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Abstract

The recent development in micro-based transport models is a major step towards an improved understanding of
transport demand and its underlying drivers. By adapting a detailed geographical resolution level and a fine-grained
social description of individuals it becomes possible to investigate distribution effects across social classes and
geographical spaces, elements which were not possible to take into account until recently. However, the increasing
amount of details comes at a cost. As the prediction-space is enlarged, models become increasingly dependent on the
quality of inputs and exogenous model assumptions of which the formation of synthetic population forecasts is by far
the most important one. The paper presents a coherent description of a large-scale population synthesis
framework involving all relevant steps in the synthesis stages from target harmonisation, matrix fitting, post
simulation of households and agents and reweighting of the final population. The model is implemented in
the Danish National Transport Model and is aimed at predicting the entire Danish population at a very detailed spatial
and social level. In the paper we offer some insight with respect to the propagation of sampling noise caused by the

observed data.

household simulation stage and a brief validation of the model when comparing a modelled 2015 population with
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1 Introduction

A fundamental input to any agent-based model, that be-
ing a large-scale transport model or a network simula-
tion model, is a population of agents. The agents should
ideally be formed in such a way that they represent a
realistic picture of the population at the time of the sce-
nario and such that they are adequately detailed with re-
spect to socio-economic classes and the geography in
which they are measured. In the literature, this problem
is referred to as ‘population synthesis’ and has, with the
upsurge of agent-based modelling, received increasing
attention in recent years. In this paper, a large-scale
population synthesis approach is presented for Denmark.
The model is applied in the Danish National Transport
model [29] and extends previous work [28] by giving at-
tention to all stages of the population synthesis from
harmonisation of constraints to the micro-simulation
stage where individuals are allocated to households.
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The process by which populations are constructed, is
by no mean trivial as it needs to; i) form a representative
picture of the population in the modelling area for a
given base year, ii) facilitate forecasting according to pro-
jected population targets, iii) be sufficiently detailed at
the geographical and socio-economic level to support
the requirements of a detailed transport model and allow
for heterogeneous preferences across the population,
and iv) recognise individuals as being part of a house-
hold [20]. In addition, from a technical perspective,
population synthesis is challenging because uncertainties
in the population synthesis model will propagate
through subsequent modelling steps in the transport
model and bias the final equilibrated model output [36].
As a result, attention should be given to how these pop-
ulations are formed and the implications of error
propagation.

In recent years there has been an increasing awareness
of the importance of the population stage which has led
to methodological developments and an increase in ap-
plications [25, 34]. Reasons for this increased attention
includes, among other things, increased awareness of the
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importance of distribution effects, e.g. equity impacts,
generation effects and gender effects of transport pol-
icies [9]. Hence, transport models of today should not
only address fize effects’ but also who is likely to be af-
fected by certain policies. Also, there is an increasing
awareness that the spatial and social formation of the
population has a significant impact on the demand for
transport [6, 33]. The ongoing agglomeration trend with
people moving to the cities leads to potentially increas-
ing congestion, decreasing trip distances, and changed
mode-shares all of which are catalysed by population
changes [14, 15]. Figure 1 below illustrates the speed of
which urbanisation takes place in Denmark according to
projections carried out by Denmark Statistics. These
projections are included as baseline population forecasts
in the population synthesis model, although at much
more detailed levels as illustrated in Tables 4, 5, 6 and 7
in Section 3. It is also worth stressing that the urbanisa-
tion process in Denmark is also a socially diverse process
where younger people move to the urban areas whereas
older people move to the suburban areas or even out of
the cities.

1.1 Literature review
Population synthesis has been approached from differ-
ent methodological perspectives [19, 25], including
reweighting approaches, matrix fitting approaches and
simulation-based approaches.

Approaches based on reweighting typically aim at esti-
mating weights or “expansion factors” which can be used
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to expand surveys or smaller samples such that these are
representative for the populations. Reweighting based on
quadratic optimisation has been proposed in Daly [10],
whereas others have used combinatorial optimisation [1,
30, 35] and maximum cross-entropy [3, 17, 22]. It
should be noted that reweighting and matrix fitting are
closely connected as a matrix fitting indirectly generates
weights relative to a starting solution. Matrix fitting ap-
proaches typically apply different variants of Iterative
Proportional Fitting [13], which may include multi-level
fitting [27] and intermediate stages to circumvent miss-
ing values in the starting solution. The correspondence
between cross-entropy and IPF under convex constraints
has been covered in McDougall [23], Dykstra [12] and
Darroch and Ratcliff [11] who showed that IPF through-
out the iteration scheme increases entropy monoton-
ously. Applications of IPF have been presented in
Beckman et al. [5], Arentze et al. [2], and Simpson and
Tranmer [31]. Other slightly more advanced applications
can be found in Pritchard and Miller [27] in which Hier-
archical IPF procedures were proposed for fitting
household and individuals jointly. Another application is
in Rich and Mulalic [28] which proposed a pre-
harmonisation procedure in order to account for incon-
sistent targets. Recently there has been an increased
interest for using simulation based approaches to gener-
ate synthetic populations. Mostly these approaches has
been concerned with the problem of generating syn-
thetic ‘pools’ of individuals by sampling from an original
data source. Farooq et al. [16] present an application of
a Gibbs sampler whereas Borysov et al. [4] suggest using
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deep generative modelling in order to address scalability
issues and sparsity in the origin data. However,
simulation-based approaches are not new to population
synthesis [7] and have often been used in post allocation
stages, e.g. to generate agents and household entities
from aggregated population matrices. In this sense, most
applied frameworks for population synthesis are “hy-
brids” that combine matrix fitting with simulation stages
although these combined applications are rarely de-
scribed in the literature. Even pure simulation-based
population synthesis as presented in Farooq et al. [16]
and Borysov et al. [4] typically require a re-sampling
stage where individuals are ‘importance-sampled’ such
that the resulting population are consistent with popula-
tion targets.

While referring to the literature and the many differ-
ent approaches that have been applied, it should be
stressed that choice of strategy for the population syn-
thesis is closely connected with the amount, the type
and quality of data at hand. Generally speaking, if de-
tailed high quality data are available as a basis for the
starting solution it is important to utilise this informa-
tion as much as possible. In that case, IPF/Cross Entropy
or Markov Chain Monte Carlo approaches are natural
choices because they maintain the correlation structure
captured in the starting solution well [8] by maintaining
odd ratios. Another determining criterion is whether
‘hard’ or ‘soft’ targets are required. Certain methods,
such as quadratic optimisation [10], do not facilitate
‘hard targets’ and may not be acceptable from an appli-
cation perspective or at least require a subsequent
quota-based sampling stage.

