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Abstract

Heterogeneous mixture of vehicle types and lack of lane discipline are common characteristics of cities in the
developing countries. These conditions lead to driving manoeuvres that combine both longitudinal and lateral
movements. Modeling this driving behavior tends to be complex and cumbersome, as various phenomena, such as
multiple–leader following, should be addressed. This research attempts to simplify mixed traffic modeling by
developing a methodology, which is based on data–driven models. The methodology is applied on mixed traffic,
weak lane–discipline trajectory data, which have been collected in India. A well–known car–following model, Gipps’
model, is also applied on the same data and is used as a reference benchmark. Regarding the lateral manoeuvres, the
focus is given on identification of significant lateral changes, which could indicate a lane–changing situation. Methods
that allow monitoring structural changes in regression models could be used for this purpose. The ability of capturing
lane changes is explored. A typical example is illustrated and further discussion is motivated.
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Introduction
Traffic simulation models have been typically formulated
for lane–based conditions and European traffic. However,
simulation ofmixed traffic flow in weak lane based hetero-
geneous conditions poses additional challenges. In recent
years, there has been an increasing interest in modeling
driving behavior in developing countries where condi-
tions, such as non-lane discipline and heterogeneity in
vehicle types, prevail. Wong et al. [1] have explored traf-
fic characteristics of mixed traffic flows in urban arterials
and have focused onmotorcycles, the proportion of which
is high in Asian countries. Traffic flow in the developing
countries is very complex in nature and safety issues arise.
Due to the lack of lane discipline, it is difficult to iden-

tify leader–follower pairs and to decide if a car–following
or a lane changing model should be applied. This research
aims to provide some more input into this ongoing active
research field. Car–following and lane–changing mod-
els describe the longitudinal and lateral movements of
drivers. However, these two behavioral models may not be
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able to describe the integrated driving behavior indepen-
dently [2]. Lateral interactions take place along with lon-
gitudinal interactions in mixed traffic conditions. There
have been many attempts to model these behaviors sepa-
rately. Some of these attempts found in the literature are
described in the next section.
This research was motivated by several considerations.

Car–following models, which replicate the behavior of a
driver following another vehicle, are widely used in the
deployment of traffic simulation models. However, only
fewer studies have focused on mixed traffic conditions.
Due to the complex driver behavior and vehicular inter-
actions and manoeuvers it is difficult to model the traffic
flow through analytical methods [3]. Modeling driving
behavior in mixed traffic streams is still a challenge.
Heterogeneous mixture of vehicle types and violation of
lane regulations are common characteristics in cities in
developing countries. These characteristics are difficult to
be simulated using conventional microscopic models. In
cases of car-following situations, there is difficulty in the
determination of leader–follower pairs due to multiple–
leader following. Furthermore, in cases of lane changing
situations there is difficulty in the determination of lanes,
as drivers do not obey the real lane marks. To over-
come some of the associated limitations, in this research a
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methodology is proposed using temporary virtual lanes in
order to capture heterogeneity in vehicle width and speed.
The existing approaches for mixed traffic conditions do

not adapt dynamically to the current conditions. Lanes,
strips or cells with a predefined width [2, 4], which are
used to simulate mixed traffic, do not ensure that the
appropriate width has been selected, as half vehicle or two
vehicles may fit into this width. Heterogeneity in vehicle
types lead to various widths of virtual lanes and various
speeds. On the other hand, temporary virtual lanes allow
only one vehicle to fit in each lane.
The main objectives of this research are:

– to explore the feasibility of modeling mixed traffic
conditions using data–driven models

– to compare the performance of data–driven models
versus conventional models, in particular Gipps
model

– to estimate model efficiency considering the
difference in following behavior across different
vehicle pairs

– to introduce the concept of temporary virtual lanes
based on identification of significant lateral changes.

An integrated methodology is developed for modeling
mixed traffic conditions. The focus is given on data–
driven car–following models and the identification of
significant lateral positions that may be indicative of the
traffic situation of a vehicle (car-following, lane-changing
or free flow). In the case study, a data–driven model has
been used for speed estimation using mixed traffic tra-
jectory data from India. Then, lateral manoeuvres are
investigated using an algorithm for identification of struc-
tural changes in data. Finally, issues for further analysis
and future prospects are discussed.

