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Abstract

This paper introduces a comprehensive framework for the development of optimal multi-year maintenance plans for
a large number of bridges. A maintenance plan is said to be optimal when, within the given budget, a maximum
number of bridges can be maintained in the best possible year, achieving maximum performance with minimum
socio-economic impact. The framework incorporates heuristic rules, multi-attribute utility theory, discrete Markov
chain process, and genetic algorithms to find an optimal balance between limited budgets and performance
requirements. The applicability of the proposed framework is illustrated on an extensive case study of highway
bridges. The framework enables asset owners to execute various planning scenarios under different budget and
performance requirements, where each resulting plan is optimal. The focus of this study has mainly been on highway
bridges, however the framework is general and can be applied to any other infrastructure asset type.
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1 Introduction
Bridges are one of the most fundamental structures on a
road transport network. They provide crossings at critical
locations, reduce travel times, and maintain traffic flow.
Since most of the road infrastructure in Europe was built
after the 1950s, many road bridges are reaching their crit-
ical age, while being exposed to adverse climate effects
and increased public demands. Because of limited finan-
cial resources, agencies have to take careful investment
and maintenance planning decisions to improve safety,
serviceability, and availability of infrastructure while min-
imizing overall life-cycle costs.
Within the theme of maintenance planning and opti-

mization, literature studies can be divided into three
groups; reliability assessment by deterioration model-
ing [1], comparisons of different maintenance alterna-
tives [2–5] and multi-objective optimization techniques
[6–8]. Most of these approaches are focused on indi-
vidual bridge level, while few consider maintenance
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planning at the network level. Though these advance
optimization approaches are promising, they are compu-
tationally expensive, often non-transparent and can be
challenging to implement by asset owners. Many agen-
cies use a Bridge Management Systems (BMS) to develop
maintenance plans by allocating the budget, which is still
mainly driven by subjective ranking and preferences of
domain experts [9, 10]. These systems typically employ
single-objective optimization analysis to allocate bud-
get, but do not take into account other performance
aspects [11].
To develop accurate yet simple maintenance plan-

ning solutions constituting of multiple performance goals
and resource constraints, search-based optimization tech-
niques like Genetic Algorithms (GA) are popular. A brief
overview of the notable studies that employ GA for
maintenance planning is considered herein. Bocchini and
Frangopol [12] developed a probabilistic framework to
schedule preventive maintenance for bridges with a focus
on reliability assessment. A two-stage maintenance plan-
ning method for a large number of bridges is proposed
in [13]. First, a preventive maintenance plan of a bridge
is optimized, and then, the total life-cycle cost is reduced
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by allocating flexible intervention intervals. Denysiuk et
al. [14] proposed a computational framework consisting
of degradation and maintenance models to search for
optimal maintenance schedules. Similarly, Xie et al. [15]
developed a framework to find the optimal initial and con-
secutive time intervals between maintenance activities in
order to minimize the life-cycle environmental impact.
The literature provides numerous maintenance plan-

ning approaches varying by the employed degradation
models and optimization techniques. Some of the past
studies have also been the source of motivation for this
study [2, 16, 17]. However, it is noted that the search-
based optimization solution considers the multiple objec-
tives of maintenance planning but neglect to scrutinize
the subjective preferences of the asset owners/decision-
makers [18]. Moreover, most of the planning solutions
are illustrated on the small set of assets, where, with
the best of our knowledge, none of the maintenance
planning approaches provides a comprehensive method-
ology to plan the maintenance of hundreds of network
assets in an end-to-end manner. This study aims to
mitigate these gaps by introducing a Multi-year Main-
tenance Planning Framework (MMPF). The purpose of
the MMPF is to find the best time for the mainte-
nance of bridges by developing an optimal schedule
over a multi-year planning period while accommodat-
ing decision makers’ preferences and satisfying multiple
performance goals.
The key contributions of this study are as follows:

• Employing the multi-attribute utility theory to incor-
porate multiple-objectives and decision-makers’ pref-
erences for the ranking of a large number of bridges.

• Applying Markov chain process in conjunction with
genetic algorithms for the performance forecasting of
bridges for each year.

• Illustrating the applicability of the proposed frame-
work on a case study of highway bridges.

• Introducing a comprehensive two-step multi-
objective optimization for the maintenance planning
based on current condition state only and the future
predicted condition states.