1.2 Contribution of the paper

The paper provides a detailed description of a large-
scale population synthesis framework. The model is im-
plemented as part of the Danish National Transport
Model and is used for population synthesis for the entire
Danish population. Main contributions to the existing
literature are as follows. First, to our knowledge, almost
no population synthesis frameworks have been presented
in the scholarly literature describing all stages from tar-
get harmonisation, matrix fitting to the final allocation
stage. We have deliberately included a complete and co-
herent description in order to provide a standing ex-
ample of a self-contained model for population synthesis
for an entire country. Secondly, on the more technical
side, the paper proposes a simulation-based household
allocation procedure which involves the concept of
“spouse matching” and “kids matching”. Thirdly, we
introduce a pre-harmonisation stage of population tar-
gets combined with a two-stage IPF fitting procedure to
enable adjustments of the fitted matrix and to enforce

Page 3 of 18

consistency among targets. Finally, we provide some val-
idation insight by analysing the degree of accumulated
household simulation noise and by comparing a predic-
tion from 2010 to 2015 with observed data.

In Section 2 the model framework is presented, which
includes two fitting stages, a harmonisation stage and a
simulation stage. Section 3 is concerned with model ap-
plication and provides an overview of data and notation
and considers model validation. Finally in Section 4, we
offer a conclusion, including a research outlook.

2 Methodology

The population synthesis framework consists of three
main stages: i) a harmonisation stage, which is run only
once for every set of constraints, ii) a fitting stage
where the population matrix is fitted using IPF and iii)
a simulation stage where prototypical agents are trans-
lated into micro agents and subsequently grouped into
households. An illustration of the different stages is
provided in Fig. 2 below.

The household simulation stage involves going from
an aggregated matrix perspective, e.g. the concept of
“prototypical individuals”, to a list that essentially in-
cludes all 5.5 Million individuals in Denmark for the
base year 2010. The objective of the simulation stage is
to classify individuals into households in order to sup-
port household based decisions in the demand model. A
challenge is that the household simulation stage renders
stochasticity into the final solution. In order to make
sure that the final population corresponds to the targets
for the true representative population, a re-weighting
approach is applied. This is considered in more detail in
Section 2.3.

Notation is introduced while describing the different
parts of the model. However, a complete list of notation
is offered in Table 14 in Appendix 1.

2.1 Harmonisation of constraints

The harmonisation stage is a pre-processing stage with
the sole objective of ensuring consistency between input
target constraints. The issue has not received much at-
tention in the scholarly literature where it is common to
assume that inputs are correct and consistent. It is also
a principle discussion whether we should either correct
inputs (via harmonisation) or require inputs to be cor-
rect before running the model.

However, from a user and application perspective the
auto-harmonisation of targets makes the process of gen-
erating scenarios much easier and the application of the
model less prone to errors. As an example, if a scenario
is concerned with a generic income increase then the
user can focus on shifting the conditional income distri-
bution without worrying about the actual population
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Fig. 2 Overall illustration of the population synthesis structure in The Danish National Transport Model

counts. Another advantage of pre-harmonised targets is
that it solves the problem of convergence problems that
may occur as a result of rounding errors when defining
the targets. As we typically have a convergence threshold
below E-6 in the matrix fitting stage this can easily turn
into a problem. The harmonisation stage prevents this
problem by ensuring consistency at the level of the ma-
chine precision. As the harmonisation process has not
received much attention in the literature we discuss this
in more details below.

Firstly, why is it a problem? When having many targets
constraints of which some are cross-linked in that they
share common attributes, it is not trivial to make sure
that these are consistent across all dimensions. This is a
problem that can easily arise when users of the model
are editing targets for a given scenario. As a result, sum-
ming different targets across attributes that are similar
(across targets) may render sums that are different. This
in turn will lead to inconsistent input data, which will
affect convergence and bias outputs. This is not just a
problem that relates to the IPF algorithm but for any ap-
proach which is supposed to align a population with fu-
ture targets one way or the other. Clearly, the simple
solution to the problem is to reduce the number of tar-
gets and their complexity. However, this generally con-
flict with the increasing need for more detailed
long-term forecasts. Having few and simple targets will
make it difficult to capture social processes and trends
in the population synthesis stage.

A solution was proposed in Rich and Mulalic [28] in
which constraints were harmonised according to a rank-
ing procedure and this procedure has been applied in

the Danish National Transport Model. The idea is that
the different targets are ranked according to reliability
and subsequently adjusted such that lower ranked con-
straints always comply with higher ranked constraints.
The ranking that is used in the National Transport
Model is presented in Table 1 below.

The idea is that rather than using targets directly, a
harmonised version of the targets is used instead. As a
result, it is the harmonised targets that are passed on to
the IPF algorithm in order to ensure consistency across
inputs and convergence of the algorithm.

Per definition, the target with rank 1 is the ‘ground
truth’. This target will therefore not be harmonised but
is used as a baseline target. The other targets are harmo-
nised based on the levels of the highest ranked target.
Below T,;(zo,a,i) represent the harmonised targets for
T,/zo, a, i) and similarly for the other targets.

Tog(z0,a,8) = Tga(20,8, @) (1)

Table 1 Ranking of main targets in the National Model

Target Rank Description

Toal20,a, ) 1 Targets for municipality (o), age classes (a) and
gender (g)

Talzo, a, 1) 2 Targets for municipality (o), age classes (a) and
income classes (/)

Talzo,a, ) 3 Targets for municipality (zo), age classes (a) and

labour market association classes (/)

TaAzo,a, 1 4 Targets for municipality (o), age classes (a) and

family structure (f)
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Tai(z()aav l)

Pl 20) = S e a) 2
Tai(ZOaaai) :P(i‘asz)Z Tga(207g7a) (3)
g
Pl z0) = o @)
Ta(z0,a,0) = P(l|a,20) Y _ Tea(20,8, ) (5)
g
_ Ty(z0,af)
P(,f|a7Z0) - ZfTaf(Zo,ﬂ,f) (6)
Taf(z()? a’f) = P(f|tl,Zo) Z Tgﬂ (ZO’ga a) (7)
g

As can be seen, we apply only the relative distribution
of T,{(zo, a, i), Tozo, a, 1) and T fzo, a,f) by i, [ and f. As
a result, summing over any dimension in all targets will
reproduce the same sum. In the baseline all targets are
naturally harmonised as they are drawn directly from
harmonised register data. However, the harmonisation is
mainly supposed to support users of the model who alter
the targets for scenario analysis.