Literature review
Asaithambi et al. [5] have reviewed driver behavior mod-
els under mixed traffic conditions and have pointed out
limitations of current models, arguing that the main lim-
itation is that they do not explicitly consider the wider
range of situations that drivers in mixed traffic face.
Munigety and Mathew [2] have identified that due to
weak lane discipline, drivers maneuvering in mixed traffic
streams exhibit some peculiar patterns such as maintain-
ing shorter headways, swerving, and filtering. They have
also proposed that the lane should be divided into small
strips in order to handle virtual lane movements. Li et al.
[6] have proposed a car–following model that considers
the effect of two–sided lateral gaps and they have shown
that their model has larger stable region compared to a
car–following model that captures the impacts from the
lateral gap on only one side. In addition, Parsuvanathan
[7] used proxy lanes between the main lanes.

It is assumed that free space is perceived as lanes by
small vehicles. However, distribution and types of vehicles
could affect the width of the lanes. A grid–basedmodeling
approach akin to cellular automata [8] and a strip-based
modelling method [4] have also been proposed. Mathew
et al. [4] have based their idea on portions of traffic queues
instead of regular main lane queues. Kanagaraj et al. [3]
have evaluated the performance of different car follow-
ing models under mixed traffic conditions. However, they
have not taken into account the fact that a vehicle may not
be exactly in line with its leading vehicle due to weak lane
discipline in mixed traffic. Metkari et al. [9] have modi-
fied an existing car–following model in order to take into
account lateral movements and include mixed traffic con-
ditions. Choudhury and Islam [10] have developed a latent
leader acceleration model.
Maurya [11] developed comprehensive driver behav-

ior model which considers concurrently both longitudinal
and lateral interaction with roadway and traffic features.
Chunchu et al. [12] analyzed vehicle composition, lat-
eral distribution of vehicles, lateral gaps and longitudinal
gaps, in mixed traffic stream. Lan and Chang [13] used
General Motors model to simulate the motorcycle’s fol-
lowing behaviors in two cases: (1) only one leading vehi-
cle in front; (2) two or more leading vehicles in front
and neighboring–front (including left-front, right–front
or both). The present research attempts to cover more
cases. The problem of dealing with non–lane discipline
conditions has been treated either by splitting lanes into
small strips [4] or small cells using cellular automata
model [14]. Furthermore, a veering angle and a path
selection have been used to update the lateral position
[15, 16]. Social Force models and friction forces [17]
have also been proposed. Considering the existing liter-
ature review, the concept of temporary virtual lanes is
innovative and flexible enough to adapt to mixed traffic
conditions.

Methodology
In this section, a methodology is developed for simu-
lation of mixed traffic conditions. Mixed traffic flow is
considered when speed differential among different types
of vehicles is quite substantial and the desired number of
overtaking increases with limited opportunities to over-
take [18]. Mehar et al. [19] define as mixed traffic condi-
tions when there are several categories of vehicles sharing
andmoving on same carriageway width without any phys-
ical segregation between motorized and non-motorized
vehicles, and without proper lane discipline. Due to the
wide variations in physical dimensions and speeds of var-
ious vehicles, it is difficult to impose lane discipline. The
vehicles occupy any available lateral position on the road
space, while the small vehicles, such as motor cycles often
utilize gaps between larger vehicles in the traffic stream.
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In mixed traffic flow, there are different combinations of
vehicles for leader-follower pairs [3].
This study focuses on heterogeneity of vehicle width by

considering temporary virtual lanes with different width.
On the other hand, heterogeneity of vehicle speed is also
critical and is considered by using data–driven models
that use as input speeds. For example, three wheeler pas-
senger vehicles and goods vehicles are having almost sim-
ilar width in shape, but their speeds and driver behavior
could be completely different.