• Enabling asset owners to execute various maintenance
planning scenarios under varying budget and perfor-
mance constraints

The paper is structured as follows: Section 2 introduces
the proposed MMPF along with details of techniques and
algorithms applied. Section 3 and Section 4 illustrate the
application of the MMPF on case study data, outline the
implementation details, and analyze the numerical results.
The discussion of results, potential limitations of MMPF,
and concluding remarks of the study are provided in
Section 5.

2 Methodology of Multi-year Maintenance
Planning Framework

This section introduces the methodology of the Multi-
year Maintenance Planning Framework (MMPF), which
seeks to develop optimal maintenance plans for a number
of infrastructure assets.
Figure 1 presents a flowchart of MMPF to highlight the

interaction of employed techniques and algorithms. The
proposed MMPF mainly constitutes of four modules; i)
an impact assessment module to decide on the type of
maintenance intervention and its resulting impact ii) a
Multi-Attribute Utility Theory (MAUT) module for rank-
ing of bridges based on preference uncertainty and risk
attitude of a decision-maker, iii) a Markov Chain Process
(MCP) based performance prediction module to forecast
the condition of a bridge in the future and finally iv) a
Genetic Algorithm (GA) module to develop numerous
multi-year maintenance plans in order to find the optimal
solution.

2.1 Problem formulation
The proposed framework considers multiple objectives
of maintenance planning. The principal objectives are to
maximize the performance level of bridges and to min-
imize the maintenance cost by optimally planning the
maintenance treatments. The objectives and constraints
of the maintenance planning problem are represented as:

minimise
T∑

t=1

B∑

b=1
I(xt,b) (1a)

minimise
T∑

t=1

B∑

b=1
c(xmt,b) (1b)

subject to
T∑

t=1

B∑

b=1
I(xt,b) ≤ Threshold (1c)

subject to
T∑

t=1

B∑

b=1
c(xmt,b) ≤ Budget (1d)

where I(xt,b) =
{
I(xt,b) − z, if xbt = m.
I(xt,b) + f (d), otherwise, apply MCP.

(1e)

The aforementioned parameters used for modeling are
defined as follows:

B = Number of bridges
T = Number of years in planning horizon

I(xt,b) = Condition index of a bridge b in year t
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Fig. 1 A flowchart of multi-year maintenance planning framework (MMPF)

c(xmt,b) = Cost function to compute cost of
maintenance activitym performed on a
bridge b in year t

Threshold = Condition index threshold of the bridges
of network
z = Improved condition state of a bridge
after maintenance/remediation measure
(based on Table 1)

f (d) = Function based on MCP to forecast
the condition of a bridge

With this formulation, Eq. (1a) represents the first
objective function, which aims to minimize the condi-
tion score I of all the bridges B over the finite planning
period T. The minimization function is applied because,
in a discrete condition scorecard, 1 represents the best (as
new) condition state, whereas 6 represents the worst con-
dition (loss of function). If assigned with a maintenance
activity in a year, the state of the bridge will be improved
(represented as z); otherwise, it is deteriorated with a cer-
tain degree f (d) complying to Markov chain transition
matrices represented in Eq. (1e). Equation (1b) repre-
sents the second objective function, which is targeted for
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the minimization of maintenance cost resulted from m
maintenance activity. Both objectives must be reached
within the two main constraints. Firstly, all the bridges
must be below the specified condition index threshold
value as represented in Eq. (1c). This condition enforces
the allocation of maintenance activity to bridges having
poor condition states, irrespective of their high rehabil-
itation cost. Secondly, the accumulated costs of planned
maintenance activities on the selected bridges must be
within the specified budget limit denoted by Eq. (1d).
Currently, the impact of maintenance activities on the
users is not considered as an objective with the fixed
value. Instead, it is used as the criteria to minimize the
impact on the users by determining the user delay costs
resulting from maintenance activities, while accounting
for bridge importance in terms of the number of vehi-
cles per day, the extended travel times, and duration of
different maintenance options.

2.2 Maintenance intervention and quantification of its
impact

This section introduces heuristics to link condition states
with various maintenance treatments and provides a pro-
cedure to quantify the socio-economic impacts of mainte-
nance activity.

