-OSBFX-60s controller.

9 Conclusion
Security is a main consideration of any authority in the
globe. Thousands of people are dying every day due to
Emergency Vehicles (EVs) affected by traffic disturbances.
Developing an intelligent Traffic Signal Priority Systems
(TSPS) is a challenging problem for which adaptation

Fig. 23 Total travel time in the network of scenario S2

Fig. 22 AVG total delay in the network of scenario S2
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mechanisms need to be developed to deal with EVs in an
intelligent way. In this article, we designed an intelligent
and adaptive TSPS based on Longest Queue First – Max-
imal Weight Matching (LQF-MWM) algorithm coupled
with preemption mechanisms.
To the best of the authors’ knowledge, this article is

the first to integrate preemption mechanisms into the
LQF-MWM algorithm (P-LQF-MWM) to develop a
TSPS capable to cope with emergencies cases, favour
the crossing of EVs, and consider their specifications.
Thus, this paper is the first to integrate the suggested
P-LQF-MWM into a Multi-Agent System (MAS) to
control efficiency disturbed traffic at a network of sig-
nalized intersections. The agents architecture provided
in this paper is fully heterarchical, and no hierarchy
between agents. The EVs guidance and the control of
signals are achieved using the P-LQF-MWM and an
efficient communication system between agents. The
suggested system guarantees six objectives including

minimizing delay time, travel time, queue occupancies,
number of stops, distance traversed, and speed.
For the assessment purpose, we customized a distrib-

uted and preemptive version of the VISSIM Optimized
Stage-Based Fixed-Time algorithm (MAS-P-OSBFX). All
controllers have been evaluated in different traffic sce-
narios. Two types of results are discussed in this paper.
The first results evaluate the efficiency of the controllers
to deal with EVs, while the second results evaluate the
capability of the controllers to maintain a fluid traffic.
All results show that the MAS-P-LQF-MWM outper-
form the MAS-P-OSBFX with regard to several Key Per-
formance Indicators in all scenarios.
This paper provides a detailed benchmark allowing

the assessment of any Traffic Signal Control Systems
(TSCS) or any Traffic Signal Priority Systems (TSPS).
Furthermore, the suggested system provides an expli-
cit knowledge representation that includes the de-
tected emergencies cases and the decisions taken.

Fig. 24 Total delay in the network of scenario S2

Fig. 25 AVG queue occupancy per intersection for scenario S2
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This knowledge allows the development of intelligent
TSPS using artificial intelligence techniques, such as
Case-Based Reasoning and Immune Systems. Due to
this knowledge, such systems can easily solve similar
emergency cases that could happen in the future.
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