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principles, multiple deterministic and stochastic models
have been proposed for deterioration modelling [1, 27].
For this study, the discrete Markov Chain Process (MCP)
is applied to model the random and uncertain process of
bridge deterioration statistically, as already illustrated by
several studies [28–30].
Markov chain consists of set of states denoted as

S = s1, s2, .., sn, where each state represents the bridge
condition state. The process starts from one state s and
moves to another state s′, with a certain probability of
p. The probabilities p are called transition probabilities,
which quantify the probability of a bridge or its element
to move from one state s to another state s′. There are
multiple procedures to compute the transition probability
matrices, namely expected-value method [31], binomial
regression [32], and ordered probit model [33]. The sim-
plest technique, requiring minimum data, is the percent-
age prediction method, which forecasts the percentage of
total bridges belonging to each condition state [34]. The
calculation procedure can be represented as:

p(s, s′) =
∑N

n=1(s, s′)∑N
n=1(s)

(8)

where nss′ is number of elements transitioning from con-
dition state s to state s′ and ns is total number of elements
having state s.
The computed transition probabilities are expressed in a

matrix of size w*w, where w is the number of discrete con-
dition state. The performance prediction of the bridges
using the MCP is used to decide on a specific year for the
maintenance execution.

2.5 Multi-year maintenance planning using genetic
algorithms

The development of the maintenance plan is a multi-
objective combinatorial optimization problem, with the
objectives to reduce the life cycle costs of assets and
fulfill the performance requirements over a specified plan-
ning horizon. Instead of traditional optimization tech-
niques, which are complicated and time-consuming, we
choose to apply a Genetic Algorithm (GA) solution that
is efficient and provides robust results. GA is a com-
binatorial optimization search technique motivated by
Darwinian evolution theory of natural selection, genetics
and survival-of-the-fittest [35].
In GA, the potential solutions are expressed as indi-

viduals, which consist of combinations of chromosomes.
The chromosomes are finite-length strings, which rep-
resent the decision variable of a search problem. Unlike
traditional optimization approaches, GA generates a pop-
ulation of potential solutions iteratively until the pre-
determined population size is reached. The objective
function must evaluate each individual of the population

in order to distinguish good solutions from bad solutions.
Further stochastic operators i.e., cross-over, the mutation
is applied on selected populations based on their relative
fitness score assigned by objective function to generate
next population. Figure 2 provides a flow chart of GA.
Depending on the problem, different encoding schemes

such as binary, tree-based, value, and permutation can be
selected [36]. The optimization problem of this study is
encoded in the value scheme since the fitness of a gen-
erated schedule depends only on the discrete values, i.e.,
cost and condition irrespective of a specific order. Each of
the generated solutions is evaluated for its fitness by the
objectives function, established in problem formulation
Section 2.1.

3 Case Study
The proposed MMPF is validated on a case study of con-
crete bridges, which are part of a highway network1. The
database contains data about location, bridge structure,
materials, element-level condition scores resulting from
principle inspections, records of performed and planned
maintenance treatment(s) and their unit costs. The agency
uses condition data, damage estimation, and expert judg-
ments implemented into risk assessment to decide on
future maintenance plans. Considering that the existing
procedure still heavily relies on subjective judgments, it
is not fully transparent or easy to follow. The proposed
MMPF primarily utilizes existing condition score data and
can be applied within several agencies.
A five-year maintenance plan is programmed with

the aim to keep the network-level bridge score of at
least 2.7 with the estimated budget of e 6 million only.
The objective is to improve the performance of the
bridges by minimizing the socio-economic impact under
a limited budget. We have considered five treatment
options, namely i) monitoring, ii) minor intervention, iii)
medium intervention, iv) major intervention, and v) com-
plete replacement. The available treatment options are
linked to the range of BCI, as shown in Table 1.
For this case, seven essential elements of a bridge are

considered (see Table 2). Since the principal inspection is
performed at the element-level every six years, each ele-
ment has two visually assessed indices from the data of the
past 12 years. To have a thorough understanding of bridge
structural integrity and its deterioration over time, first,
the transition probabilities are calculated. Next, the case
study data is used to compute the performance indicators.