In the case described in Table 1, the cross-linking of
targets is relative simple in that at most two dimensions
are shared. Moreover, both of these two dimensions are
included in the highest ranked target which makes it
straightforward to harmonise subsequent targets as de-
scribed. However, if the cross-linking is more complex
the harmonisation stage will be equally complicated.
Sometimes it may involve running separate IPF steps in
the harmonisation. To illustrate this potential problem
consider a slightly modified set of targets in Table 2.

Although only three targets are considered with only
two attributes it is not possible to apply the ranking pro-
cedure introduced above. The problem arise in the har-
monisation of Tj(i, /) as this target shares attributes with
T,{a,i) and T,la,l). In other words, we cannot repre-
sent Ty(i,]) as scaled marginal probabilities as before.
However, in this particular case potential inconsistencies
that may arise from Tj(i, /) can be solved by running a
pre-stage IPF.

More specifically, the harmonised target T';(i,) could
be calculated using an IPF algorithm with starting value
Ty(i, 1) and constraints formed by T:(i) =), Tu(a,i)

Table 2 Ranking of highly cross-linked targets

Target Rank Description

Tala, i) 1 Municipality, age and gender targets
Taa, 1) 2 Municipality, age and income targets
Tili, ) 3 Municipality, age and LMA targets
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and To(l) =Y., Tu(a,l). The harmonised Ty(a,l) is
constructed in a similar way as before. That is, T(a, ()

= P(l‘(l)ziTui((L l)

Ty(i, 1) = IPF(init = Ty(i, 1), T1(i) (8)
= Tula,i), T»(l)
=Y " Tula,l)

The intuition behind this approach is straightfor-
ward. The best estimate for T(i,l) is Ty(i, 1) except
that the matrix might fail to be consistent with Tj/(a,
i) and the previously harmonised target Tj(a,l) .
Hence, we would like to preserve the correlation
structure in Tj(i,[) as closely as possible while adjust-
ing the row and column sums to be consistent. This
minimal deconstruction of the probability distribution
is preserved under iterative proportional fitting in that
odds log ratios are preserved [8].

A final remark that relates to the definition of targets
and the harmonisation of these is that it is sometimes ob-
served that the spanned target space includes cells that
are not included in the starting solution or the other way
around. This essentially corresponds to a situation where
targets are inconsistent and will generally lead to conver-
gence problems. It is therefore important to align the di-
mensionality of the target space and the solution space
before starting the iteration process. Typically this is
solved as part of a pre-processing stage where the input
space and target space are aligned. In practise it may lead
to an extended input space to allow for new cell-entries.

2.2 Fitting of master table for individuals
The fitting of the master table translates into finding the
maximum cross-entropy of T(a, g, i, l,f, ¢, z) provided we
have a starting solution Ty(a,g, i1, f, c,z) and subjected
to a set of pre-defined constraints.

The corresponding maximum cross-entropy for the
problem at hand is provided in (9) below.

max Z: - Z T(“;ga i7 l,f, C,Z)
{T(ag,il.fcz)} {ag.il.f.cz}

ln(T(ﬂ’g7 i’ l’f’ CVZ)/TO(ﬂ7g7 i7 lvfa C,Z))
©)

The constraints are provided in (10)—(13).

Z T(ﬂ,g7 iv lafa C,Z) = Tgﬂ(zovgad) (10)
il.f.czez0
Z T(a,g,i,l,f,c,2) = T4i(20,a,i) (11)

g.l.fczez0
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> T(agilf c2) = Ta(20,a,1) (12)
g.i,fc,,ze20
> T(agil,f,c.z) = Ty (20,4, f) (13)

g.i,lc,zez0

As seen, the right-hand side is the harmonised targets
from (1)—(7) in the previous section. The matrix fitting
is solved using an IPF algorithm which is carried out in
two stages (refer to Appendix 2 for a more elaborate de-
scription of the fitting stage). In a first stage the problem
that corresponds to the above cross entropy problem is
solved. This problem returns the fitted matrix 77(a, g, i,
L,f, ¢, z). In the second stage fitting we allow users to add
additional constraints at a more detailed zone level. This
introduces a possibility of ‘aligning’ the fitted solution to
additional information that may be available as local
projections of zone population. The outcome of the
second-stage fitting is a 77 (a, g, i, [, f, ¢, z) matrix.

2.3 Simulation of household entities

The outcome of the population fitting (as we considered
in Section 2.2) is a new master table, which conforms to
the new targets and to the structure of the master table
for individuals (refer to Table 3 in Section 3).

The next stage of the population synthesis is to con-
vert prototypical individuals into micro agents and to al-
locate these individuals to households. This task is
necessary because the master table is not a micro repre-
sentation of the population but simply a weighted list of
prototypical individuals grouped into socio-groups. Al-
though the socio-economic groups are very detailed, cer-
tain entries in the master table may represent as much
as 30-50 prototypical individuals and others very small
fractions of individuals. If we apply micro-simulation
directly to the master table it would mean that all of
these 30-50 individuals would be treated in a similar
way as regards the household sampling, which is not de-
sirable. We therefore create an enumerated list of all

Table 3 Structure of starting solution and final master table

Variable Description Classes
AgelD (a) Age 10
GenderlD (g) Gender 2
IncomelD (j) Personal income 1
LmalD () Labour market association 8
FamID (f) Family structure 2
NumChildID (c) Number of children 4
ZonelD2 (2) L2 zone level. 907
Val Number of individuals
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individuals in the population and process those in a
micro-simulation algorithm where individuals are
grouped into households.

Many have considered the challenge of how to translate
a numerical representation of individuals into an integer
representation [18, 32]. In the Danish National Transport
Model this is accomplished by allowing fractions of indi-
viduals and fractions of households to be processed.
Hence, in the demand model that precedes the population
synthesis framework an internal numerical weighting of
each individual and household is facilitated. Hence, the
enumeration of a households and individuals is allowed to
be strictly different from 1. So, if in a cell, there are 11.3
households or individuals, we process the decimal part as
a 0.3 fraction of a household and introduce a reweighting
in the demand model. In case the demand model cannot
process fractions a truncation or rounding process is re-
quired where the residual fractions are recirculated in the
simulation algorithm.