2.2.1 Condition state andmaintenance treatments
Bridges are deteriorating and experiencing various dam-
ages due to the environmental impact, aging and traf-
fic loading. The observed damages and their severity
define the condition state of a bridge and consequently
the required maintenance treatments. Table 1 provides a
simplified rule-based choice of maintenance treatments
related to the Bridge Condition Index (BCI).We consulted
following studies [2, Section 3.5], [20, Table 1], [21, Table 1
and 2] and [19, D03] to define the respective maintenance
activities, their impact, and associated condition ranges.

2.2.2 Performance indicators quantification
This section provides a procedure to quantify the impact
of maintenance activity on different aspects (reliability,
availability, and economy), by quantifying performance
indicators as follows:

• Element-level to system-level BCI: BCI represents the
overall health of the structure. Since bridges have
multiple elements with distinct damage types, many
road agencies inspect the bridges at an element level
[22]. However, the maintenance decisions must be
made at the system-level (as a whole bridge); therefore,
the element-level condition indices must be trans-
lated to represent the overall health of a structure. We
applied the weighted-average method [22] in which an
expert establishes the importance of each element to
another. The choices of an expert are based on the

Table 1 Heuristics defining maintenance treatments based on
condition state ranges [19, D03]

Condition
range (BCI)*

Treatment
name

Treatment details Impact on BCI

1 - 2 Nothing No action needed No change

2 - 2.7 Monitoring Monitoring and inspection No change

Minor
intervention

Recoating (20%)

2.7 - 3.4 Minor
intervention

Equipment repair (10%)
Repair (10%)

Condition - 0.5

Repair (10%)

Recoating (100%)

3.4 - 4.1 Medium
intervention

Equipment repair (50%) Condition - 1.5

Repair (20%)

Renewal (10%)

Recoating (100%)

4.1 - 5 Major
intervention

Equipment repair (100%) Condition - 2.5

Repair (20%)

Renewal (20%)

5 - 6 Replacement Complete replacement 1

*1 : Good as new condition state, 6: critical condition state (failure)

elements’ failure history, maintenance frequency, and
the impacts on the bridge in case of failure. Table 2
provides the elicited relative importance of the bridge
elements. Using the relative importance values, BCI is
calculated by the following Equation:

BCI =
n∑

i=1

(
CIi ∗ Wi

)
(2)

where n represents number of bridge elements, CIi
is condition index of element i obtained through
experts judgements after (visual) inspection, andWi is
weighted importance of element i elicited by an expert
as shown in Table 2.

Table 2 Weighted score of bridge elements [23]

No. Elements Weighted score

1 Superstructure 0.3185

2 Bearings 0.2104

3 Abutment 0.1813

4 Joints 0.1288

5 Pavement 0.0618

6 Railing 0.0510

7 Guardrail 0.0478
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• Maintenance cost: The maintenance cost is a mone-
tary value borne by an agency as a result of performing
maintenance activities. The maintenance cost of each
bridge is computed as a sum of the unit costs of all the
maintenance treatments (UCAm) multiplied by the
quantity (Qm) or the volume of the treated area. The
formula to calculate the maintenance cost is provided
as follows:

MC =
n∑

m=1
UCAm ∗ (Qm) (3)

whereMC is total maintenance cost spend on a bridge
and n is number of bridge’s element.

• User delay cost: The user delay cost estimates the
impact of a maintenance treatment on the availability
of the bridge and highlights its importance on the net-
work. It represents the value of extended travel time of
the road users due to work-zones in a monetary form.
The number of factors contributes to user delay cost
[24], expressed as follows:

UDC = ETT ∗ AHTh ∗ Voh ∗ Dh (4)

ETT = L
Vr

− L
Vs

where ETT is extra travel time due to speed restric-
tions,AHTh is average traffic per hour passing over the
bridge on a working day, Voh is value of an hour of the
user time,Dh is duration of themaintenance activity, L
is length of working zones (km),Vs is standard velocity
(km/h) and Vr is reduced velocity due to maintenance.