Virtual lanes and leader–follower pair identification
Determination of virtual lanes
A typical example of modification of virtual lane change is
illustrated in Fig. 1. In this figure, there are two vehicles.
The first vehicle follows the virtual lane i. While there are
small lateral movements, it is considered that it does not
change lane. However, when its movement is constrained
by the hatched vehicle at the breakpoint, it is considered
that it changes lane and then follows virtual lane i + 1.
The challenge is that vehicles are moving constantly lat-
erally. This could be addressed in two distinct ways. The
first one is to estimate the threshold that indicates a lane
change. The second one is using change detection algo-
rithms. In this research the focus is given on the second
approach, namely on identifying significant changes in lat-
eral positions, so as the appropriate microscopic model to
be applied. Algorithms that are capable of finding major
changes in data sequence could be used.
Heterogeneity in vehicle types implies various widths

of vehicles and thus various widths of virtual lanes. The
width of a temporary virtual lane W could be estimated
by Eq. 1, if no significant lateral changes and breakpoints
are identified. The estimation of temporary virtual lanes is
also illustrated in Fig. 2.

W =max(xt , xt+1 + · · · + xt+n)−
min(xt , xt+1 + · · · + xt+n) + wv

(1)

where xt is the position of the center of the vehicle, mea-
sured from the left–most side of the roadway for each time
instant t+i and wv is the width of the vehicle.

The estimation procedure of virtual lane width takes
place between two consecutive breakpoints. The same
procedure could be applied in all types of urban carriage-
ways. However, the sensitivity of the algorithm, which
identifies major changes in data sequence, should be
set to adapt conditions of the respective road network.
For instance, on a highway, larger lateral movements are
expected to imply a lane change manoeuvre.

Identification of leader–follower vehicles
The probability of a given front vehicle to be the govern-
ing leader depends on the type of the lead vehicle and the
extent of lateral overlap with the following vehicle [10].
In order to apply a microscopic model, it should be

determined whether there is a vehicle pair of follower–
leader. The main characteristic of mixed traffic is that the
size of overlap between the leader and the follower varies.
Assuming that the lateral and longitudinal coordinates of
the front center of each vehicle (xci , xci ) are known, it could
be defined which vehicle follows the other. The coordi-
nates for the left and the right lateral bound of each vehicle
are estimated per time instant t by Eqs. 2 and 3 (as shown
in Fig. 3a).

xli(t) = xci(t) − wi
2

− si(t) (2)

xri(t) = xci(t) + wi
2

+ si(t) (3)

where i: 0,1,2,n vehicle index xci : lateral coordinate of the
front center of vehicle i, xli : lateral coordinate of the front
left bound of vehicle i, xri : lateral coordinate of the front
right bound of vehicle i, wi: width of vehicle i si: a lateral
safety distance for vehicle i.
In order to define the car–following vehicle pairs, the

longitudinal position of the leader should be in front of the
following vehicle and in a distance L that could influence
the movement of the following vehicle (Eq. 4). In addition,
a part of the front side of a vehicle should overlap a part of
the front side of another vehicle (Eq. 5). This overlap is evi-
dent in Fig. 3b with light blue color. Each vehicle i is con-
sidered as follower and then a leader vehicle is required

Fig. 1 Virtual lanes definition
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Fig. 2 Estimation of virtual lane width

to fulfill the conditions, described by Eqs. 4 and 5,
at the same instant t:

yfollower(t) ≤ yleader(t) ≤ yfollower(t) + L (4)

xlfollower (t) ≤ xrleader (t)

xlleader (t) ≤ xrfollower (t)
(5)

A scenario with two leaders and one follower case is also
possible. For instance, a bus could be the follower and a
part of its front side may overlap with two leaders such as
two motorcycles or a small vehicle and a motorcycle. In
this case the closest vehicle according to the direction of
movement is chosen as the most critical leader [20]. If no
vehicles are identified as leaders, then the driving situation
of the vehicle is free flow.

Operationalization process
It is assumed that all vehicles are moving without lane
discipline. In order to simplify this traffic situation, tem-
porary virtual lanes for each vehicle are defined. The
methodology is based on the idea that each driver follows
his own temporary virtual traffic lane until his lane over-

laps with the virtual lane of another driver and thus
he is forced to modify it. The proposed methodological
approach is outlined in Fig. 4. Longitudinal and lateral
positions are recorded per time instant and saved in a
database. Then significant lateral changes are identified
using appropriate algorithms that allow monitoring struc-
tural changes in linear regression models. If no significant
lateral change is identified then lateral information is used
for determination of a temporary virtual lane and then
a car-following model or a free flow model is applied if
at least one preceding vehicle is identified or not respec-
tively. For identification of the front vehicle more details
are provided in the next subsection. On the other hand, if a
breakpoint is observed in data sequence, namely if signif-
icant lateral changes are identified, then a lane-changing
situation is indicated and the virtual lane needs to bemod-
ified. A lane–changing model should be applied for time
tL, time of lane–changing duration. Then the process is
iterated for the following time instants.