The micro-simulation scheme is based on the follow-
ing overall steps;

1) Extend the master table with a variable representing
the adult status of the individual. This is based on a
deterministic probability P, of being adult based on
the full set of socio-economic variables (e.g., income,
age, labour market association and more). This table
will be referred to as an “extended master table”.

2) Construction of an aggregate household table by
summing the previously generated “extended
master table” according to {z,f, ¢}, the counts
then representing the sum for each household
class.

3) Let k=1, .., Krepresent the different aggregated
household classes and N the number of households
within each class. Initialise k = 1.

4) Leti=1, ..., N represent an index over households
within each class. Initialise i = 1.

5) For {i, k} do the following;

a. Sample first adult.

b. If f< > single sample a second adult based on
the characteristics of the first adult.

c. If f=single go to 5d).

d. If ¢c=kids, (hence ¢ > 0) enter a loop where all
kids are sampled based on the household
characteristics and the characteristics of the
adults (there may be one or two).

6) While i < Nileti=i+1and go to 5). If i = N; go to 7).

7) While k< K'let k=k+ 1 and go to 4). If k= K go to 8).

8) End of sampling.

The most important stage in the simulation scheme is
Step 5. It involves several stages as illustrated in Fig. 3
below.
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Fig. 3 lllustration of main steps in the micro-simulation stage

From the matrix fitting stage the type of household
is known. Hence, for households classified as ‘singles’
the only decisions to consider in the simulation stage
is related to the number of kids and the characteris-
tics of these. For households with two adults we start
by selecting a first adult for the household. Subse-
quently, we select a partner based on a spouse-match
model (Step 5b). The probability of selecting a given
spouse depends on the income, age, labour market
association and gender of both. The conditional
“spouse matching” probability is defined on the basis
of register data, e.g.

p, (6151, islagsla lsl|5ls0; isOagSOa lso)
. P(asb is17g515 lsl y As05 is07g507 lsO)

Zﬂso,iso-gso‘lsop(aﬂ’ 151,815 ls1, ag, 150, 8505 lso)

(14)

The conditional sampling from this joint distribu-
tion takes account of the strong correlation when
matching people into households. Although the mar-
ginal distribution in (14) excludes the spatial dimen-
sion its dimensionality is very large and consists of
more than 3 million potential cells. To circumvent
the problem of sparsity, less detailed sampling
schemes are enforced depending on the “sparsity” of
a given sampling (refer to Table 9).

Another important allocation in the simulation stage
is the allocation of kids and the type of these. Whereas
the spouse-matching model were concerned with the
choice of individuals, the models for allocating kids is a
household based model. The allocation of kids (Step 5d)
involves two sequential steps. In a first stage the number
of kids c;, is sampled as a function of household income,
age, gender and labour market association of each of the
adults in the household. That is;
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Py, (ch lin, as1, 8.1, bs10505 €505 lso)
B P(cnlin, a1, €51, b150, 40+ bs0)
i g b g o P (Chlin @51, 8415 150, €0, o)
(15)

After having sampled the number of kids we sample a
type classification for each of these. This is based on
household income and age and labour market associ-
ation for the two adults as seen below.

Ph (Cg7 Ca, Cl|ih7 s, lsla307 lSO)
P(Cg7 Ca, Cl|ih7 Asi, lslas()v ZSO)

Zihﬂsl,lslﬂso-,lsop(cg’ Ca, Cl|ih7 as1, lslaS07 lsO)

(16)

The sampling of type of kids is somewhat simplified in
that we do not condition the probability of selecting one
kid with other kids. This would significantly complicate
the sampling scheme and require very large tables as in-
put data. For the same reason, the gender classification
has been excluded as well.

In the current implementation we sample from mar-
ginal tables which have been produced on the basis of
register data and constitute one of many input tables.
However, it is possible to construct any mathematical
model for the spouse matching or the sampling of kids
to be able to reflect possible future fluctuations in the
way households are formed. These external prediction
models could be modelled using time-series analysis,
however a detailed discussion of this is beyond the scope
of the paper.

Although the simulation stage solves the important al-
location problem of grouping individuals into house-
holds it introduces a potential inconsistency problem.
The final list of individuals, after joining these into
households, may not be entirely consistent with the mas-
ter table when aggregating over the different dimensions.
This is because the household simulation stage it is
based on random draws, which although consistent at
the aggregate level due to the law of large numbers may
not be entirely consistent with the targets from Tables 4,
5, 6, 7 and 8. There are different solutions to this prob-
lem. The simplest solution is to introduce a re-scaling of
individuals. It means that for a household, one person
might have a weight of e.g. 1.02 when used in the

Table 4 Target 7,420, g, a) for age, gender and municipality
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Table 5 Target 7,(z0, g, i) for age, income and municipality level

Variable Description Classes
AgelD (a) Age 10
IncomelD (i) Income 11
ZonelDO (z0) LO zone level (Municipality) 98

Val Number of individuals

demand model. In case of the Danish National Trans-
port Model, this is the approach taken and the accumu-
lated trip matrices are calculated as a weighted matrix of
trips across all households and individuals at the micro
level. In that case it is perfectly fine to have weighted
individuals.

However, if the model following the population syn-
thesis requires complete agent-based inputs, which at all
times needs to be consistent with targets, this is a sub-
stantial complication. Although there is a relative devel-
oped literature on joint hierarchical matrix fitting of
households and individuals (Muller and Axhausen, [26])
it is less clear how to ensure consistency in the
micro-simulation stage. One possible approach is to dir-
ect the micro simulation to the pool of individuals listed
from the IPF. Then join people into households without
replacement and essentially continue until the pool is
used up. However, from a computational (combinatorial)
and book-keeping point of view this is a relative cumber-
some process.

3 Application

In this section we consider the specific application of
synthesising the Danish population and focus on nota-
tion, data and provide insight with respect to model
validation.

3.1 Data and notation
The synthesis is based on Danish register data. This is
essentially a micro database for all Danish citizens with a
wide range of attributes related to demography, income,
social class, job, family structure and location. Most im-
portantly, however, the data is generally of a very high
quality as it is the basis for tax payments and income
transfers. The data are reported directly from firms and
public authorities to Statistic Denmark.