3.1 Computing transition probability matrix
The transition probabilities of each element are calculated
by percentage prediction method, provided in Section 2.

1The case study data is provided by a road agency with a non-disclosure
agreement.
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Fig. 2 Flowchart of a typical genetic algorithm

The percentage prediction method mainly relies on the
number of changes in condition state between the inspec-
tion interval. We have considered only those elements’
data that show the deteriorating trend in condition
state, which means no maintenance has been performed
between the two inspection activities. The transition
probability is represented as p(s, s′), where s ≤ s′.
By using Eq. 8, the transition probability matrix for each

bridge component is computed. Next, the system-level
probability matrix is computed using the relative impor-
tance of each bridge element (provided in Table 2). The
system-level transition probability matrix is provided in
Table 3, where the leftmost column represents the current
condition, and the top row shows the future condition
states.
Most of the elements had condition state 4 as their

lowest (poor) condition, except for joints and railing. To

Table 3 System level transition probability matrix of bridges

1 2 3 4 5 6

1 0.0315 0.795 0.090 0.075 0.004 0

2 0 0.832 0.081 0.072 0.0144 0

3 0 0 0.779 0.188 0.031 0

4 0 0 0 0.70 0.25 0.05

5 0 0 0 0 0.179 0.821

6 0 0 0 0 0 1

The bold values represent the transition probabilities elicited from historical data
and literature, and other probabilities are obtained from the case study data.

eliminate this skewed data distribution, we have used his-
torical data about bridge performance from other bridge
management system to estimate probabilities of transi-
tions from condition 4 to 5 and 5 to 6 [19]. The elicited
probability scores are denoted with bold text in Table 3.

3.2 Computing performance indicators
Performance indicators quantify the objective of optimal
multi-year maintenance planning. These indicators mea-
sure the impact of maintenance activity concerning the
maximization of bridge network performance (covering
structural aspects), and minimization of socio-economic
costs. By utilizing the quantification procedure provided
in Section 2.2.2, we have calculated the BCI, maintenance
cost, and user delay cost for all bridges of the case study.
Figure 3 presents the range of BCI found in the case

study dataset. The BCI of most of the bridges ranges
between 1.5 to 3.5, except for few bridges having greater
than 3.5 condition score. This limited dispersion of BCI in
the dataset shows the overall good condition state of the
considered bridges.
The approximate cost of maintenance treatment of each

bridge is computed using the Eq. 3 and the rules defined in
Table 1. Figure 4 shows a boxplot of the maintenance cost
with respect to the condition state. The bridges having a
poor condition state require significant maintenance and
higher cost as compared to bridges having relatively bet-
ter condition state. In other words, a bridge is economical
to maintain in its initial state of damage compared to the
critical damage level.
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Fig. 3 Ranges of BCI

The user delay cost is calculated by using the Eq. 4,
where the length of the work zone is estimated to be three
times the total length of a bridge. The reduced speed due
to maintenance is 90km/h whereas the standard speed is
130km/h. The duration of various maintenance interven-
tions are estimated as 48 h for minor, 168 h for medium,
and 312 h for the major treatments. Finally, the average
traffic per hour over a bridge is extracted by considering
the bridge location. The range of user delay cost of bridges
with respect to their bridge’s length and duration of the
maintenance activity is provided in Fig. 5.

4 Framework Implementation and Numerical
Results

As a result of computing performance indicators, the
bridges having BCI lower than 2.7 are eliminated from the
analysis, meaning they are in good condition and do not

need maintenance in the next five-years. In the follow-
ing sections, the implementation details of MAUT, MCP,
and genetic algorithms applied to the case study data are
provided.

