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Abstract

Purpose: The purpose of this paper is to examine the impact of distance on choosing between intermodal rail-
road and unimodal road transport and to examine the hypothesis that distance is an important factor influencing
the mode choice in freight transport.

Methods: In order to make comparisons between the two options, the ideas and elements of the analytical
transport system modelling found in the literature are used. The calculation of break-even distances is based on a
Monte Carlo simulation that takes randomly generated shipper and consignee locations in two separated market
areas, independently of a certain transport corridor, into account.

Results: The results confirm the importance of distance for the mode choice and show there is not only one but in
fact many break-even distances between the two options. They vary considerably depending on different travel
plans, and the transport infrastructure conditions.

Conclusions: Despite assumptions inevitable in such general analysis, the results show that intermodal transport
can provide a competitive alternative to unimodal road transport, even over relatively very short distances if the
drayage costs are not too high. We believe the paper can help improve understanding of competitiveness in the
freight transport sector and may also be useful for policy- and other decision-makers to better evaluate the
opportunities and competitiveness of intermodal rail-road transport.
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1 Introduction
The ever-increasing use of road freight transport brings a
variety of negative, external effects such as congestion, pol-
lution, and accidents [1]. Becoming aware of the growing
freight transport volumes and ever more congested roads,
the European Commission [2] suggested a shift from road
transport to other, more sustainable transport modes in
order to reduce the transport sector’s environmental im-
pact. As the European Commission [2] noted, 30% of road
freight transported over 300 km could be shifted to other
modes like rail or waterborne transport by 2030, and more
than 50% by 2050, facilitated by efficient and green freight
corridors [3]. Some researches, such as Rutten [4], state that
all road transport over distances exceeding 100 km is basic-
ally suitable for shifting over to intermodal transport on the
condition that, with respect to the goods considered, the

intermodal, also known as multimodal, transport’s quality
and service is comparable to or better than that provided
by road haulage. This means the additional costs and time
incurred by drayage as well as transshipments must be off-
set during the rail haul by the lower costs and higher speed
of rail over road [5]. Irrespective of this, intermodal
rail-road transport seems to be the most realistic alternative
for reducing the dominance of road transport and helping
make the transport system more sustainable.
Intermodal freight transport is a term for describing the

movement of goods using one and the same loading unit
or vehicle which employs successive and different modes
of transport (road, rail, water) without any handling of the
goods themselves during transfers between modes [6]. In
the intermodal rail-road mode, road transport is used to
collect and distribute freight, while rail is also harnessed
for the long-haul or terminal-to-terminal trip. Freight for-
warders offer consolidation and multimodal services, ex-
pertise in trade transactions and influence transport mode
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selection [7]. Significant for intermodal transport is the
point-to-point bundling concept that implies that all load
units placed on a train at the terminal of origin have the
same destination terminal and that only intermodal trans-
port and loading units (containers, swap bodies, and semi-
trailers) are used. To promote the intermodal transport,
the rail terminals at both ends can be facilitated by con-
solidation centers [8]. Intermodal transport takes advan-
tage of the combination of rail and road and consists of
drayage in the market area of origin, rail haul in the
long-haul part of the transport chain, and drayage in the
market area of the destination.
On the other side, unimodal road transport is trans-

port carried out exclusively by trucks. It is assumed that
trucks are loaded with load units at a single collection
area and destined for a single distribution area. The
whole transport from door to door is carried out by the
same truck and no transshipment is needed. Unimodal
road transport entails the collection of cargo in the ori-
gin area, transport from the origin to destination area,
and distribution of the cargo in the destination area.
Several studies specifically deal with the choice between

intermodal and unimodal road transport, yet the results
are often based on selected geographical corridors and are
inappropriate for generally estimating the competitiveness
of intermodal transport. Tsamboulas & Kapros [9] identi-
fied three decision patterns regarding the mode-choice de-
cision. The first group comprises already intensive users
of intermodal transport, who decide almost solely accord-
ing to the cost criterion, after ensuring that the basic
transport quality requirements are met. The second group
encompasses users who engage in intermodal transport
only for a minor portion of their total transport volumes;
they decide according to both quality and cost criteria.
The third group consists of actors whose decisions are in-
fluenced by specific logistics needs, beyond the physical
transportation activity itself. A thorough review of studies
investigating intermodal transport and mode choice was
made by Bontekoning et al. [10] and Floden et al. [11]. As
noted by Bontekoning et al., who investigated 92 publica-
tions in the field of intermodal rail-road freight transport
literature, intermodal transport is considered a competing
mode and can be used as an alternative to unimodal trans-
port in order to cope with growing transport flows. How-
ever, they found that the problems with intermodal
transport are complex and require new knowledge to
solve them. Floden et al. [11] reviewed studies on the
freight transport service choice, focusing on actually map-
ping real customer attitudes and preferences. They argued
the factors in choosing transport services are the cost,
transport time, reliability, and transport quality but, after
ensuring the basic transport quality requirements, the cost
of the transport is the decisive factor. Samimi et al. [12]
found that shipment-specific variables (e.g. distance,

weight, and value) and mode-specific variables (e.g. haul
time and cost) are key determinants of the mode choice.
Many other authors, like Hanssen et al. [13], also consider
time as an important transport characteristic as well, yet
its importance depends on the time cost of the freight be-
ing transported. For particularly time-sensitive goods with
a short life cycle and high value/kg ratio, so-called
road-affine goods (NSTR 10, 1 + 6), intermodal transport
will probably never be used [4, 14].
Macharis & Van Mierlo [15], Janic [16], and Braekers et

al. [17] discuss a more general examination of mode
choice, concentrating on the impact of the total, external,
and internal costs on the mode choice. They developed
models for calculating the total costs of given intermodal
and road freight transport networks, which may be used
to overcome the gap between too general and too specific
data. They found that small changes in a parameter can
have a large effect on the results and that the total costs of
both networks decrease more than proportionally as the
door-to-door distance increases, suggesting economies of
distance. For the intermodal transport network, the aver-
age total costs fall at a decreasing rate as the quantity of
loads rises, indicating economies of scale; in the road
transport network they are constant.
Travel distance is an important variable in the modal