In the fitting of the master table for individuals (refer
to Table 3 below) we consider a matrix T(a, g, i, [, f, ¢, z)

level Table 6 Target 7,(z0, a, /) for age, LMA and municipality level
Variable Description Classes  Variable Description Classes
AgelD (a) Age 10 AgelD (a) Age 10
GenderlD (g) Gender 2 LMAID () LMA 8
ZonelDO (zy) LO zone level (Municipality) 98 ZonelDO (z0) LO zone level (Municipality) 98

Val Number of individuals Val Number of individuals
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Table 7 Target 7,420, a, f) for age, family structure and
municipality level

Variable Description Classes
AgelD (a) Age 10
FamlID (f) Family structure 2
ZonelDO (zo) LO zone level (Municipality) 98

Val Number of individuals

that is spanned by seven dimensions. The master table
represents the fundamental input and output format for
the IPF. When fully spanned it represents approximately
174 million matrix entries or 19,200 potential
socio-economic groups for each of the 907 zones. A
more detailed description of the variable definitions is
provided in Table 14 in Appendix 1.

The constraints for the IPF is shown in Tables 4, 5, 6,
7 and 8. Most of these operate at the municipality level
because this is the lowest level for which official demo-
graphic forecasts exists. In all, there are more than
22,000 constraints and these are cross-linked in the
sense that they share common variables. In order to ac-
count for consistency issues the ranking harmonisation
procedure as described in Section 2.1 is used.

The choice of targets is a balance between the preci-
sion of the final matrix and what variables we can actu-
ally forecast with a reasonable precision and amount of
effort. Clearly, if more dimensions and more variables
had been introduced, the final matrix would have been
more “heavily” constrained, and given that the con-
straints proved correct, the final matrix would then be
more correct. However, it is not trivial to establish
spatial forecasts for e.g. 2020 and 2030 for very detailed
variables, and the uncertainty of these forecasts is likely
to be high. As a result, we have chosen a rather simple
set of constraints in which the fundamental constraint,
T44(20, g, a) in Table 4 is provided as an official forecast.

Whereas the T,,(20,g,a) constraint can be based on
official forecasts, this is not in general the case for in-
come forecasts. Hence, if we are to predict a change in
population per income category as a result of an overall
increase in income this is non-trivial as the underlying
distribution is asymmetric and right skewed. In order to
generate future income targets micro-simulation is used.
In a first stage, we generate numerical income measures
for each individual by random sampling from the

Table 8 Target Q(2) for L2 zone level

Variable Description Classes
ZonelD2 (2) .2 zone level 907
Val Number of individuals
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income intervals of the targets. These incomes can then
be subjected to possible transformations of which a sim-
ple uniform upscaling of the average income level is the
simplest scenario. Finally, after the income vector has
been modified it is converted back to the categorical
representation of the target. In practise, it means that, as
people gets richer the frequency table representing the
income target is shifted to the right as it should.

3.2 Household simulation stage

The resampling stage where individuals are matched in
households is based on conditional sampling from tables
generated on the basis of register data. The spouse
matching table is shown below in Table 9 and further il-
lustrated in a ‘heat map’ type of plot in Fig. 4.

As commented in Section 2.3 we implement different
sampling schemes depending on the “sparseness” in the
matching. Figure 4 is intended as an illustration of the
correlation between the ages of the two adult persons in
the household. Although in reality it is a categorical grid
it is illustrated in the form of a smoothened heat-map to
illustrate the correlation density. Similar correlation pat-
terns can be plotted for income and for the labour mar-
ket association.

In addition to the sampling of the household compos-
ition, the model uses sampling as a mean to allocate kids
to households. This is conditional on the spouse match-
ing and considers both the number of kids and a classifi-
cation of which type of kid to allocate. Tables 10 and 11
represent the marginal probability tables for the sam-
pling of kids and for illustration of the correlation be-
tween the number of kids and the age of the adult
female in the household, we offer a contour type of plot
in Fig. 5.

3.3 Validation

The validation of population synthesis models is
non-trivial. It compares to the validation of model fit
for high dimensional probability distributions which is
an active research area in statistics. The challenge is
that usual norms such as root-mean-square (RMSE)
or Wasserstein metrics offers little value when evalu-
ated across many dimensions. At least it provides no
information at the level of the cells. Also, because of
the many dimensions simple illustrations of the “per-
formance” cannot be carried out. As a result, the
paper will not represent a complete validation of the
model framework but provide important validation in-
sights by focusing on two aspects: i) Uncertainty that
result from the household simulation stage and
propagate to the final output, and ii) Prediction per-
formance when evaluated at the level of zones and
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Table 9 Marginal “Spouse matching” probabilities for allocating
individuals into households

Variable Type Description

PIncomelD1 Long Integer Person gross income categories
(11 classes)

AgelD1 Integer Age categories (10 classes)

GenderlD1 Integer Gender dummy, GenderlD = 1
for male

LmalD1 Integer Labour market association variable
(8 classes)

PIncomelD2 Long Integer Personal gross income categories
(11 classes)

AgelD2 Integer Age categories (10 classes) for
spouse

GenderlD2 Integer Gender dummy for spouse,
GenderlD =1 for male

LmalD2 Integer Labour market association variable
(8 classes) for spouse

Mprob Double Probability for person “ID" having
a spouse with characteristics
given by the “SID" classification
variables

Mprob1 Double Similar as above, but with a less
detailed socio-economic
classification for person
1 (PIncomelD1 is eliminated).

Mprob2 Double Similar as above, but with a

less detailed socio-economic
classification for person 1
(PIncomelD1 and LMAID1
are eliminated).
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when considering a prediction horizon between 2010
and 2015.

The model framework is deterministic in the sense
that if we select a specific random seed for the
household simulation stage, the same population will
be replicated given the inputs are the same. However,
it is relevant to ask how sensible the final results are
with respect to this seed. In other words, how much
sampling noise is generated and propagated from the
household simulation stage to the final list of agents.
An even more important and relevant question how-
ever, is to what extent this noise will affect the final
output of the transport demand model. To analyse
this specific question the entire model framework has
been run 20 times with different seed numbers.
Hence, for each of these runs, the composition of the
households is different due to different seed numbers.
In Fig. 6 the overall percentage deviation is illustrated
for trips and mileage for 6 different transport modes.

As can be seen, the variation at the aggregated
level is small and in most cases comfortably below
0.03%. Clearly, this is the result of the “law of large
numbers” and suggests that we do not have to worry
about the sampling noise when results are aggre-
gated over many households. However, if we con-
sider more detailed outputs, noise caused by the
sampling will increase. In Tables 12 and 13 the share
of origin zones where the percentage deviation is
below certain thresholds is illustrated.