Data–driven modeling
The process for data–driven model development is out-
lined in Fig. 5. The approach includes two parts: training
and application. First the required explanatory variables

(a) (b)
Fig. 3 a Estimation of coordinates, b Overlap of vehicle trajectories
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Fig. 4 Overall methodological approach

of the model are determined and the appropriate surveil-
lance data are collected. In the training step traffic models
are estimated according to the available surveillance data
using a flexible regression technique, while in the applica-
tion step the fitted model is applied to provide predictions
using new observations.
Estimation has been achieved without assuming any

predefined functional form; instead a flexible regression
method. Various machine learning techniques could be
used in this context. Other data–driven methods, includ-
ing neural networks [21], Gaussian processes [22] and
Kernel methods offering similar capabilities, have also
been used in applications [23]. In this research locally
weighted regression has been used, as it comprises much
of the simplicity of linear least squares regression with the
flexibility of nonlinear regression.
Locally weighted regression (loess) could be considered

as a generalization of the k–nearest neighbor method

[24]. It was firstly introduced by Cleveland [25] and the
following analysis is based on [26].
Locally weighted regression yi = g(xi) + εi, where

i = 1,. . . , n index of observations, g is the regression func-
tion and εi are residual errors, provides an estimate g(x) of
each regression surface at any value x in the d-dimensional
space of the independent variables. Correlations between
observations of the response variable yi and the vector
with the observations d-tuples xi of d predictor variables
are identified. Local regression provides an estimation of
function g(x) near x = x0 according to its value in a partic-
ular parametric class. This estimation could be achieved
by adapting a regression surface to the data points within
a neighborhood of the point x0, which is bounded by a
smoothing parameter: span. The span determines the per-
centage of data that are considered for each local fit and
hence the smoothness of the estimated surface is influ-
enced [27]. The span ranges from 0 (wavy curve) to 1
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Fig. 5 Data–driven modeling

(smooth curve). Each local regression uses either a first
or a second degree polynomial that it is specified by the
value of the “degree” parameter of the method (degree=1
or degree=2).
The data are weighted according to their distance from

the center of neighborhood x, therefore a distance and a
weight function are required. As a distance function p,
Euclidean distance could be used for a single independent
variable; otherwise, for the multiple regression case, any
variable should be evaluated on a scale before applying a
standard distance function [28]. A weight function defines
the size of influence on fit for each data point taking for
granted that nearby points have higher influence than the
most distant. Therefore the weight function calculates the
distances between each point and the estimation point
and higher values in a scale from 0 to 1 are set for the
nearest observations. A weight function should meet the
requirements determined by Cleveland [25] and the most
common one is the tri–cube function:

W (u) =
{ (

1 − u3
)3 , 0 ≤ u ≤ 1

0, otherwise
(6)

The weight of each observation (yi, xi) is defined as
following:

wi(x) = W [ p(x, xi)/d(x)] =
(
1 −

(
xi − x
d(x)

)3
)3

(7)

where d(x) is the distance of the most distant predictor
value within the area of influence. In the loess method,
weighted least squares are used so as linear or quadratic
functions of the independent variables could be fitted at

the centers of neighborhoods [25]. The objective function
that should be minimized is:

n∑
n=1

wi · ε2i (8)

Evaluation
The performance of the models presented in this paper
is evaluated using the normalized root mean square error
RMSN [29]. The RMSN assesses the overall error and
performance of each method estimating the difference
between the observed values Yobs

n and their simulated
counterparts Ysim

n . It is calculated from the following
equation:

RMSN =
√
N · ∑N

n=1
(
Ysim
n − Ynobs

)2
∑N

n=1 Yobs
n

(9)