choice estimations. Chalasani & Axhausen [18] calcu-
lated crow-fly and network based distances, and assess
the accuracy of reported distances. They used travel sur-
veys to collect data for a wide variety of purposes and
found out that the spatial dimension of the transport in-
fluences different travel parameters such as mode of
transport, destination location, time of departure, travel
route, etc. Kreutzberger [19] examined transport dis-
tance and time as factors of competitiveness of inter-
modal transport. He compared network distances in
alternative bundling networks, but did not incorporate
the distance and time results in cost models. Many au-
thors, as Ghosh [20], Stone [21], Gaboune et al. [22],
Mathai & Moschopoulos [23], and de Smith [24], exam-
ined the distance from a theoretical point of view by
proposing different mathematical models to determine
the distances between random points in a two dimen-
sional space, as we explain further in Section 2. Reis [25]
estimated that the amount of literature concerning mode
choice variables is substantial. However, in his opinion,
the distance of the transport service is seldom refer-
enced as the factor for the competitiveness of intermod-
ality and that there is still a gap in the literature
concerning this area of investigation. The earliest at-
tempts to calculate the transport distances and transport
costs between random points in two separated market
areas were made by Fowkes et al. [26]. They developed
an iterative program to calculate the distances between
any two points, both direct (by road) or via an
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intermodal service. Kim & Van Wee [27] examined the
geometric and costs factors and its influence on the
break-even distance of intermodal freight and unimodal
road transport, and completed the approach of Fowkes
et al. by considering the market boundaries and includ-
ing the circular shapes of the market areas.
The modeling approach, used in this paper is based on

a simulation of a generalized market topography, which
enables the calculation of transport distances between
random points and underpins the cost and break-even
distance calculation for various travel plans. The main
hypothesis of this paper is that the distance is a major
determinant of transport cost, and thus one of the most
important criteria in the freight-mode-choice process.
The paper’s purpose is to examine this hypothesis and
develop a model to determine the mode choice on the
basis of the break-even distances, independently of cer-
tain specific transport corridors. As the break-even dis-
tance is difficult to generalize since it is influenced by
several parameters, the main emphasis is given to deter-
mining the ranges in which break-even distances can
occur. The limits of the ranges depend on the variability
of drayage and long-haul distances, as well as on the
technical and operational characteristics of transport
modes, selected travel plans, and transport costs.
Unfortunately, some assumptions and limitations in

such general estimations are inevitable, which provide an
opportunity for future exploration of this topic. We did
not include all factors that influence the freight-mode
choice. Time cost, for instance, is an important transport
characteristic that influences the mode choice, yet its im-
portance depends on the time cost of the freight being
transported. Accordingly, particularly time-sensitive goods
with a short life cycle and high value are excluded from
this investigation, so that the findings will not be applic-
able for this type of cargo. Economies of scale, except for
economies of distance, are not considered. Economies of
distance exert an important impact on the mode choice.
Distance-dependent transport costs were taken into ac-
count in this paper, meaning the transport costs are in-
versely proportional to the distance.

2 Modelling of transport distances
In this section, we describe the model of transport dis-
tances that is used to underpin the cost calculation. The
model consists of a submodule for calculating drayage dis-
tances in a circular market area and another submodule
for calculating the distances between two separated mar-
ket areas, taking different distance metrics into account.
Given that the cost is correlated to the distance trav-

elled, the transport distance therefore determines the
mode choice, but differently for each transport mode.
The following transport distances need to be considered
in this research: drayage distance that is normally

performed by truck, rail-haul distance which is per-
formed by train, and unimodal road door-to-door dis-
tance. Drayage distance is the distance between shippers
or consignees and the intermodal terminal. Despite the
relatively short drayage distance compared to rail haul,
drayage accounts for 25–40% of origin-to-destination ex-
penses and thus greatly affects intermodal transport’s
competitiveness [10, 28].
Rail-haul distance is the distance between two terminals

located in the centers of the origin and destination market
areas. It is the rail-haul segment of the door-to-door inter-
modal trip. Unimodal road door-to-door distance is the
distance performed by a truck between shippers in the ori-
gin and consignees in the destination market area.
With regard to the distance metrics, various distances

between pairs of points in a two-dimensional space can
be distinguished. The most commonly used is the Eu-
clidean distance, which can also be seen as direct dis-
tance. Manhattan distance, also known as rectilinear or
taxicab distance, is the distance between two points
measured along axes at right angles. It is calculated as
the sum of the horizontal and vertical components of
the pairs of points. The most relevant is the real dis-
tance, which is based on the actual transport network.
To approximate the real distance, Cooper [29] proposed
the use of a factor of the curvature of the road, the
so-called detour factor, that can be calculated as the ra-
tio between the real distance dR and the Euclidean dis-
tance dE, as follows [30]:

α ¼ dR

dE
ð1Þ

For UK roads, Cooper determined a value of 1.2,
which has subsequently been widely accepted and used
in the scientific community [31]. With reference to the
results of Perrels et al. [32], Chalasani & Axhausen [18],
Domínguez-Caamaño et al. [31] and Kim & Van Wee
[27], the detour factors of 1.25 for long haul and 1.30 for
an urban drayage area are used.
The distances between random points within a circle,

within a square and rectangle and also the distances be-
tween randomly and uniformly distributed points in two
separated circles or rectangles are dealt with by many au-
thors. Ghosh [20], Stone [21], Gaboune et al. [22], Mathai
& Moschopoulos [23], and de Smith [24] consider average
distances between a fixed and a random point in a circle
or rectangle. More recently, Kim & Van Wee [27] and
Olofsson & Andersson [33] proposed calculating the aver-
age distance in a circle using probability theory. The aver-
age distances between two separate regions (squares,
rectangles, and circles) were also examined by Mathai et
al. [34]. The proposed formulae are very complex, but ac-
ceptable results can also be obtained using simpler
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calculations such those taken from Bouwkamp [35],
Fowkes et al. [26], and Kim & Van Wee [27]. The latter
for the average distances between two separate circles and
probability theory for the average distance within a circle
are also considered in this paper.

2.1 Drayage distances in a circular market area
Drayage distance depends on the shape of the market
area, the terminal’s location and the distribution of ship-
pers and consignees in the market area. In this research,
the shape of the market area is assumed to be a circle,
the intermodal terminal is assumed to lie in the center
of the market area, and all shippers and consignees are
assumed to be uniformly and randomly distributed in
the origin and destination market areas.
Drayage distances are calculated as both Euclidean

and Manhattan distances. They are presented in Fig. 1
and calculated in Sections 2.1.1 and 2.1.2.