The column representing the “weighted” distribu-
tion has a better profile in that fewer entries are
above the 1% deviation. In particularly very few

2D density for spouse age matching

Age person 2
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Fig. 4 Contour plot of spouse matching age probabilities

Age person 1
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Table 10 Marginal probabilities of having a specific number of
kids in certain types of household compositions

Variable Type Description
HHIncomelD Long Integer Household gross income categories
(12 classes)
AgelD Integer Age categories (10 classes)
GenderlD Integer Gender dummy, GenderlD =1
for male
LmalD Integer Labour market association variable
(8 classes)
AgeSID Integer Age categories (10 classes)
GenderSID Integer Gender dummy, GenderlD =1
for male
LmaSID Integer Labour market association variable
(8 classes)
NChildren Integer Number of children (1,...,+5)
Cprob Real Probability for having the given

number of kids (NChildren)

“weighted entries” are above the 5% threshold.
Again, this is because of the law of large numbers as
smaller zones will have fewer agents which in turn
will drive up the relative sampling noise. From an
application point of view, what matters is the
weighted measurement of trips and mileage and the
results suggest that although sampling noise exists, it
is at a low level.

It is also relevant to compare the population syn-
thesis with observed register data. More specifically
we predict the 2015 population based on a starting
matrix form 2010 and by using correct targets for

Table 11 Marginal probabilities of having a specific type of kids
in certain types of household compositions

Variable Type Description

HHIncomelD Integer Household gross income categories
(12 classes)

AgelD Integer Age categories (10 classes)

LmalD Integer Labour market association variable
(8 classes)

AgeSID Integer Age categories (10 classes)

LmaSID Integer Labour market association variable
(8 classes)

GenderCID Integer Gender dummy, GenderlD =1
for male

AgeCID Integer Age of kid.

LmaClD Integer Labour market association variable
(8 classes)

CMprob Real Conditional probability for a child

to be of a given type given the
household characteristics

(CMprob sums to 1 over GenderCID
and LmaClID)
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2015. Hence, per assumption there are no biases in
the constraints at the municipality level. This gives
an indication of a “best-case” benchmark for the
synthesizer. Others have looked at various sensitivity
investigations when targets and the starting solu-
tions have been varied [24]. However, this in itself
involves a rather comprehensive Monte-Carlo
scheme which may not be of any particular interest
in general and is certainly outside the scope of the
present paper.

Firstly, in Fig. 7 the weighted percentage deviation
at the sub-zones level is presented. This test essen-
tially looks into how well the model recovers the
population at more detailed spatial levels (levels that
are not supported by the constraints). As can be seen,
over the 5-year period there is an average deviation
of around 3.5% which equals approximately to 0.7%
deviation per year. However, for certain zones it can
be substantially higher. The results suggest that there
is definitely variation over the years and for some
zones this variation may be substantial. This may re-
flect the development of new urban settlements not
reflected in the first-stage fitting. Not surprisingly, the
prediction error is significantly smaller per year than
has been observed in Krishnamurthy S, Kockelman
KM [21] and in McCray et al. [24]. However, these
studies considered the total observed error and also
included uncertainty in the population targets.

In Fig. 8 we add additional age groups in order to
assess the deviation at the subzone level when com-
bined with age groups. As expected, the variation gets
bigger and especially for younger generations which
are much more mobile compared to older genera-
tions. Still, the annual deviation across age groups is
in most cases below a 1% deviation per year.

While these results suggest that the synthesis
framework give rise to a sizable deviation, two im-
portant elements should be considered. First, in
Denmark most large cities are experiencing a large
inflow of people and to give room for these people
new settlement areas are continuously developed.
Some of these areas are quite large and will even for
a 5year period represent substantial relative changes
to the existing population (examples for Copenhagen
are Nordhavn and Sydhavn). These fluctuations are
not captured by the synthesis framework as these
processes happen inside the municipality. To some
extent this uncertainty can be captured in forecasts
by aligning the sub-zone population with projected
expectations at this level (this is accomplished in the
second stage IPF). Such projections typically exist
and would substantially improve the performance.
The second issue relates to the socio-dynamics of
the population over time. As an example, while for
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Number of kids
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Fig. 5 Contour plot of kids sampling probabilities
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Copenhagen there has been a general increase in
the population between 2010 and 2015 of approxi-
mately 10% the 20-29 years old have increased 17%
and kids between the age of 3 and 6 as much as
20%. Hence, predicting this socio-dynamics (which
is even more extreme at the level of detailed zones)
is quite a challenge.

4 Summary and conclusions

The paper presents the population synthesis method-
ology applied in the New Danish National Transport
Model. The methodology consists of three main stages
involving a target harmonisation stage, a matrix fitting
stage and a household simulation stage where individ-
uals from the population matrix are listed as individuals

.
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Table 12 The share of origin zones where the percentage deviation is below certain thresholds for car

% diff Car trips Car trips (weighted) Car Mileage Car Mileage (weighted)
below 1% 97.95% 99.24% 94.08% 95.45%
1-2% 1.53% 0.73% 4.78% 4.24%
2-3% 0.20% 0.03% 0.60% 0.25%
3-4% 0.06% 0.00% 0.18% 0.04%
4-5% 0.03% 0.00% 0.09% 0.02%
5-6% 0.04% 0.00% 0.05% 0.01%
6-7% 0.02% 0.00% 0.06% 0.00%
7-8% 0.02% 0.00% 0.04% 0.00%
8-9% 0.02% 0.00% 0.03% 0.00%
9-10% 0.03% 0.00% 0.01% 0.00%
10-15% 0.04% 0.00% 0.04% 0.00%
15-20% 0.01% 0.00% 0.00% 0.00%
over 20% 0.05% 0.00% 0.04% 0.00%

and grouped into households. Although the presented
model applies well known methodologies such as itera-
tive proportional fitting and micro simulation, it excels
by providing an end-to-end description of a state-
of-the-art model that covers the population synthesis for
a whole country. Moreover, the paper considers two as-
pects of population synthesis which are often not con-
sidered in the literature: i) the target harmonisation
stage and ii) the household micro-simulation stage.

The harmonisation stage, which hasn’t received
much attention in the scholarly literature, is related
to the problem of ensuring that target inputs are con-
sistent. For complex models with many potential tar-
gets it is a non-trivial problem which in specific
situations may require a separate matrix fitting stage.