4.1 Implementation of Multi-attribute utility theory
MAUT method is applied to the remaining 123 bridges.
The first step of MAUT is to determine the single utility
function (SUF) of each attribute across all the alternatives
(bridges), as discussed in Section 2.3. The calculation of
SUF for each attribute is an extensive process. Therefore,
for the sake of brevity, the computation process is omit-
ted here. An interested reader may refer to [23] for the
detailed procedure.
Next, the weight for each of the attributes is defined to

describe their impact on the overall objective. The high-
est importance is assigned to the BCI with 90, followed by

Fig. 4 Range of computed maintenance cost
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those bridges that can be maintained within the available
budget over 5 years, which resulted in the selection of 28
bridges in total.

4.2 Implementation of genetic algorithms andMarkov
chain process

The Genetic Algorithm (GA) is applied to the 28 selected
bridges to seek an optimal maintenance plan for the next
five years. To apply GA on the maintenance planning
problem, we have utilized the evolutionary computation
framework DEAP, available for Python programming lan-
guage [37]. A population size of 150 individuals with ten
generations is adopted for the GA simulator. A partially
matched crossover method with 0.2% probability is used,
where the chromosomes of two individuals are randomly
swapped to generate two new and unique individuals
(i.e., maintenance plans). Similarly, a mutation probabil-
ity of 0.7% is applied in which, instead of mutating the
chromosomes values, the order of the chromosomes is
shuffled.
Moreover, for the selection of the best individu-

als among the number of generated individuals, a
non-dominated multi-objective optimization algorithm
(NSGA-II) is applied [38]. The GA simulator is tunedmul-
tiple times with varying cross-over and mutation proba-
bilities to find the settings that best converge for the given
problem.
Figure 7 shows the number of individuals (maintenance

plans) generated for a single population on the axis of
condition state and budget limit having varying fitness
levels. A maintenance plan which compromises on the
required performance threshold of 2.7 can have as low
budget as e 2.1 million while comparing to those plans
which achieve 2.14 of performance level but on the cost
of e 6.6 million. The grey (dotted) lines in Figure 7 show

the optimization constraints for the 5 year maintenance
plan, where condition scores of all the bridges on the net-
work should be at least 2.7, while taking account the e 6
million budget limit. All the maintenance plans depicted
with the ‘blue plus’ marker are feasible solutions that ful-
fill the defined constraints. Though it is worthwhile to
mention that few generated maintenance plans do not
allocate all the 28 bridges for planning, therefore present
lower cost. The solutions represented with ‘red circle’ are
infeasible solutions and do not comply with the defined
optimization constraints.
Among the 150 maintenance plans (individuals) gener-

ated in 10 iterations (generations), we choose the single
most optimal maintenance plan as presented in Table 4.
The plan exhibits the set of bridges allocated to a specific
year along with treatment name, maintenance cost, and
improved condition state. The treatment name refers to
the intervention details provided in Table 1. Asmentioned
earlier, the bridge which is not maintained in a particular
year (e.g., 2020) will decline in condition state until it is
selected for maintenance. For instance, B861 had a condi-
tion value of 3.65 at the time of maintenance planning (say
2018), while when scheduled to be maintained in year 5
(say 2022), it is estimated to have deteriorated condition
score by 4.16. By the optimal allocation of bridge mainte-
nance to specific years, the plan shows a budget of e 5.9
million and achieving the average condition score for all
bridges of 2.27.
For the sake of comparison and to establish a baseline,

we also generated sequential maintenance plan without
applying the GAs. The purpose of sequential plan is to
mimic usual planning scenario where a bridge with poor
condition state is maintained first. An assumption of
equal budget allocation to each year is made, where the
residual budget of any year is equally distributed in all

Fig. 7 All the maintenance plans generated by GAs
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Table 4 Most optimal maintenance plan of 28 bridges using MMPF

No Bridge name Current condition Treatment name Maintenance cost Improved condition