2.1.1 Calculating the average Euclidean drayage distance
The average or expected drayage distance can be calcu-
lated using probability theory. If (X, Y) is a random point
in the unit disc, the Euclidean distance dE from that
point to the center of the disc is

dE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y 2

p

The random variable is thus g(x, y)

g x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

and the joint pdf of (X, Y) in the unit disc is

f x; yð Þ ¼ 1
π
; x2 þ y2≤1

The expected distance E[dE] to the center of the unit
disc is given by the following equation [33]:

E dE½ � ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y 2

ph i
¼ 1

π
∬ x2þy2 ≤1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
dxdy

By changing x and y to polar coordinates dE and q

x ¼ dEcosϑ; y ¼ dEsinϑ

and by using the Jacobian matrix for the transform-
ation (dE,q)→ (x, y),

J ¼
dx
ddE

dx
dϑ

dy
ddE

dy
dϑ

0
BB@

1
CCA ¼ cosϑ −dE sinϑ

sinϑ dE cosϑ

� �

the determinant of the Jacobian matrix is

j J j ¼ cosϑdEcosϑ−ð−dEsinϑÞsinϑ
¼ dEðcos2ϑ þ sin2ϑÞ ¼ dE

Due to the determinant being equal to dE, we obtain

dxdy ¼ dEddE dϑ

which, by integration into the ranges 0 ≤ dE ≤ 1 and
0 ≤ q ≤ 2π, gives the expected distance in the unit disc

E dE½ � ¼ 1
π

Z 2π

0
dϑ

Z 1

0
dE

2ddE ¼ 2
3

The expected distance E[dE], denoted as the average
drayage distance dE in the circle with radius R, is

E½dE� ¼ 2
3
R ¼ 0:67R ¼ �dE ð2Þ

2.1.2 Calculating the average Manhattan drayage distance
The average Manhattan distance can be calculated
similarly as the average Euclidean distance in the pre-
vious case. If (X, Y) is a random point in the unit
disc, the Manhattan distance from that point to the
center of the disc is

Fig. 1 Euclidean (left) and Manhattan (right) drayage distances
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dM ¼ X þ Y

The random variable is thus

g x; yð Þ ¼ xþ y

and the joint pdf of (X, Y) in the unit disc is

f x; yð Þ ¼ 1
π
; x2 þ y2≤1

The expected Manhattan distance E[dM] to the center
of the unit disc can be expressed by the equation:

E dM½ � ¼ E X þ Y½ � ¼ 1
π
∬ x2þy2 ≤1 xþ yð Þdxdy

Using the same calculation as for the Euclidean dis-
tance, the expected Manhattan distance E[dM] is given
by

E dM½ � ¼ 1
π

Z 2π

0

Z 2

0
dMcosϑ þ dMsinϑð ÞdMddM dϑ

¼ 1
π

Z 2

0
dM

2ddM ¼ 8
3π:

The expected Manhattan distance E[dM] denoted as
the average Manhattan distance dM in the circle with ra-
dius R, is

E½dM� ¼ 8R
3π

¼ 0:85R ¼ �dM ð3Þ

2.1.3 Comparison of various distance metrics
In practice, several studies have compared how Euclid-
ean and Manhattan distances differ from real distance
measures, based on actual transport networks. Accord-
ing to Buczkowska et al. [36], Euclidean distance can
only be regarded as a proxy for the true physical dis-
tance and might not always be the most relevant one de-
pending on the problem at hand. Distance measures
based on an actual transport network might be more ap-
propriate because, in reality, goods move along transport
networks and rarely go from origin to destination in a
straight line. Duranton & Overman [37] indicate that in
low-density areas roads are fewer (so actual journey dis-
tances are much longer than Euclidean distances)
whereas in high density areas they are numerous (mak-
ing Euclidean distances a good approximation of actual
ones). If no other factors are involved, then this shortest
Euclidean distance is a reasonable solution to use as the
drayage distance in high-density areas. The Manhattan
distance can be considered a logical alternative to Eu-
clidean distance where roads are not as developed as in
high-density areas.
Land transport networks are notably influenced by the

topography so it is reasonable to assume that traffic

flows by road and by rail use the same transport corri-
dors. The main land transport infrastructures are typic-
ally built where there are the minimal physical
impediments, such as on plains, along valleys, or
through mountain passes. Highways and railways tend
to be impeded by grades higher than 3% and 1%, re-
spectively. In such circumstances, land transport tends
to be of a higher density in areas of limited topography.
Natural conditions are very difficult constraints to avoid
so it is not surprising to find that most networks follow
the easiest paths, which generally run along valleys and
plains [38]. These facts are considered in the Euclidean
and Manhattan exit-entry travel plans presented in Fig. 2.
Transport flows by road and by rail between A and B
use the same long-haul corridor connecting the shortest
path between two market areas. In Fig. 2, the distances
of the unimodal road are depicted by the dashed blue
lines and the distances of the intermodal rail-road routes
are depicted by the black lines. Both routes pass through
the same points A and B on the circumference of the
market areas.
It is thus unclear which distance is the most appropri-

ate for all cases considered. This research proposes a
flexible approach in which various distance measures
may be used instead of being systematically opposed.
This approach allows us to compare various distance
measures with each other.

2.2 Distances between two separated market areas
This section addresses the calculation of distances be-
tween two randomly and uniformly distributed points in
two separated market areas. The calculation embraces Eu-
clidean, Euclidean exit-entry, and Manhattan exit-entry
travel plans, as depicted in Fig. 2. Observe that a general
Manhattan travel plan is identical to a Manhattan
exit-entry travel plan in terms of costs, as the distances of
the two plans are equal. Therefore, only Euclidean, Euclid-
ean exit-entry and Manhattan entry-exit alternative are
discussed in sections below. In addition to scenarios with
two-sided market areas, a one-sided Euclidean travel plan
that consists of a terminal and a drayage area on one side,
and a terminal without a drayage area on the other, were
considered.
Because the intermodal distances between shippers

and consignees are simply calculated as the sum of two
drayage distances and the rail-haul distance, the biggest
focus in the distance calculation is determining the uni-
modal road distances.

2.2.1 Unimodal Euclidean travel plan
The distance between origin and destination in a uni-
modal road Euclidean travel plan is calculated as the
Euclidean distance based on the assumption that both
market areas are interconnected with extensive road
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systems in which any point in one area is connected to
any point in the other. The unimodal road Euclidean dis-
tance DURE is the distance on a straight line, given the
shortest possible route. It can be expressed by the follow-
ing trigonometrical equation where variables q and dE vary
from 0 to 2π and 0 to R, respectively.