The paper provides an example of this and continues
to introduce a ranking approach which applies to the
target definitions of the current model. Specific atten-
tion is also given to the household simulation stage
which is concerned with the grouping of individuals
into households. The simulation stage consists of dif-
ferent model stages, from the selection of adults
within the household, the sampling of spouse and the
sampling of kids and the type of kids. All of these
stages are is described and examples are provided to
illustrate the correlation structure in the underlying
data.

The paper provides some insight into the validation of
the model framework by; i) evaluating how sampling
noise generated in the household simulation stage

Table 13 The share of origin zones where the percentage deviation is below certain thresholds for public transport

% diff Pub trips Pub trips (weighted) Pub Mileage Pub Mileage (weighted)
below 1% 95.54% 98.81% 95.44% 97.75%
1-2% 221% 0.92% 2.55% 1.86%
2-3% 0.56% 0.14% 0.64% 0.19%
3-4% 0.31% 0.06% 0.44% 0.10%
4-5% 0.23% 0.03% 0.24% 0.04%
5-6% 0.17% 0.01% 0.19% 0.02%
6-7% 0.18% 0.01% 0.11% 0.01%
7-8% 0.12% 0.00% 0.04% 0.00%
8-9% 0.12% 0.00% 0.09% 0.01%
9-10% 0.07% 0.00% 0.03% 0.00%
10-15% 0.22% 0.01% 0.11% 0.01%
15-20% 0.13% 0.00% 0.08% 0.01%
over 20% 0.14% 0.00% 0.06% 0.00%
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Fig. 7 Weighted percentage subzone deviation of predicted population from 2010 to 2015
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Fig. 8 Weighted percentage subzone deviation of predicted population by age groups from 2010 to 2015
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propagate through the entire transport model, and ii) by
evaluating prediction performance between 2010 and
2015. The conclusion of these results are summarised
below.

— At the aggregated level, the sampling noise can almost
be neglected. This is a trivial result of laws of
large numbers.

— As results are detailed the sampling noise
increases. However, in more than 99% of cases
the percentage difference is below 1% even at the
level of zones.

— The prediction performance from 2010 to 2015
when evaluated against detailed observed zone
targets reveals a deviation of 0.7% per year. Although
this is based on correct targets at the level of
municipalities it reflect dynamics at the detailed
zone level which is particularly apparent for the
large cities.

The prediction performance can be substantially im-
proved by adding detailed zone targets to the model.
This is not investigated in the paper.

4.1 Future research
Future research seen from an applied perspective may
focus on the following directions.

— Methodologies and paradigms for model
validation of high-dimensional distributions. Part
of this should include back-casting and “forecasting”
to years for which data are available.

— The development of parametric models for
spouse matching and household composition
such that these involve spatial correlation and
kids in a joint representation. This requires the
use of dynamic models and longitude data to
capture trends in single-family households, how this
relates to urban migration and the age distribution of
children.

— Better models for targets in order to make
population synthesis models more robust to the
external forecasts.

— Models that can facilitate “reconstructions” of
the starting solution in order to circumvent the
problem of non-structural zeros.

In general, any improvement to the population syn-
thesis stage will benefit not only the prediction of the
population in itself, but all subsequent modelling
steps. This is particularly important for transport
models as local transport demand is a mirror of the
residing population.

5 Appendix 1
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5.1 Variable definitions

Table 14 Notation list

Variable Description Classes

AgelD (a) Age a=1,...,10

GenderlD (g) Gender g=1,2

IncomelD (i) Personal income i=0,...,10

LmalD () Labour market association /=1,...,8

FamiID (f) Family structure f=1,2

NumcChildID (c) Number of children c=1,...4

ZonelD2 (2) L2 zone level. z=1,

907
ZonelDO (z) LO zone level (municipality) Zp=1
98

Val Number of individuals

715420, 9, a) Target for age, gender and ZonelDO  aXx g X zy

T.i(20,a, 1) Target for age, income and ZonelDO  axix zy

Ta(20, a, ) Target for age, LMA and ZonelDO axlxzy

T.A20, a,f) Target for age, family structure and axfxz,
ZonelDO

7‘09(207 a,i) Harmonised target for age, income  aXxixzy
and ZonelDO

Tag(ZO, a,l) Harmonised target for age, LMA and  ax /X zy
ZonelDO

?09(207 a, f) Harmonised target for age, family axfxz
structure and ZonelDO

Q@) Target and control vector at the level z=1, ...,
of ZonelD2 907

H(z) New temporary target vector at the  z=1, ...,
ZonelD2 level 907

/:l(z) New temporary harmonised target z=1,..,
vector at the ZonelD2 level 907

Pey1(z i1, T,k 20,a,  Marginal probability vector for All

9) {z,i,],f, K 20,0, g}

Tk+12,20,g,a,i,1,f,  Solution at iteration k+ 1 All

o]

e Convergence criteria 1E-6

Table 15 Age classes

AgelD Description Count Probability

1 0-7 years 522,076 943

2 8-14 years 479,219 8.66

3 15-17 years 214,187 3.87

4 18-24 years 463,267 837

5 25-29 years 310,969 562

6 30-54 years 1919435 34.68

7 55-64 years 722,636 13.06

8 65-74 years 515,702 9.32

9 75-84 years 277,185 501

10 > =85 years 109,961 1.99
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Table 16 Gender classes 6 Appendix 2
GenderlD Description Count Probability ~ 6.1 Description of matrix fitting algorithm
1 Male 2,745318 4960 6.1.1 First-stage IPF
) Fernale 2789420 5040 The first-stage IPF is es.sentlally a tradlt‘lonal IPF iterated
over all four constraints to successively update the
matrix. The algorithm is presented below.
Step 1: Set k=0 and let Ti(a, g, i, L f, ¢, z) be the starting
Table 17 Children classes solution.
NumChildID Description Count Probability Step 2: Set k= k + 1 and iterate eq. (17)—(24) below.
1 0 children 2,719,295 49.13 .
i . o Tk(aag7lvlafvcaz)
2 1 Child 861,105 1556 Pria(is L f e, 2lz0,a,8) = ,
) Zi,lﬁfﬁc,zezo Tk(ﬂ,g, il f,c Z)
3 2 Children 1,279,750 23.12
4 3 Children or more 674,588 12.19 (17>

Tk+1(a>g7 i l:f7 C>Z) = Pk+1(i7 l,f,c,z|z0,a,g) qu(zo,a,g)

(18)
Table 18 Family classes

Tk+1 (ﬂ7g7 i l7f7 c, Z)