Case study set–up
Data collection
In order to evaluate the feasibility of the methodological
framework on mixed traffic trajectory data, data collected
in India were used [30]. The video data were collected on
a six-lane separated urban arterial road at the Maraimalai
Adigalar Bridge in Saidapet, Chennai, India. The section
was on a bridge, which ensured that the road geometry
was uniform and that there were no nearby intersec-
tions, bus stops, parked vehicles, or other side factors
that could affect drivers’ behavior. Furthermore, there was
no interaction between the vehicle traffic and pedestri-
ans, because the pedestrian walkway is segregated by a
barrier. A detailed description of the data could be found
in [30]. The data are presented in two parts- two excel files
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for the data collected in the periods 2:45–3:00 PM and
3:00–3:15 PM, on February 13, 2014. Each excel sheet
contains columns of variables, such as time, vehicle type,
length and width, longitudinal position, speed, accelera-
tion and lateral position, speed, acceleration. Longitudinal
position is the position of the front of the vehicle, mea-
sured from the upstream end of the section, while lateral
position is the position of the center of the vehicle, mea-
sured from the left-most side of the roadway. The tra-
jectory data are available at the address http://toledo.net.
technion.ac.il/downloads/.

Data processing
First, data were organized in ascending order of vehicle
ID, so as the trajectory of each vehicle to be continuous
and observations of other vehicles not to interfere. Then,
only observations appropriate for microscopic analysis are
selected (flag=0). As coordinates of the front center of
each, longitudinal and lateral positions are used. Regard-
ing the considered speed for each vehicle, the resultant
speed is estimated by Eq. 10.

vi(t) =
√
vlongi2 + vlati2 (10)

where vi: resultant speed of vehicle i, vlongi : longitudinal
speed of vehicle i and vlati : lateral speed of vehicle i.
In addition, a new column is added which includes

the observed speed for the next time instant, namely the
speed that should be predicted for each observation. Actu-
ally this is the speed that corresponds to time t + 0.5 s and
to the same vehicle ID. If there is no observation for this
vehicle and for the next time instant, NA is given. After-
wards, rows with NA in this column are omitted, as there
is no observed speed to compare with the estimated one
by the proposed methodology.
Due to the nature of mixed traffic data, the next step

was to define the car–following sequence, namely which
vehicle is in front of the other. [30] have identified that
in 45% of the observations the overlap between the leader
and the follower is less than half the follower width. The
methodology described in section was adopted for the
identification of the front vehicle. Observations that cor-
respond to vehicles with no leading vehicle were excluded.
As lateral safety distance, s = 0.20 m is considered
for each vehicle on both sides. As distance L in Eq. 4,
L = 200 m is considered. If no vehicles are identified
as leaders, then these observations are omitted, as they
do not correspond to car-following state.The same proce-
dure was also used with the validation on dataset data300.
Finally, dataset “data245” includes 47036 observations cor-
responding to 1511 vehicle pairs and dataset “data300”
45982 observations corresponding to 1488 vehicle pairs.

Estimation of conventional models
There are several traffic micro-simulation packages, such
as AIMSUN, PARAMICS, TransModeler and VISSIM,
that could be used as a reference benchmark in terms of
conventional models. AIMSUN utilizes a safety distance
car-following model, the Gipps model, while PARAMICS
uses the Fritzsche car–following model [31] and VISSIM
is based on a psychophysical model. Mehar et al. [19]
found that the VISSIM in its original form is not able to
simulate mixed traffic conditions that prevail on Indian
highways and proposed a method for model calibration
appropriate for mixed traffic. A few modifications to the
default behavioral parameters of VISSIM are required to
effectively simulate Indian mixed traffic conditions [32].
Several studies have also demonstrated the use of VIS-
SIM in simulating mixed traffic in different countries
[33, 34]. On the other hand, VISSIM model contains the
largest number of parameters which are also not easily
interpreted to familiar driving factors such as the desired
speed. The Fritzsche model of Paramics is similar to VIS-
SIM model and includes the same number of parameters.
However, AIMSUN is themodel with the smallest number
of parameters and the most interpretable ones, allowing
the best possible results with less calibration work [35].
In addition, Kanagaraj et al. [3] evaluated four different
car following models, in particular Gipps Model, Intel-
ligent Driver Model (IDM), Krauss Model and Das and
Asundi Model, under mixed traffic conditions and have
shown that Gippsmodel is able to replicate the field condi-
tions better than othermodels in non-steady state. Among
the aforementioned models, Gipps’ model [36], which is
used in AIMSUN, is considered for this case study. More
traffic simulation models should be also tested as future
prospect.
The Gipps model is used as reference in order to