2.3 Uncertainty and preference assessment using MAUT
This module incorporates the preference uncertainty and
risk attitude of experts, for maintenance planning, by
employing the principles of Multi-Attribute Utility The-
ory (MAUT). The concept of the utility function is
inspired by gambling, wherewith equal probability to
obtain the best value or worst value, a gambler/decision-
maker needs to take certain risks [25]. The purpose of
MAUT in MMPF is threefold: 1) to accommodate mul-
tiple performance indicators, ranging from societal to
economic aspects, 2) to enable decision-makers to state
their maintenance preferences under uncertainty and 3)
to assign a rank to each bridge by performing a trade-off
of multiple performance objectives. The resulting priori-
tization filters-out the broad set of bridges from the road
network that do not fulfill the objectives, and therefore,
must not be scheduled for maintenance in the near future.
The ranking can also be utilized for next year’s main-
tenance plan as the highest-ranked bridges present the
urgent need of maintenance prompted by either low cost
or poor condition state.
In the following, a brief explanation and application

steps of the MAUT process is provided

1. This study applies the Exponential Utility Function
(EUF) to elicit the utility scores of each attribute since
it captures the preference uncertainty and Risk Tol-
erance (RT) of a decision maker [26]. The formula to
calculate the utility scores Ua of each attribute a for
the alternatives x is provided below:

Ua(xa) = A − B ∗ e
( −xa

RT
)

(5)

where A and B are scaling constants, and e is an
exponential constant. The EUF requires the decision-
makers to respond to the lottery question of a max-
imum and a minimum value of an attribute, where
the indifference point has to be reached between the
best and the worst possible outcome. Such an indif-
ference point for a decision-maker is referred to as the
Certainty Equivalent (CE).

2. The risk tolerance is calculated based on expected
value (EV) and CE, where EV is median of worst and
best value of attribute values. The value CE is chosen
by the experts based on following the principle:

Risk Attitude =

⎧
⎪⎪⎨

⎪⎪⎩

Risk Neutral, if EV = CE (Linear shaped)

Risk Avoiding, if EV >= CE (Concave shaped)

Risk Taking, if EV < CE (Convax shaped)

3. Trade-offs are performed among attributes a by
assigning the relative importance k based on the
preferences of the decision-maker.

ka = rate(xa)∑A
a=1(xa)

(6)

where rate(xa) is a weight assigned by a deci-
sion maker to attribute a,

∑A
a=1(xa) is sum of all

the weights given to attributes and k represents
attribute’s relative importance.

4. The utility score of each attribute and their assigned
weight factors are aggregated to elicit the final ranking
of the alternatives by computing additive aggregation
as follows:

U(x) =
n∑

i=1
kaUa(xa) (7)

where ka is the relative importance of attribute,
Ua(xa) is single attribute utility for each attribute a
for an alternative x.

The computed MAUT score establishes the ranking
of each alternative. Based on the minimization objective
function, the alternatives with lower aggregated MAUT
scores will obtain a higher ranking.

2.4 Performance prediction using Markov chain process
It is essential to forecast the performance of assets in
order to optimally plan the maintenance activities and to
estimate the cost. Based on mathematical and statistical
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principles, multiple deterministic and stochastic models
have been proposed for deterioration modelling [1, 27].
For this study, the discrete Markov Chain Process (MCP)
is applied to model the random and uncertain process of
bridge deterioration statistically, as already illustrated by
several studies [28–30].
Markov chain consists of set of states denoted as

S = s1, s2, .., sn, where each state represents the bridge
condition state. The process starts from one state s and
moves to another state s′, with a certain probability of
p. The probabilities p are called transition probabilities,
which quantify the probability of a bridge or its element
to move from one state s to another state s′. There are
multiple procedures to compute the transition probability
matrices, namely expected-value method [31], binomial
regression [32], and ordered probit model [33]. The sim-
plest technique, requiring minimum data, is the percent-
age prediction method, which forecasts the percentage of
total bridges belonging to each condition state [34]. The
calculation procedure can be represented as:

p(s, s′) =
∑N

n=1(s, s′)∑N
n=1(s)

(8)

where nss′ is number of elements transitioning from con-
dition state s to state s′ and ns is total number of elements
having state s.
The computed transition probabilities are expressed in a

matrix of size w*w, where w is the number of discrete con-
dition state. The performance prediction of the bridges
using the MCP is used to decide on a specific year for the
maintenance execution.