FamID Description Count Probability Piio(g, L, f,c z|z0,a,i) = -
R R Y Zg‘lf,c‘zezo Tk+1 (a7ga i lvf7 C,Z)
1 Single 998,631 18.04 i
2 Non-single 4,536,107 81.96 (19)
Tk+2(ﬂ>g7 i> lvf7 () Z) = Pk+2(g7 l7f7 c, Z|ZO7 a, l) fﬂi(Z07 a, L)
(20)
Table 19 Income classes , Tri2(a,g, il f, ¢, 2)
. — Pk+3(gyl7f7caz|z()7aal): * = 7.7
IncomelD Description Count Probability Zg,i,f,c.,zezn Tki2(a,g,i,1, f,c,2)
0 0 DKK 1,026,498 18.55 (21)
1 0-99,999 DKK 746,897 1349 ; Y. ;
Tiis(a, g, i c,z) =P i,f,c zlzo,a,l) Ty(zo,a
P 100,000-199,999 DKK 1,396,067 2599 k+3( &L, 7f7 ) ) /<+3(g7 af7 ) | 0,4, ) ﬂl( 0, &%, )
3 200,000-299,999 DKK 1,111,765 20.09 (22)
4 300,000-399,999 DKK 707,445 12.78 , Tiss(a,g, il f,c,z
Pk+4(g7 lvlaczz‘zmﬂvf) = — (T7g7 7f7' 2 )
5 400,000-499,999 DKK 278561 503 Dgitezezn Tke3(a,g, 1,1, f,c,2)
6 500,000-599,999 DKK 115,771 209 (23)
7 600,000-699,999 DKK 56,468 1.02 . ) ~
Tk+4(a7g7 2 lvf7 () Z) = Pk+4-(g7 L la ¢, Z|ZOa ﬂ7f) Tﬂf(207 ﬂ,f)
8 700,000-799,999 DKK 30,801 0.56 94
9 800,000-999,999 DKK 29,942 0.54 ( )
10 >=1,000,000 DKK 34423 062 Step 3: If 1Tk, 4(a, 8,0, Lf,¢,2) - Tiey3(a, g0, L fr ¢, 2)ll >
eVa,gilf c z go to Step2. Otherwise stop.
Note that [x-y| = \/(x—y)* and e =1E - 6. The con-
verged matrix, which will have the same form as in
Table 20 LMA classes Table 3, is referred to as T7(a, g, i, L f, ¢, 2).
LmalD Description Count Probability
1 Full-time employed 1539004 2781 6.1.2 Second-stage IPF 5 ,
, - oved (3 hweek) 384300 cou The first-stage IPF will render a vector T°(a, g, i, L f, ¢, 2),
art-time employed (32 h/week) ’ ‘ which is on the one hand consistent with the harmo-
3 Students 1271364 2297 nised targets and on the other hand replicates the struc-
4 Retired 1002847 1812 ture of the starting solution by maintaining the odds
5 Unemployed 301,015 544 ratios (Bishop et al. [8]). However, in specific contexts
5 Other people out of job 558,460 10.09 we may experience that the starting solution is too far
; Students with job 272011 403 away from ch6 true solution. This might l')e the case if
we are looking at long-term forecasts. For instance, if an
8 Self-employed 204,828 3.70

area is supposed to develop from O to 1000 persons
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during the forecast period, then the above methodology
will be problematic as it will render 0 persons due to the
structural zero in the starting solution. Even using heur-
istic methods to allow for non-empty cells will not solve
the core of the problem. A new attempt where machine
learning and deep learning is used to reconstruct start-
ing solutions from a compressed distribution reduced
the problem of empty cells [5].

In order to account for this problem, additional con-
straint is allowed, which is processed in a second-stage
fitting. The idea is that users can then adjust the pro-
jected population for specific detailed zones for which
the starting solution may be inappropriate.

The second-stage fitting can be carried out in two
ways. One option is to superimpose an additional set of
constraints at the most detailed zone level, which is then
included as a normal constraint. For zones where no ad-
justment is required Q(z) = - 1. For zones z, where
Q(z) 20, the new values of Q(z) will be used to adjust
the solution to these new targets. Hence, if Q(z)= -1
for all z, the second-stage IPF can be skipped.

Firstly, calculate (from the IPF fitted master table) a
T"(z) vector, which is simply the estimated population at
the zone level z. Hence,

T (2) = Z T"(a,g,i,l,f,c,2)

gailsk

(25)

Also, define a new temporary target vector H(z) as;
if Q(z) =-1thenH(z) = T"(z)
if Q(z)20 then H(z) = Q(z)

By introducing the new target vector H(z) it is import-
ant to realise that the harmonisation in Section 2.1 will
in principle be affected. However, the first option for the
second-stage fitting sees the zone correction as a “local
correction”, which should not overrule the general har-
monisation principles. In other words, we will not
change the overall population forecast at the municipal-
ity level as a result of the changes imposed by Q(2). So if
users of the model are adding people to a given zone z
without removing people from other zones, the model
will do this automatically to maintain the constraints at
the municipality level. This means that the Q(z) projec-
tion may not be reflected in the final solution.

The second stage of the synthesiser is completed by
calculating the harmonised equivalent of H(z) given
by H(z)

: H(z)
o) =5 H & Telewg:a)

(26)
(27)

(28)

Finally, we process the IPF by including one additional
constraint as given below.
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Tk+4(a7ga il f,c Z)
a.g,il.f.c Tk+4(a7ga iv lvf, C, Z)
(29)

P](+5(Z|g,6l7i, lvf7 C) = Z

Tk+5(ﬂ7g7 i: l7f7 c, Z) = Pk+5(z|aﬂg? i7 l7f7 C) ]:I(Z)
(30)

That is, the second-stage IPF is carried out by iterating
(17)—(24) and (29)—(30) until convergence. It is efficient
to use the starting solution from the first stage in the
second stage.

Another option which is also supported by the model
is to superimpose the Q(z) target such that it is not ad-
justed in the harmonisation stage. In this case we simply
impose the level provided by the target to the condi-
tional distribution for the population for the specific cell.
Hence

T*(a’gv i lva ¢, Z)
Za,g,i,l,f,c:lﬂ< (ﬂ,g, ia l7f7 [ Z)

T**(ﬂ7g» iv l7f7 C,Z) = Q(Z)

(31)

In this case the overall target at the level of the muni-
cipality may be violated. However the additional target
at the zone level will be matched exactly. Sometimes this
is preferable from the point of view of public authorities
if they have additional “local information” that is not
embedded in the overall constraints.
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