DURE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
do
E sinϑo−dd

E sinϑd
� �2 þ −do

E cosϑo þ sþ dd
E cosϑd

� �2q

ð4Þ

Variables do
E and dd

E in (4) are Euclidian distances be-
tween origin/destination points and the intermodal ter-
minals and variables ϑoand ϑd are the angles of the polar
coordinates of these points.
Average unimodal road Euclidean distance DURE , cal-

culated over all origin/destination pairs, generated by a
Monte Carlo simulation at certain distance s is deter-
mined by the average of all generating points

�DURE ¼
XN

n¼1

DURE

N
≅s ð5Þ

and approximately equals the distance s between two
intermodal terminals. Similar results are found in the
earliest works by Fowkes et al. [26] and Kim & Van Wee
[27] and are consistent with the equation derived by
Bouwkamp [35] and de Smith [24], which is

�DURE ¼ sþ R2

4s
þ⋯≅s ð6Þ

2.2.2 Unimodal Euclidean exit-entry travel plan
The distance between origin and destination in a uni-
modal road Euclidean exit-entry travel plan DUREEE is
calculated by:

DUREEE ¼ do
EC þ dd

EC þ dURAB; ð7Þ
where dEC is the Euclidian circumferential distance be-

tween the origin/destination points and points A and B

on the circumference of the market area, while dURAB is
the distance between A and B:

dURAB ¼ s−2R: ð8Þ
The average Euclidean unimodal road distance in a

Euclidean exit-entry travel plan consists of the two aver-
age Euclidean circumferential distances dEC and of the
distance dURAB:

DUREEE ¼ 2dEC þ dURAB: ð9Þ

The average Euclidean circumferential distance dEC

can be obtained by:

dEC ¼
XN
n¼1

dEC

N
¼ 1:13R; ð10Þ

which is consistent with the equation given by de
Smith [24]:

�dEC ¼ 32R
9π

¼ 1:13R: ð11Þ

2.2.3 Unimodal Manhattan exit-entry travel plan
Based on Fig. 2 and using the same approach as for the
Euclidean exit-entry travel plan, the unimodal road dis-
tance in a Manhattan exit-entry travel plan DURMEE is
given by

DURMEE ¼ do
MC þ dd

MC þ dURAB; ð12Þ
where dMC is the Manhattan distance between the ori-

gin/destination points and points A and B on the cir-
cumference of the market area, while dURAB is the
distance between A and B.
The average unimodal road distance in the Manhattan

exit-entry travel plan DURMEE is the sum of the two aver-
age Manhattan circumferential distances dMC and of the
distance dURAB

Fig. 2 Travel plans between two separated market areas
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DURMEE ¼ 2dMC þ dURAB; ð13Þ

The average Manhattan circumferential distance dMC is

�dMC ¼
XN
n¼1

dMC

N
¼ 1:44R; ð14Þ

which is equal to the expression given by de Smith [24]

�dMC ¼ 128R
9π2

¼ 1:44R: ð15Þ

3 Transport costs
This section describes the methods for calculating particu-
lar cost categories of a given rail and road freight trans-
port. It is assumed that the average load factor of the
unimodal road and the intermodal transport is equal and
that goods are transported from their randomly distrib-
uted origin and destination points, according to different
travel plans, either direct by road or via intermodal termi-
nals, using a point-to-point consolidation network.
Transport costs are costs incurred by the various par-

ties responsible for moving a consignment from a ship-
per (such as a factory) to a consignee (another factory or
a distribution warehouse) [39]. These costs embrace the
depreciation costs of the rolling stock and trucks, the
costs of maintenance and repair, infrastructure charges,
the costs of energy consumption, labor costs, and trans-
shipment costs (loading/unloading costs). There are
many different methods and models for calculating par-
ticular cost categories of a given rail and road freight
transport. In this paper, distance-dependent unit costs,
as well as elements of the analytical modelling of logis-
tics systems developed by Arnold et al. [40], Daganzo
[41], and Janic [16, 42], Santos [43] are used. External
costs of transport, which are the costs imposed on soci-
ety, are not included in this research as these costs are
not currently considered as part of the trade-offs made
by shippers.

3.1 Road-haul costs
Road-haul costs are charged in the form of drayage
truck costs for intermodal rail-road transport or
long-distance truck costs for unimodal road transport.
To calculate the unit cost per vehicle km of an individ-
ual truck cR(d), we follow the approach by Janic [16]
where the following regression equation, based on em-
pirical data, was determined:

cR dð Þ ¼ 5:46d−0:278 €=vehicle km½ � ð16Þ
The equation is based on the assumption that each

truck is loaded with two Twenty-foot Equivalent Unit -
TEU, as a statistical measure of capacity. In average one

TEU weights of 14.3 tons, 12 tons of goods plus 2.3 tons
of tare, which is common in Europe [39, 44]. Handling
costs of the loading units are included.
Based on (16) unimodal road transport, costs CUR be-

tween the origin and the destination are determined by
the following equation

CUR dð Þ ¼ 5:46d−0:278dαl
¼ 5:46d0:722αl €=vehicle½ �: ð17Þ

In (17), d is the distance between the starting and des-
tination points and αl is a detour factor for road long haul.
Distance d can be the Euclidian distance DURE, Euclidian
exit-entry distance DUREEE, or Manhattan exit-entry dis-
tance DURMEE, depending on the actual travel plan.

3.2 Rail-haul costs
The distance-dependent equation for rail-haul costs is a
function of train gross weight w and the distance of
rail-haul s. It is based on the assumption that the reference
train has a fixed composition of 26 flat cars, without add-
itional shunting and marshalling during the trip. Each
wagon weighs 24 tons and the weight of a locomotive is
about 100 tons. The capacity of each wagon is equivalent
to three TEU, with an average gross weight of 14.3 tons,
such that the gross weight of train w equals 1560 tons.
Such a train composition has been used in the works of
different authors like Janic [16, 42], Kim N.S. et al. [27],
Braekers et al. [17] and Bierwirth et al. [45] and could be
considered as common in Europe. Also the STREAM
study [44], which is based on data representative for the
EU, treats a train capacity of 70 TEU, representative of a
medium container train, which approximately corre-
sponds to the selected train in this research.
The costs of each train trip cT can be calculated using

different equations, suggested by different authors. For
comparison, the rail-haul costs for the distance s = 400
km based on the same input data, have been calculated
as shown in Table 1. The Eq. (a) is a function of train
gross weight w and rail-haul distance s, giving the cost
of a train trip over a certain rail-haul distance. The Eq.
(b) assumes rail costs to be 65% of total truck costs over
the rail-haul distance. Given that each truck is loaded
with 2 TEU, this gives the cost of a train trip for 2 TEU
over s. More comprehensive approach in Eq. (c) assumes
costs depend on the train’s gross weight w, payload q
and rail-haul distance s. The equation includes five com-
ponents, cost of investments in rolling stock, costs of
maintenance, infrastructure charges, costs of energy and
labor costs, where nl represents the number of locomo-
tives, nw the number of wagons, v the commercial speed,
d the distance of rail segments, L the number of seg-
ments i.e. intermediate stops, nd the number of drivers
and D the anticipated delay of a train running between
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two intermodal terminals in hours. The Eq. (d) is based
on the Eq. (c) taking into account the average train pa-
rameters and cost components.
As we can see the results do not differ greatly. In this

paper we decided to use the model (b) proposed by
Arnold et al. [40], used also by Kim N.S. et al. [27],
which assumes the estimated rail costs for two TEU are
simply 65% of truck costs. Due to the fact that our
intention is not to examine the cost models in detail, we
decided to use the simplest model, which is still compar-
able with results given by other equations.