2.5 Multi-year maintenance planning using genetic
algorithms

The development of the maintenance plan is a multi-
objective combinatorial optimization problem, with the
objectives to reduce the life cycle costs of assets and
fulfill the performance requirements over a specified plan-
ning horizon. Instead of traditional optimization tech-
niques, which are complicated and time-consuming, we
choose to apply a Genetic Algorithm (GA) solution that
is efficient and provides robust results. GA is a com-
binatorial optimization search technique motivated by
Darwinian evolution theory of natural selection, genetics
and survival-of-the-fittest [35].
In GA, the potential solutions are expressed as indi-

viduals, which consist of combinations of chromosomes.
The chromosomes are finite-length strings, which rep-
resent the decision variable of a search problem. Unlike
traditional optimization approaches, GA generates a pop-
ulation of potential solutions iteratively until the pre-
determined population size is reached. The objective
function must evaluate each individual of the population

in order to distinguish good solutions from bad solutions.
Further stochastic operators i.e., cross-over, the mutation
is applied on selected populations based on their relative
fitness score assigned by objective function to generate
next population. Figure 2 provides a flow chart of GA.
Depending on the problem, different encoding schemes

such as binary, tree-based, value, and permutation can be
selected [36]. The optimization problem of this study is
encoded in the value scheme since the fitness of a gen-
erated schedule depends only on the discrete values, i.e.,
cost and condition irrespective of a specific order. Each of
the generated solutions is evaluated for its fitness by the
objectives function, established in problem formulation
Section 2.1.

3 Case Study
The proposed MMPF is validated on a case study of con-
crete bridges, which are part of a highway network1. The
database contains data about location, bridge structure,
materials, element-level condition scores resulting from
principle inspections, records of performed and planned
maintenance treatment(s) and their unit costs. The agency
uses condition data, damage estimation, and expert judg-
ments implemented into risk assessment to decide on
future maintenance plans. Considering that the existing
procedure still heavily relies on subjective judgments, it
is not fully transparent or easy to follow. The proposed
MMPF primarily utilizes existing condition score data and
can be applied within several agencies.
A five-year maintenance plan is programmed with

the aim to keep the network-level bridge score of at
least 2.7 with the estimated budget of e6 million only.
The objective is to improve the performance of the
bridges by minimizing the socio-economic impact under
a limited budget. We have considered five treatment
options, namely i) monitoring, ii) minor intervention, iii)
medium intervention, iv) major intervention, and v) com-
plete replacement. The available treatment options are
linked to the range of BCI, as shown in Table 1.
For this case, seven essential elements of a bridge are

considered (see Table 2). Since the principal inspection is
performed at the element-level every six years, each ele-
ment has two visually assessed indices from the data of the
past 12 years. To have a thorough understanding of bridge
structural integrity and its deterioration over time, first,
the transition probabilities are calculated. Next, the case
study data is used to compute the performance indicators.

3.1 Computing transition probability matrix
The transition probabilities of each element are calculated
by percentage prediction method, provided in Section 2.

1The case study data is provided by a road agency with a non-disclosure
agreement.
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Fig. 2 Flowchart of a typical genetic algorithm

The percentage prediction method mainly relies on the
number of changes in condition state between the inspec-
tion interval. We have considered only those elements’
data that show the deteriorating trend in condition
state, which means no maintenance has been performed
between the two inspection activities. The transition
probability is represented as p(s, s′), where s ≤ s′.
By using Eq. 8, the transition probability matrix for each

bridge component is computed. Next, the system-level
probability matrix is computed using the relative impor-
tance of each bridge element (provided in Table 2). The
system-level transition probability matrix is provided in
Table 3, where the leftmost column represents the current
condition, and the top row shows the future condition
states.
Most of the elements had condition state 4 as their

lowest (poor) condition, except for joints and railing. To

Table 3 System level transition probability matrix of bridges

1 2 3 4 5 6

1 0.0315 0.795 0.090 0.075 0.004 0

2 0 0.832 0.081 0.072 0.0144 0

3 0 0 0.779 0.188 0.031 0

4 0 0 0 0.70 0.25 0.05

5 0 0 0 0 0.179 0.821

6 0 0 0 0 0 1

The bold values represent the transition probabilities elicited from historical data
and literature, and other probabilities are obtained from the case study data.

eliminate this skewed data distribution, we have used his-
torical data about bridge performance from other bridge
management system to estimate probabilities of transi-
tions from condition 4 to 5 and 5 to 6 [19]. The elicited
probability scores are denoted with bold text in Table 3.