monitor and evaluate the effectiveness of the proposed
method. This model requires as input the same data
as the proposed method and thus a direct comparison
would be feasible. First, a calibration of model parame-
ters is required. There are six parameters in this model
that have to be calibrated. The apparent reaction time is
considered as 0.5 s and for calibration of the rest of param-
eters an optimization process is implemented. Dataset
“data245” was used for calibration and “data300” for val-
idation. The calibration process was performed within
the R software for statistical computing [37]. In particu-
lar, the Improved Stochastic Ranking Evolution Strategy
(ISRES) algorithmwas used, which is included in the pack-
age “nloptr” [38] and is appropriate for nonlinearly con-
strained global optimization. This method is implemented
in a simple way and supports arbitrary nonlinear inequal-
ity and equality constraints in addition to the bound con-
straints. In addition, it incorporates heuristics to escape
local optima. The objective function that was minimized

http://toledo.net.technion.ac.il/downloads/
http://toledo.net.technion.ac.il/downloads/
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is the RMSN between the observed and simulated values
of speeds:

RMSN
(
vobsfollower , v

sim
follower

)
(11)

Bounds and initial values for model parameters have
been defined in a previous work [39] and are shown in
Table 2. These initial values have been defined as opti-
mal values for data with lane discipline by algorithm
ISRES in that research. Thus, it is expected that there
will be a differentiation in optimal values due to dif-
ferent nature of data. Three samples of 5000 observa-
tions were selected randomly from dataset “data245”. The
amount of observations used in each sample are summa-
rized in Table 1 per vehicle type. A representative amount
for each vehicle type is included in each sample. The
optimization process was implemented for each sample
separately and the results are presented in Table 2. For
these samples the optimization process has converged to
the optimal set of parameters after approximately 10,000
iterations. Using novel stochastic simulation and opti-
mization approaches (such as using quasi–random Sobol
sequences [40], instead of pseudo-random numbers) can
reduce the required number of iterations and thus the
overall computational burden [41].
For all samples similar parameter values have been pro-

duced and thus the optimization process for the whole
dataset is considered unnecessary. Instead, the mean of
the three optimized sets of parameters is selected and
is presented in the last column of Table 2. Furthermore,
the authors explored the impact of different initial values
and the algorithm converged to the same solution, sug-
gesting robustness of the optimization process. Looking
into initial values that were appropriate for traffic under
normal conditions and values optimized for mixed traffic
conditions, the main difference is observed in maximum
braking b that the driver of vehicle wishes to apply in order
to avoid a crash. This could be attributed to the fact that
more abrupt driving is observed in a mixed traffic envi-
ronment. The minimum value of the objective function,
namely the RMSN that was achieved with these optimal

Table 1 Observations per vehicle type used for calibration of
each data sample

a/a Vehicle type Sample 1 Sample 2 Sample 3

1 Motorcycle 2665 2701 2626

2 Car 1347 1292 1347

3 Bus 145 156 156

4 Truck 41 29 15

5 Light commercial vehicle 56 59 78

6 Auto–rickshaw 746 763 778

values of parameters was 21%. Then, the calibrated model
is validated on dataset “data300” and RMSN is estimated
between observed and predicted speed per time instant.
The results are shown in Fig. 6 and a comparison with the
proposed method is feasible.

Application of data–drivenmodels
In this research the explanatory variables per each time
instant t have been considered as independent predictor
variables for the estimation of the response variable (for
instance speed) for the next time instant (t+τ ), where τ is
the apparent reaction time. Estimation is achieved with-
out assuming any predefined functional form; instead a
flexible regression method can be used. The next step is
the fitting of the proposed methodology for car–following
situations using data–driven models. The problem to be
addressed is the speed estimation of each vehicle, when
the available data include its speed, the speed of the pre-
ceding vehicle and the distance between the two vehicles
(in the previous time instant). Locally weighted regression
could be used for the application. In the training step the
flexible car-following model is fitted or calibrated on the
surveillance data and validated on the other dataset.