cT2TEU sð Þ ¼ 0:65∙5:46 s−0:278 €=2 TEU km½ � ð18Þ
Based on (18) the rail transport, costs CT(s) for two

TEU over a rail-haul distance can be expressed as

CT sð Þ ¼ 0:65∙5:46 s−0:278s
¼ 0:65∙5:46s0:722 €=2 TEU½ � ð19Þ

3.3 Intermodal rail-road costs
Using road drayage costs and rail-haul cost, the inter-
modal rail-road costs for two TEU and for the whole
trip are calculated by the equation:

CIM ¼ 5:46 do þ dd� �−0:278
do þ dd� �

αd
þ 0:65∙5:46s−0:278sαl þ 2ct ; ð20Þ

where do is the distance between origin and dd distance
between destination and intermodal terminals, respect-
ively. Distances do and dd can be Euclidian distances do

E

and dd
E or Manhattan distances do

M and dd
M , depending on

the actual travel plan. The other variables in (20) are s as
rail-haul distance between two intermodal terminals, αl =
1.25 as a detour factor for road and rail long haul, αd= 1.3
as a detour factor for a drayage area, and ct as the trans-
shipment cost estimated to be 38 €/container [39].

4 Break-even distance calculations
In transport practice, intermodal transport is considered an
alternative to unimodal road transport after a certain dis-
tance, called the break-even distance [46]. Macharis et al.

[47] state that such an alternative can only be justified when
the costs of transshipment and terminal cartage have been
offset, making intermodal transport a competing mode
once the break-even distance is reached. As already indi-
cated in the introduction, transport cost is the decisive fac-
tor in the choice of freight mode and is therefore used as a
relevant criterion for estimating the break-even distance in
this research. The break-even distance is thus defined as
the door-to-door distance at which unimodal road trans-
port costs CUR equal intermodal rail-road
transport costs CIM:

CUR ¼ CIM ð21Þ
Splitting the costs from (21) into distance-dependent vari-

able costs and distance-independent fixed costs produces:

FCUR þ VCURBE ¼ FCIM þ VCIMBE; ð22Þ
where FCUR and FCIM are fixed and VCUR and VCIM-

variable costs of a unimodal road and intermodal freight
transport, respectively, and BE is the break-even distance.
However, the break-even distance obtained by (22) is nei-

ther an accurate nor an unambiguous result as the actual
travel route used in the unimodal road transport is not the
same as for intermodal road-rail transport. Since the actual
travel plan for the two transport options depends on the
distance between the two market areas, the shipper/con-
signee location within market areas, the transport infra-
structure conditions and thus the type of travel plan
(discussed in Section 2.2), it is unclear what the obtained
break-even distance represents. It is noteworthy that previ-
ous studies of break-even distances of intermodal and uni-
modal road transport have not then taken account of
different distances entailed in both networks. Rutten [4], for
instance, regarded drayage distance and its cost as a partly
fixed and not as a variable intermodal cost. Janic [16], who
develops a model for calculating comparable combined in-
ternal and external costs of intermodal and road freight
transport networks, considered the average road door to
door as the break-even distance. On the other hand, Kim &
Van Wee [27] regarded the break-even distances as
break-even market distance, which should be equal to s, or

Table 1 Comparison of rail-haul costs using different equations on s = 400 km

Authors Equation Cost
[€/train trip]

Cost
[€/2TEU trip]

(a) Janic [16], Braekers et al. [17], Kim N.S. et al. [27] cT(w, s) = 0.58(ws)0.74 [€/train trip ] 11,268 288

(b) Arnold et al. [40], Kim N.S. et al. [27] cT2TEU(s) = 0.65 ∙ 5.46 s−0.278s [€/2TEU ] 10,413 268

(c) Janic [42] cT(w, s, q) = (4.60nl + 0.144nw + 0.3)s+
+12.98(nl + nw) + 5.6q + 0.0019ws+

þPL
l¼1½ 0:227∙ 10

−6v2l
lndl

þ 0:000774�wsþ
þ33ndðtdp þ s

v þ DÞ ½€=train trip �

11,659 299

(d) Janic [42], Santos [43] cT ðsÞ ¼ 0:59325þ 0:019sþ 0:001804ð s
ln sÞ

[€/train trip ]
12,969 332
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as the break-even distance of the intermodal system based
on the distance actually traveled, which is approximated as
2 d þ s or the break-even distance of a unimodal road sys-
tem based on door-to-door distance, which equals DURE .
As stated by Kim & Van Wee [27], all these distances may
be acceptable as break-even distances, but produce different
results or should be considered separately only as factors
that influence the break-even distance.
In our case, we decided to consider the real distances on

each side (DUR on the left and DIM = do + dd + s on the
right). By using a Monte Carlo simulation to generate ran-
dom locations of shipper/consignee pairs in both market
areas and by varying the distances between two separated
market areas s, the corresponding transport costs for each
and every pair of 10,000 randomly distributed origin and
destination points, at different s, are calculated for each
mode. The equalization of the cost functions of both
modes yields the average break-even distance for each
travel plan. This break-even distance is the distance be-
tween two intermodal terminals s, as it is the most influ-
ential distance parameter governing the transport mode
choice. Further, a Monte Carlo simulation enables us to
determine two extreme settings, where the minimum and
the maximum break-even distances can be reached, and
provide an insight into the share of competitive unimodal
road and intermodal road-rail transport at a certain dis-
tances s between two extreme settings.
The radius of the drayage area significantly affects the

transport cost structure. Authors like Morlok and Spaso-
vic [48], Janic [16, 42], Niérat [49], Rutten [4], and Kreutz-
berger [50] assumed 160 km, 70 km, 50 km, and 25 km
average drayage distances, respectively. In this paper, the
radius of the market area of 50 km was selected, approxi-
mately in the middle of distances proposed by other au-
thors. However, we also present the sensitivity for the
share of the intermodal transport and the break-even dis-
tances where we vary the size of the market area.