3.2 Computing performance indicators
Performance indicators quantify the objective of optimal
multi-year maintenance planning. These indicators mea-
sure the impact of maintenance activity concerning the
maximization of bridge network performance (covering
structural aspects), and minimization of socio-economic
costs. By utilizing the quantification procedure provided
in Section 2.2.2, we have calculated the BCI, maintenance
cost, and user delay cost for all bridges of the case study.
Figure 3 presents the range of BCI found in the case

study dataset. The BCI of most of the bridges ranges
between 1.5 to 3.5, except for few bridges having greater
than 3.5 condition score. This limited dispersion of BCI in
the dataset shows the overall good condition state of the
considered bridges.
The approximate cost of maintenance treatment of each

bridge is computed using the Eq. 3 and the rules defined in
Table 1. Figure 4 shows a boxplot of the maintenance cost
with respect to the condition state. The bridges having a
poor condition state require significant maintenance and
higher cost as compared to bridges having relatively bet-
ter condition state. In other words, a bridge is economical
to maintain in its initial state of damage compared to the
critical damage level.
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Fig. 3 Ranges of BCI

The user delay cost is calculated by using the Eq. 4,
where the length of the work zone is estimated to be three
times the total length of a bridge. The reduced speed due
to maintenance is 90km/h whereas the standard speed is
130km/h. The duration of various maintenance interven-
tions are estimated as 48 h for minor, 168 h for medium,
and 312 h for the major treatments. Finally, the average
traffic per hour over a bridge is extracted by considering
the bridge location. The range of user delay cost of bridges
with respect to their bridge’s length and duration of the
maintenance activity is provided in Fig. 5.

4 Framework Implementation and Numerical
Results

As a result of computing performance indicators, the
bridges having BCI lower than 2.7 are eliminated from the
analysis, meaning they are in good condition and do not

need maintenance in the next five-years. In the follow-
ing sections, the implementation details of MAUT, MCP,
and genetic algorithms applied to the case study data are
provided.

4.1 Implementation of Multi-attribute utility theory
MAUT method is applied to the remaining 123 bridges.
The first step of MAUT is to determine the single utility
function (SUF) of each attribute across all the alternatives
(bridges), as discussed in Section 2.3. The calculation of
SUF for each attribute is an extensive process. Therefore,
for the sake of brevity, the computation process is omit-
ted here. An interested reader may refer to [23] for the
detailed procedure.
Next, the weight for each of the attributes is defined to

describe their impact on the overall objective. The high-
est importance is assigned to the BCI with 90, followed by

Fig. 4 Range of computed maintenance cost
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Fig. 5 Range of computed user delay cost: The duration depicts the number of hours required for different maintenance interventions

the maintenance cost with 70, and the UDC with 60 value.
The relative and normalized importance weights are then
calculated by using Eq. 6. From the utility function of
attributes, a global aggregated score is computed for each
alternative by Eq. 7. The global aggregated score ranks all
the 123 bridges in an order where multiple objectives are
taken into account, as previously explained.
To ensure readability, Fig. 6 provides the MAUT scores

and ranking of the top 40 bridges. Bridge (B80) is 77

years old and has a deck area of approximately 2000 m2,
BCI of 4.13, and the highest user delay cost is ranked as
number one requiring a major intervention. The lowest-
ranked bridges (not included in Fig. 6) are mostly below
30 years of age, have small deck areas, low user delay
costs due to their lower traffic intensities, and require only
minor interventions. Considering the budget constraint of
e6 million, we have performed a cumulative sum of the
maintenance costs of the ranked bridges and selected only

Fig. 6 Top 40 ranked bridges by implementation of Multi-Attribute Utility Theory
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those bridges that can be maintained within the available
budget over 5 years, which resulted in the selection of 28
bridges in total.

4.2 Implementation of genetic algorithms andMarkov
chain process

The Genetic Algorithm (GA) is applied to the 28 selected
bridges to seek an optimal maintenance plan for the next
five years. To apply GA on the maintenance planning
problem, we have utilized the evolutionary computation
framework DEAP, available for Python programming lan-
guage [37]. A population size of 150 individuals with ten
generations is adopted for the GA simulator. A partially
matched crossover method with 0.2% probability is used,
where the chromosomes of two individuals are randomly
swapped to generate two new and unique individuals
(i.e., maintenance plans). Similarly, a mutation probabil-
ity of 0.7% is applied in which, instead of mutating the
chromosomes values, the order of the chromosomes is
shuffled.
Moreover, for the selection of the best individu-