Exploration of data–driven car–followingmodels
The proposedmethod identifies the relationships between
predictor variables vleader(t), vfollower(t), the distance
D(t) between the two vehicles and the response data
vfollower(t+τ), where τ=0.5 s. After the relevant pattern
from “data245” data series has been identified, the pro-
posed method is applied to “data300” data series. It
requires the input data (vleader(t), vfollower(t) and distance
D(t)) and exports the estimated vfollower(t + 0.5). The
RMSN values have been estimated per time instant t
in order to compare predicted and observed speed val-
ues and estimate the performance of this methodological
approach. The validation results are presented in Figs. 6,
7, 8 and 9.
In Fig. 6, the proposed method outperforms Gipps’

model and produces a more reliable speed prediction. The
estimated RMSN for dataset “data300” is 0.19 using the
Gipps’ model and 0.12 using the loess model. The flexible
model outperforms the conventional model and produces
a more reliable speed prediction.
In Figs. 7 and 8, an analysis of the results per vehicle type

is attempted. Figure 7 shows the Empirical Cumulative
Distribution Function (ECDF) of RMSN per vehicle type.
The best performance of loess method is achieved for
cars and light commercial vehicles, while higher RMSN
are observed for other vehicle types, especially for trucks
and auto–rickshaws. In Fig. 8 ECDF of RMSN are out-
lined per vehicle type of the leader when the follower is a
car. Vehicles pairs car– car and motorcycle–car (leader–
follower) have almost 80% of RMSN values lower than
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Table 2 Initial values, bounds and optimization results for Gipps’ parameter values

Parameters Initial values Constraints Opt. values Mean values

Min Max Sample 1 Sample 2 Sample 3

α 0.8 0.8 -2.6 0.81 0.82 0.82 0.82

b -3.2 -5.2 -1.6 -5.18 -5.17 -5.08 -5.14

V 14.4 10.4 29.6 10.45 10.44 10.44 10.44

s 5.9 5.6 7.5 5.62 5.60 5.60 5.61

b -3.1 -4.5 -3.0 -3.01 -3.01 -3.00 -3.01

RMSN - - - 0.21 0.22 0.21 -

0.1. The curve of vehicle pair truck–car corresponds to
higher RMSN than the other vehicle pairs. It is evi-
dent that vehicle type plays a significant role in driving
behavior.
Finally, in Fig. 9 observed speeds are plotted versus pre-

dicted speeds per vehicle type. Linearity is evident for all
vehicle types.

Identification of virtual lane changes
Models developed for lane-based traffic conditions may
not be appropriate to simulate traffic situations in devel-
oping countries, where weak lane discipline is often
observed. Traffic in the developing world is so heteroge-
neous that often lane-based models cannot be realistic.
To overcome some of the associated limitations, in this
research a methodology is proposed using temporary vir-
tual lanes. An algorithm for the identification of signifi-
cant lateral changes has been applied and the feasibility of
the method has been explored.

Breakpoints
In order to identify structural changes in sequence of
lateral positions, ’strucchange’ package [42] was used in
R statistical software [43]. This package is appropriate
for testing, monitoring and dating structural changes in
regression models. Breakpoints are marked in positions
with significant lateral changes.

Results
The analysis is implemented using a few vehicles of the
available datasets. It is mentioned that these vehicles are
cars and their trajectories are extracted from dataset col-
lected in the period 2:45–3:00 PM. In particular, the
vehicle 109 is used for the first example. The optimal num-
ber of breakpoints is defined by the associated residual
sum of squares (RSS) and Bayesian information criterion
(BIC), as presented in Fig. 10a. Two breakpoints have been
computed as the optimal breakpoints. To justify further
the findings, F-statistics are estimated for the subject

Fig. 6 Histograms of RMSN using loess method and Gipps’ model for dataset “data300”
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Fig. 7 ECDF of RMSN per vehicle type for dataset “data300”

example and are plotted in Fig. 10b. The position of two
breakpoints and the optimal segmentation of the data are
indicated. It seems that identification of lane–changing
manoeuvres is feasible. As it is observed in Fig. 10c,
changes in lateral positions are small. This is attributed
to the small vehicle size and small overlaps between the
leader and the follower. Another example with vehicle 848
is also illustrated.
As far as vehicle 848 is concerned, breakpoints that

are estimated by the algorithm are presented in Fig. 11.
In Fig. 11c, the first breakpoint corresponds to a greater
lateral movement than the second one.