4.1 Break-even distances in a Euclidean travel plan
The average break-even distance in a Euclidean travel
plan can be found by equalizing average unimodal road
CUREðsÞ and average intermodal rail-road cost function
CIMEðsÞ , derived from (6), (17), and (2), (20),
respectively:

�CUREðsÞ ¼ 5:46ðsþ R2

4s
Þ
0:722

αl ð23Þ

CIME sð Þ ¼ 2∙5:46
2R
3

� �0:722

αd

þ 0:65∙5:46s0:722αl þ 2ct ð24Þ

Both functions are graphically presented in Fig. 3.
Average costs of intermodal rail-road transport are

depicted by the blue line and average costs of unimodal
road transport by the red line. The two lines intersect at
the distance between the intermodal terminals s = 640
km (point A in Fig. 3). This represents the average
break-even distance of intermodal rail-road and uni-
modal road transport. The thinner lines shown in Fig. 3
represent the lower and upper cost bounds of the two
modes. Within the bounds, the intermodal and uni-
modal transport costs vary according to the shipper/con-
signee locations and the distance between intermodal
terminals. The lower bound of the average intermodal
rail-road cost function Cmin

IME can be obtained on the con-
dition that do, dd = 0 and the upper bound Cmax

IME on the
condition that do, dd = R

Cmin
IME sð Þ ¼ 0:65∙5:46s0:722αl þ 2ct ð25Þ

Cmax
IME sð Þ ¼ 2∙5:46R0:722αd þ 0:65∙5:46s0:722αl

þ 2ct ð26Þ

The lower bound of the average unimodal road cost
function Cmin

URE is calculated on the condition that DURE

= s − 2R and the upper bound Cmax
URE on the condition

that DURE = s + 2R.

Cmin
URE sð Þ ¼ 5:46 s−2Rð Þ0:722αl ð27Þ

Cmax
URE sð Þ ¼ 5:46 sþ 2Rð Þ0:722αl ð28Þ

Cost functions (25), (26), (27) and (28) make it pos-
sible to determine the interval between points B and C
(Fig. 3) in which break-even distances can occur. The
minimal break-even distance at s = 103 km (point B) is
determined by the intersection of the minimal inter-
modal rail-road and the average unimodal road transport
cost functions. This is the minimal distance at which the
intermodal rail-road transport is able to compete with
unimodal road transport. As Fig. 4 shows, this happens
if shippers and consignees are located close to the cen-
ters of the market areas, where the costs of the inter-
modal trips are the lowest. The maximal distance s at
which unimodal road transport can compete with inter-
modal rail-road transport is 1143 km (point C), which is
well within the intermodal dominant zone. Point C is
determined by the intersection of the minimal unimodal
road and the maximal intermodal rail-road transport
cost functions, where the two options’ costs are equal.
As Fig. 4 reveals, this occurs when shippers and con-
signees are located on the circumference of both market
areas, at points closest to one another. Intuitively, such
shipper and consignee locations represent the worst case
for the intermodal rail-road transport, and the best case
for the unimodal road transport.
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Figure 5 shows the envelope of maximal intermodal
rail-road costs depicted by the black line, the com-
petitive average unimodal road and intermodal
rail-road costs depicted by the red and blue lines, and
the competitive shares of modes represented by the
vertical red and blue columns. The envelope is deter-
mined by the maximal possible intermodal transport
costs under the condition that intermodal rail-road
cost CIME(s, d) equals unimodal road cost CURE(s, d) for
the same pair of trips. The envelope is approximated by
the quadratic regression function f(s) = − 0.00068 s2 + 1.65
s + 15.8 on the interval between points B and X and by
the maximal intermodal rail-road cost function (26)
between X and C, where the maximal drayage distance
equals 50 km.
Looking at average competitive costs, is clear that

an increase in distance s tends to raise the shares for
intermodal rail-road transport and vice versa. Figure 5
illustrates that the distance elasticity at lower

distances is about 0.75 and is approximately equal for
unimodal road and intermodal rail-road transport. At
longer distances, from the break-even distance on-
wards, the distance elasticity of intermodal rail-road
transport is lower than unimodal road transport (0.25
vs 0.7), indicating intermodal rail-road transport is
less sensitive to a change in distance than unimodal
road-only transport. Although the distance elasticities
of both modes remain inelastic, it appears that the
distance between two market areas has a greater in-
fluence on unimodal road than intermodal rail-road
transport. This is obviously due to the fact that over
greater distances the negative influence of drayage
costs is a less and less decisive factor in intermodal
rail-road transport competitiveness.
The competitive shares of intermodal rail-road and

unimodal road modes expressed in percentage and rep-
resented by columns indicate the intervals between max-
imal and minimal competitive costs.

Fig. 3 Cost functions and break-even distances (Euclidean)

Fig. 4 Limit points in a Euclidean travel plan
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4.2 Sensitivity analysis of the influence of the size of the
market area
To further study the effect of the effect of distances on
modal split, we perform the sensitivity analysis with which
we show the impact of the market area size on the inter-
modal mode share and the break-even distance. In Tables
2, 3 and 4, we present results for two rail-haul distances,
s = 400 km and s = 800 km, and vary the size of the market
area ± 25–50% relative to the reference radius of 50 km.
We can see that the radius of the drayage area signifi-

cantly affects the intermodal share. A smaller market
area and accordingly shorter drayage distance increases
the intermodal mode share for the same rail haulage dis-
tance. In order to attract 100% of intermodal share the
radius of market area should be less than 11.8 km at s =
400 km and less than 32.9 km at s = 800 km.
To further facilitate a shift to intermodal mode, a

smaller effective market area can be realized with an

additional terminal within a market area [51, 52]. Never-
theless, it should be noted that in practice today there are
not many origin and/or destination terminals that accom-
modate or generate enough cargo for cost effective rail
freight operations. On the other side, bigger market area
attracts more customers, although the intermodal share is
relatively smaller. As noted by Duranton & Overman [37],
52% of four-digit industry in UK exhibit localization that
takes place mostly within 50 km. Three-digit industry
shows a similar pattern of localization at small scales as
well as a tendency to localize at medium scales (80–140
km). Based on these findings, we can assume that in such
market areas there is sufficient cargo to fill the train com-
pletely. As we show, longer rail haulage distances allow for
a greater market area and thus can attract the sufficient
volume of freight for the intermodal mode.
The positive influence of a shorter drayage distance on

the intermodal share can also be seen in Table 5, where

Fig. 5 Envelope of maximal intermodal costs and competitive shares of modes

Table 2 Sensitivity analysis of intermodal share with regard to the radius of the market area (s = 400 km)

R [km] Change in R [%] IM share [%] Change in IM share [%]

25 - 50 48.8 + 42.9

37. 5 - 25 16.5 + 10.9

50 (reference radius) – 5.9 –

62.5 + 25 2.6 - 3.3

75 + 50 1.4 - 4.5
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we present the calculation of the maximal average dray-

age distance d
max ¼ d0þdd

2 for competitive intermodal
rail-road transport at a certain s.
The calculation of maximal average drayage distances

is based on the condition the maximal transport costs of
both modes Cmax, are equal for the same pair of trips. It
is shown that intermodal rail-road transport can be
competitive even over lower distances between inter-
modal terminals if the drayage does not exceed the max-

imal values of d
max

. For greater drayage distances than
those, it becomes more appropriate to organize uni-
modal road transport directly from the shipper to the
consignee. This confirms statements in previous studies
that radius of a drayage area is a significant factor in
intermodal rail-road transport and that the difference in
efficiency with shorter drayage distances is considerable.
To summarize, the results of this section show that it

is the ratio of rail-haul distance relative to the market
size that influences the share of intermodal transport to
a large extent (when s/R increases, % IM increases).