als among the number of generated individuals, a
non-dominated multi-objective optimization algorithm
(NSGA-II) is applied [38]. The GA simulator is tunedmul-
tiple times with varying cross-over and mutation proba-
bilities to find the settings that best converge for the given
problem.
Figure 7 shows the number of individuals (maintenance

plans) generated for a single population on the axis of
condition state and budget limit having varying fitness
levels. A maintenance plan which compromises on the
required performance threshold of 2.7 can have as low
budget as e2.1 million while comparing to those plans
which achieve 2.14 of performance level but on the cost
of e6.6 million. The grey (dotted) lines in Figure 7 show

the optimization constraints for the 5 year maintenance
plan, where condition scores of all the bridges on the net-
work should be at least 2.7, while taking account the e6
million budget limit. All the maintenance plans depicted
with the ‘blue plus’ marker are feasible solutions that ful-
fill the defined constraints. Though it is worthwhile to
mention that few generated maintenance plans do not
allocate all the 28 bridges for planning, therefore present
lower cost. The solutions represented with ‘red circle’ are
infeasible solutions and do not comply with the defined
optimization constraints.
Among the 150 maintenance plans (individuals) gener-

ated in 10 iterations (generations), we choose the single
most optimal maintenance plan as presented in Table 4.
The plan exhibits the set of bridges allocated to a specific
year along with treatment name, maintenance cost, and
improved condition state. The treatment name refers to
the intervention details provided in Table 1. Asmentioned
earlier, the bridge which is not maintained in a particular
year (e.g., 2020) will decline in condition state until it is
selected for maintenance. For instance, B861 had a condi-
tion value of 3.65 at the time of maintenance planning (say
2018), while when scheduled to be maintained in year 5
(say 2022), it is estimated to have deteriorated condition
score by 4.16. By the optimal allocation of bridge mainte-
nance to specific years, the plan shows a budget of e5.9
million and achieving the average condition score for all
bridges of 2.27.
For the sake of comparison and to establish a baseline,

we also generated sequential maintenance plan without
applying the GAs. The purpose of sequential plan is to
mimic usual planning scenario where a bridge with poor
condition state is maintained first. An assumption of
equal budget allocation to each year is made, where the
residual budget of any year is equally distributed in all

Fig. 7 All the maintenance plans generated by GAs
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Table 4 Most optimal maintenance plan of 28 bridges using MMPF

No Bridge name Current condition Treatment name Maintenance cost Improved condition

Year 1

1 B74 3.65 Medium intervention 147,336.58 2.15

2 B719 3.36 Minor intervention 30,257.6 2.61

3 B291 3.35 Minor intervention 49,702.03 2.6

4 B822 4.04 Medium intervention 578,944.5 2.54

5 B223 3.27 Minor intervention 63,608.32 2.52

6 B842 3.07 Minor intervention 95,551.68 2.32

7 B723 3.42 Medium intervention 404,047.16 1.92

8 B428 3.24 Minor intervention 76,259.75 2.49

Yearly summary Total yearly spending: 1,445,707.62 (24%)

Remaining budget: 4,554,292.38 (76%)

Year 2

9 B275 3.12 Minor intervention 102,202.4 2.37

10 B853 2.93 Minor intervention 110,745.5 2.18

11 B335 3.47 Medium intervention 242,006.54 1.97

12 B79 4.08 Medium intervention 356,609.97 2.58

13 B78 3.08 Minor intervention 120,244.48 2.33

14 B750 4.08 Medium intervention 222,261.69 2.58

15 B351 4.05 Medium intervention 175,173.64 2.55

Yearly summary Total cost spent: 1,329,244.21 (22%)

Remaining budget: 3,225,048.17 (53%)

Year 3

16 B94 2.93 Minor intervention 116,274.03 2.18

17 B495 3.68 Medium intervention 119,176.0 2.18

18 B836 3.75 Medium intervention 238,610.66 2.25

19 B260 3.15 Minor intervention 55,593.66 2.4

20 B80 4.14 Major intervention 570,867.62 1.64

Yearly summary Total cost spent: 1,100,521.97 (18%)

Remaining budget: 2,124,526.20 (35%)