Conclusions and future prospects
Models developed for lane–based traffic conditions may
not be appropriate to simulate traffic situations in
developing countries, where weak lane discipline is often

observed. Traffic in such conditions is so heterogeneous
that often lane–based models cannot be realistic. To over-
come these limitations, in this research a methodology is
proposed based on data–driven models and using tempo-
rary virtual lanes. An algorithm for the identification of
significant lateral changes has been applied and the feasi-
bility of the method has been explored. In this research,
the algorithm has identified all the breakpoints on the
available data without constraints. However, the sensitiv-
ity of the algorithm could be further explored by setting
a minimal segment size either given as fraction relative to
the sample size or as an integer giving the minimal num-
ber of observations in each segment. The use of other
algorithms, such as ’segmented’ package [44] and ’change-
point’ [45], should be also checked for the same purpose.
A method for estimation of virtual lane width has been
also described.
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Fig. 8 ECDF of RMSN per vehicle type of the preceding vehicle when the follower is a car (dataset “data300”)
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Fig. 9 Linearity assumption per vehicle type

(a) (b)

(c)
Fig. 10 a Optimal number of breakpoints using BIC and RSS for vehicle 109, b Breakpoints indicated by F-statistics for vehicle 109, c Lateral positions
and breakpoints for vehicle 109
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(a) (b)

(c)
Fig. 11 a Optimal number of breakpoints using BIC and RSS for vehicle 848, b Breakpoints indicated by F-statistics for vehicle 848, c Lateral positions
and breakpoints for vehicle 848

Data driven approaches could be a promising tool for
modeling mixed traffic. They lead to flexible car-following
models and thus to more robust and reliable represen-
tation of driving behavior. This simple methodological
approach outperforms the reference (Gipps’) model for
the available data. For the available data, speed predic-
tion with RMSN 12% is achieved using loess method,
while 19% using Gipps model. Data-driven estimation
techniques are designed to address cases in which the
traditional approaches do not perform well or cannot be
effectively applied without including undue labor. Fur-
thermore, the findings have interesting implications for
the role of vehicle type. More specifically, vehicles pairs
car– car and motorcycle–car (leader– follower) have
almost 80% of RMSN values lower than 0.1, while the
curve of vehicle pair truck–car corresponds to higher
RMSN. Regarding the identification of lane–changing
manoeuvres, breakpoints are marked in positions with
significant lateral changes for few trajectories and seem
to correspond to lane changing manoeuvres. However,
further experimental analysis is required.
This research has highlighted the difficulties in mod-

eling mixed traffic conditions and has explored the fea-
sibility of data–driven models versus Gipps model in

this context. Different vehicle pairs resulted in different
model efficiency, showing the need for vehicle–dependent
models. Finally, this research contributed to the intro-
duction of an alternative method for setting temporary
virtual lanes under mixed traffic conditions. As the pro-
posed methodology is data–driven, its transferability is
feasible to any another section/ corridor or city in India
and other developing countries. Furthermore, the pro-
posed methodology is also useful for urban road networks
without strict compliance to road traffic lanes, observed
mainly in South European countries. More specifically,
in Europe motorcycles and sometimes bicycles share the
same road space with cars and tend to move through the
lateral gaps. However, the appropriate input data should
be used to fit the model for each case. It is suggested
that training data come from similar network and traffic
conditions with the explanatory data.
As future prospects, swarm–like models and crowd

simulation models could also be considered for model-
ing mixed traffic and weak–lane discipline conditions.
In addition, the proposed methodology allows incorpo-
ration of further variables moving towards an integrated
solution for the simulation of mixed traffic. For instance,
vehicle–dependent models need to be developed in case
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of heterogeneous traffic, as the drivers of vehicles with
unequal dimensions tend to have different driving behav-
iors; furthermore, different vehicle types are characterized
by varying vehicle kinematics. Thus, it is foreseen that
further exploration into this could open up opportunities
to understand and simulate driving behavior in non–lane
discipline conditions with heterogeneity of vehicle types.
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