4.3 Simulation of the shape of the actual market area
We represent the shipper/consignee locations within
market areas according to the optimality of a particular
mode of transport. The shapes of actual market areas
after the simulation are shown in Fig. 6. The gray points
represent the distribution of shippers/consignees loca-
tions for which unimodal road transport is optimal and
the red points represent the distribution of competitive
intermodal shippers/consignees pairs after simulating
1000 randomly generated trips between origin and des-
tination market areas.
We see that more transport users in the area ‘behind’ the

intermodal terminal (i.e., the opposite direction of the main

haulage) select the intermodal mode due to the longer
truck-only distance between these locations, which makes
the unimodal option unfavorable. Observe that for a par-
ticular location in the origin market area, different shippers
can be connected to different consignees in the destination
market area, which can result in these shippers having dif-
ferent competitive mode options. The actual market area of
competitive pairs of intermodal transport after simulation
resembles an ellipse-shaped market area with intermodal
terminal that is not located in the center of the market area.
Here we point out findings of Kim & Van Wee [27], who
study the impact of different shapes of market areas and
show that market area shape does not significantly increase
the intermodal share. As we show in Section 4.2, the modal
split is primarily influenced by the rail-haul distance and
the market area size, or, more precisely, their ratio.

4.4 Break-even distance in a Euclidean exit-entry travel plan
Using the same approach as in Section 4.1, the break-even
distances in a Euclidean exit-entry travel plan are esti-
mated. With this travel plan, the unimodal road transport
route changes as trucks leave the market areas through
the points along the highway connecting the two market
areas. Correspondingly, the average unimodal road costs
are determined by (17) and calculated according to the
new distances DUREEE ¼ 2dEC þ dURAB. Average unimodal
road transport costs are determined by

CURE sð Þ ¼ 5:46 2dEC þ dURAB
� �0:722

αl ð29Þ

Similarly as in Section 4.1, the maximal and minimal
unimodal road costs are obtained on the condition do

EC ;

dd
EC ¼ 2R and do

EC ; d
d
EC ¼ 0, respectively, and the corre-

sponding costs by

Table 3 Sensitivity analysis of intermodal share with regard to the radius of the market area (s = 800 km)

R [km] Change in R [%] IM share [%] Change in IM share [%]

25 - 50 100.0 + 14.8 (max)

37. 5 - 25 99.1 + 13.9

50 (reference radius) – 85.2 –

62.5 + 25 62.9 - 22.3

75 + 50 44.1 - 41.1

Table 4 Sensitivity analysis of the break-even distance with regard to the radius of the market area

R [km] Change in R [%] BE distance [km] Change of BE distance [%]

25 - 50 409.9 - 35.9

50 (reference radius) – 640.3 –

75 + 25 860.1 + 34.3

100 + 100 1074.9 + 67.8
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Cmax
UREEE ¼ 5:46 sþ 2Rð Þ0:722αl ð30Þ

Cmin
UREEE ¼ 5:46 s−2Rð Þ0:722αl ð31Þ

The average, maximal and minimal costs of intermodal
rail-road transport are the same as for the Euclidean
travel plan.
The results of the analysis are shown in Fig. 7. The

average break-even distance lies at 605 km, namely,
shorter than with a Euclidean travel plan. The shorter
break-even distance is due to the longer unimodal road
travel route through points A and B on the circumfer-
ences of the market areas. Irrespective of this, the range
of possible break-even distances between point B at 82
km and point C at 1143 km only a little longer.

4.5 Break-even distance in a Manhattan exit-entry travel
plan
In the same manner as above, the average break-even
distances in a Manhattan exit-entry travel plan are calcu-
lated. Instead of distance d determined by (17), the dis-
tances DURMEE ¼ 2dMC þ dURAB , dM and dMC are taken
into account. Therefore, the average unimodal road and
intermodal rail-road transport costs are

CURMEE sð Þ ¼ 2∙5:46 2dMC þ dURAB
� �−0:278

dMC

þ 5:46 dURABð Þ−0:278dURABαl ð32Þ

CIMMEE ¼ 2∙5:46dM
0:722 þ 0:65∙5:46s0:722αl

þ 2ct ð33Þ
The maximal intermodal rail-road and unimodal road

costs originate from origin/destination points to be found
on the circumference of the market areas under an angle of
135o (and its respective mirrored counterpart in the case of
both market areas). Manhattan distances linking the pair of
these points in the two market areas are the longest for
both the intermodal as well as unimodal transport route.
The former are determined on the condition that domax

M ;

ddmax
M ; dmax

M ¼ R j cos 1350 j þR j sin 1350 j¼ 70:7 km and

the latter on the condition that domax
MC ; ddmax

MC ; dmax
MC ¼ Rþ R

j cos 1350 j þR j sin 1350 j¼ 120:7 km for R = 50 km.