Year 4

21 B751 4.35 Major intervention 356,589.91 1.85

22 B251 2.98 Minor intervention 82,777.45 2.23

23 B83 3.88 Medium intervention 2.38

Yearly summary Total cost spent: 696,271.83 (11%)

Remaining budget: 1,428,254.37 (23%)

Year 5

24 B861 4.16 Major intervention 254,416.0 1.66

25 B860 3.71 Medium intervention 582,257.7 2.21

26 B551 3.74 Medium intervention 175,820.0 2.24

27 B788 3.89 Medium intervention 291,239.04 2.39

28 B320 3.89 Medium intervention 97,676.26 2.39

Yearly summary Total cost spent: 1,401,409 (23%)

Remaining budget: 26,845 (0.044%)

5-Years summary Total cost spent: 5973154.6 (99%), Remaining budget: 26845(0.044%)

Number of maintained bridges: 28, Avg. condition: 2.27

the remaining years of planning. This sequential main-
tenance planning, based on condition states only, can
allocate only 18 bridges for maintenance with average
performance level of 2.58 within the given budget limit

of e6 million. Bridges based on their condition score
were sorted in a descending order and all the bridges
which are within the yearly budget limit are allocated
for maintenance.
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5 Discussion and Conclusions
This paper introduces a comprehensive framework for
the development of optimal maintenance planning for
a network of road bridges over a multi-year plan-
ning period, while considering the multiple objectives of
performance requirements and budget constraints. The
proposed Multi-year Maintenance Planning Framework
(MMPF) employs multi-attribute utility theory for rank-
ing a large number of bridges by capturing the prefer-
ence uncertainty and risk attitude of a decision-maker. It
develops several maintenance plans by using genetic algo-
rithms in conjunction with Markov chain processes. The
MMPF is generic and can include any other performance
attributes, according to the owners’ needs (e.g., safety,
environment, maintainability, etc).
In addition to developing an optimal maintenance plan,

the proposed framework enables asset owners to execute
various maintenance planning scenarios by changing bud-
get limits and performance objectives for the network.
Additionally, the framework can be used for future bud-
get planning by forecasting condition states of bridges.
The framework is validated using an inventory of con-
crete bridges on a highway network to develop an opti-
mal 5-year maintenance plan given a budget constraint
and a condition threshold. Based on the given crite-
ria, out of 800+ bridges, a group of 123 bridges was
found to have condition states below the required perfor-
mance level. The application of the framework prioritizes
the bridges and generate an optimal maintenance plan
for 28 bridges within the given budget limit, whereas,
the sequential maintenance plan (i.e., a bridge with the
poor condition is always maintained first), applied to
the same set of bridges, enables the maintenance of 18
bridges only.
The proof-of-concept on the case study data expresses

the usefulness of MMPF; however, there are few limi-
tations related to the scope and used methods. For the
detailed overview on the impact on users in case of (main-
tenance) interventions, the MMPF must be extended
with traffic flow modeling. The proposed framework
develops the static maintenance plan by filtering the
bridges that require maintenance. Here the assump-
tion is that filtered-out bridges are in good condition
state and will not require maintenance in the next
five years. However, factors like extensive usage, envi-
ronmental impacts may escalate deterioration process
of assets, thus resulting in an unexpected need for
maintenance.
Regarding the methodology, the transition probability

matrix developed in this study demands data of at least
the last two inspections and expects the ideal distribu-
tion of data over time. However, in reality, not all the
bridge elements can have detailed inspection records for
all the classes, which makes the calculation of transition

probability matrices a difficult activity. Similarly, despite
easy implementation and reasonable running times for the
genetic algorithm, it is well-known that they are unable to
guarantee an optimal solution due to possibly ample solu-
tion space of a combinatorial multi-objective problem.
However, genetic algorithms still promise good quality
solutions in a reasonable time, given the complexity of
multiple objectives and constraints.
From the application perspective, tool support is needed

to enable the seamless execution of various maintenance
planning scenarios. To encourage tool development and
to support the reproducibility, the implementation code
python has been made publicly available2. The future
work of this study aims to improve the MMPF further by
considering the specific structural aspects of each bridge
while defining specific maintenance treatment. Another
potential improvement of MMPF is to employ the mod-
els of machine learning for the performance prediction
of each bridge on the bases of particular bridge charac-
teristics, condition and maintenance history, and usage
intensity. This will also enable a more accurate estimation
of the required budget for the owners.
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