Cmax
IMMEE ¼ 2∙5:46dmax

M
0:722 þ 0:65∙5:46s0:722αl

þ 2ct ð34Þ

Cmax
URMEE ¼ 2∙5:46dmax

MC
0:722 þ 5:46 s−2Rð Þ0:722αl ð35Þ

Cmin
IMMEE and Cmin

URMEE are the same for all travel plans
and equal to the Euclidean travel plan. In the Manhattan
travel plan, the detour factor is not taken into account
in the drayage areas.
As shown in Fig. 8, the average break-even distance at

578 km is the shortest of all previous travel plans, while the
range of possible break-even distances is nearly the same.
Obviously, the more detailed transport infrastructure con-

ditions of the network infrastructure influence the position
of the average break-even point but do not heavily affect the
range of possible break-even distances. The position of the
average break-even point is chiefly the result of the interplay
of the drayage distance, the distance between two market
areas and the transport cost of a particular transport mode,
while the range of possible break-even distances depends on
intersections with the minimal intermodal costs function,
which is the same for all travel plans and average unimodal

Fig. 6 The distribution of all shippers/consignees points after simulation

Table 5 Maximal average drayage distances d
max

s [km] Cmax [€] d
max ½km� IM share [%]

200 320 – 0.0

300 446 14.6 0.3

400 566 27, 7 5.7

500 675 40.5 22.7

600 749 45.6 44.0

700 810 47.9 67.2

800 863 48.5 84.9

900 911 48.7 94.5

1000 962 49.2 98.8
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Fig. 7 Cost functions and break-even distances (Euclidean EE)

Fig. 8 Cost functions and break-even distances (Manhattan EE)
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road costs function on one side, and the maximal intermodal
and minimal unimodal road costs functions on the other.
Because the Euclidean distance can only be regarded as

a proxy for the actual physical distance, it should be cor-
rected with detour factors or replaced with the Manhattan
distance. We show that when Manhattan distances are
considered for drayage areas, the average break-even dis-
tances in the Euclidean exit-entry travel plan with a detour
factor applied and Manhattan exit-entry travel plan give
similar results. However, in the case of a real-life transport
network, one would simulate actual travel plans that fit
the network topology best.

4.6 Break-even distances in a Euclidean travel plan with a
one-sided drayage area
Here we examine a special travel plan denoted as a
one-sided Euclidean travel plan. This travel plan consists
of a terminal and drayage area on one side, and a terminal
without a drayage area on the other. The terminal without
a drayage area could be a port terminal, a terminal in a big
industrial undertaking with industrial sidings, a terminal
in a factory or in a distribution warehouse with private
sidings. Port terminals are the most substantial intermodal
facilities to which inland transport systems, particularly
rail, extend. Such maritime terminals are bounded by sea
access and located in the port area where containers move
directly from the dock or the storage areas to a railcar
using the terminal’s own equipment.

For the break-even calculation, the same equations as
for a Euclidean travel plan, considering only one drayage
area, can be used. The cost functions in this travel plan
are presented in Fig. 9.
As shown in Fig. 9, the average break-even distance in

this travel plan is much shorter at 248 km, meaning this
plan offers the highest level of competitiveness of inter-
modal rail-road transport compared to unimodal road
transport. The break-even distance interval lies between
60 km (point B) and 478 km (point C), thereby indicating
that intermodal transport is competitive even over very
short distances on the condition that the shippers/con-
signees are located close to the intermodal terminal
(point B in Fig. 10).
We limit our analysis of the one-sided drayage area

to Euclidean travel plan based on the observation in
Section 4.5, where we show that results of the Man-
hattan travel plan are approximately equal to those of
Euclidian travel plan when an appropriate detour fac-
tor is applied.

5 Conclusions
The purpose of this paper was to give a general answer
about the competitiveness of intermodal rail-road trans-
port based on the transport distance as the decisive cost
component in freight land transport. The key finding is
that distance is one of the important modal choice cri-
teria in the freight-mode choice process and that there
are many break-even distances, which vary over certain

Fig. 9 Cost functions and break-even distances (Euclidean one-sided)
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intervals, depending on different travel plans, shipper/
consignee locations and cost components.
The break-even distances between intermodal rail-road

and unimodal road transport in two-sided drayage areas
are estimated to lie in the interval from 104 km (point B
in Manhattan EE travel plan) to 1143 km (point C in the
Euclidean travel plan), while average break-even distances
are estimated to be at 578, 605 or 640 km, depending of
the travel plan under scrutiny. As shown, intermodal
rail-road transport can be competitive over all distances
where the minimal transport costs involved are below the
average unimodal road transport costs. On the other hand,
unimodal road transport can be competitive so long as its
minimal transport costs are less than the maximal inter-
modal transport costs. Irrespective of this, the costs of the
competitive mode should be lower than those represented
by the envelope of maximal competitive cost.
In the case of a one-sided drayage area, the average

break-even distance is much shorter, namely at 248 km,
and the range of possible break-even distances lies be-
tween 60 km and 478 km, which is very much in favor of
intermodal transport. It is clear that by eliminating pre-
or post-haulage intermodal transport could be a good al-
ternative to unimodal road transport, also on short- and
medium-distance trips.
The results confirm the conclusions of other authors

that there are many, not just a single, break-even dis-
tances and that break-even distances depend on differ-
ent factors and travel plans. It is worth noting that
similar previous studies did not take account of the dif-
ferent distances in both networks. Rutten [4], for in-
stance, regarded drayage distance and its cost as a
partly fixed and not a variable intermodal cost. Janic
[16] considered the average road door to door as the
break-even distance. On the other hand, Kim & Van
Wee [27] categorized three different break-even dis-
tances, such as break-even distance as market distance,
break-even distance as distance actually traveled, or
break-even distance as door-to-door distance. All these
distances are considered separately but only as factors
influencing the break-even distance. In this research,
the distances and corresponding transport costs for
each and every pair of 10,000 randomly distributed ori-
gin and destination points were calculated separately

for each transport mode. In addition, by examining dif-
ferent travel plans, the costs of each mode were ob-
tained. This helped us avoid the problem of different
distances, thereby significantly contributing to more ac-
curate results. This enabled us to obtain the sensitivity
results for the influence of the market size area and the
rail-haul distance on the modal split. More precisely,
we show that it is the ratio of rail-haul distance to the
size of the market area that majorly determines the
share of the intermodal transport.
The results give a general insight into the impact of dis-

tance on the competitiveness of unimodal rail-road trans-
port and show that intermodal transport can be
competitive, even over relatively very short distances if the
drayage costs are not too high. Drayage costs are thus po-
tentially one of the major barriers to the intermodal
rail-road service. The findings are quite promising for the
development of intermodal rail-road transport, particu-
larly if in the future the external costs are included in
transport prices. The inclusion of external costs would po-
tentially significantly alter the results to the benefit of
intermodal rail-road transport in the future, yet they are
currently not part of the trade-off considered by shippers.
Despite the assumptions inevitable in such general ana-
lysis, we believe the obtained results can help better
understand the competitiveness of land freight transport
and be used by policy- and other decision-makers to bet-
ter evaluate the opportunities, competitiveness, and at-
tractiveness of intermodal rail-road transport. Future
analysis in the field of distance-dependent transport costs
that would include external costs, minimum requirements
on maximum daily and weekly driving times in the road
sector and the results of implementing the TEN-T green
freight transport corridors would be needed in order to
contribute to fair competition among operators and to a
more sustainable transport policy in the future.
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