Year 1

1 B74 3.65 Medium intervention 147,336.58 2.15

2 B719 3.36 Minor intervention 30,257.6 2.61

3 B291 3.35 Minor intervention 49,702.03 2.6

4 B822 4.04 Medium intervention 578,944.5 2.54

5 B223 3.27 Minor intervention 63,608.32 2.52

6 B842 3.07 Minor intervention 95,551.68 2.32

7 B723 3.42 Medium intervention 404,047.16 1.92

8 B428 3.24 Minor intervention 76,259.75 2.49

Yearly summary Total yearly spending: 1,445,707.62 (24%)

Remaining budget: 4,554,292.38 (76%)

Year 2

9 B275 3.12 Minor intervention 102,202.4 2.37

10 B853 2.93 Minor intervention 110,745.5 2.18

11 B335 3.47 Medium intervention 242,006.54 1.97

12 B79 4.08 Medium intervention 356,609.97 2.58

13 B78 3.08 Minor intervention 120,244.48 2.33

14 B750 4.08 Medium intervention 222,261.69 2.58

15 B351 4.05 Medium intervention 175,173.64 2.55

Yearly summary Total cost spent: 1,329,244.21 (22%)

Remaining budget: 3,225,048.17 (53%)

Year 3

16 B94 2.93 Minor intervention 116,274.03 2.18

17 B495 3.68 Medium intervention 119,176.0 2.18

18 B836 3.75 Medium intervention 238,610.66 2.25

19 B260 3.15 Minor intervention 55,593.66 2.4

20 B80 4.14 Major intervention 570,867.62 1.64

Yearly summary Total cost spent: 1,100,521.97 (18%)

Remaining budget: 2,124,526.20 (35%)

Year 4

21 B751 4.35 Major intervention 356,589.91 1.85

22 B251 2.98 Minor intervention 82,777.45 2.23

23 B83 3.88 Medium intervention 2.38

Yearly summary Total cost spent: 696,271.83 (11%)

Remaining budget: 1,428,254.37 (23%)

Year 5

24 B861 4.16 Major intervention 254,416.0 1.66

25 B860 3.71 Medium intervention 582,257.7 2.21

26 B551 3.74 Medium intervention 175,820.0 2.24

27 B788 3.89 Medium intervention 291,239.04 2.39

28 B320 3.89 Medium intervention 97,676.26 2.39

Yearly summary Total cost spent: 1,401,409 (23%)

Remaining budget: 26,845 (0.044%)

5-Years summary Total cost spent: 5973154.6 (99%), Remaining budget: 26845(0.044%)

Number of maintained bridges: 28, Avg. condition: 2.27

the remaining years of planning. This sequential main-
tenance planning, based on condition states only, can
allocate only 18 bridges for maintenance with average
performance level of 2.58 within the given budget limit

of e 6 million. Bridges based on their condition score
were sorted in a descending order and all the bridges
which are within the yearly budget limit are allocated
for maintenance.
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5 Discussion and Conclusions
This paper introduces a comprehensive framework for
the development of optimal maintenance planning for
a network of road bridges over a multi-year plan-
ning period, while considering the multiple objectives of
performance requirements and budget constraints. The
proposed Multi-year Maintenance Planning Framework
(MMPF) employs multi-attribute utility theory for rank-
ing a large number of bridges by capturing the prefer-
ence uncertainty and risk attitude of a decision-maker. It
develops several maintenance plans by using genetic algo-
rithms in conjunction with Markov chain processes. The
MMPF is generic and can include any other performance
attributes, according to the owners’ needs (e.g., safety,
environment, maintainability, etc).
In addition to developing an optimal maintenance plan,

the proposed framework enables asset owners to execute
various maintenance planning scenarios by changing bud-
get limits and performance objectives for the network.
Additionally, the framework can be used for future bud-
get planning by forecasting condition states of bridges.
The framework is validated using an inventory of con-
crete bridges on a highway network to develop an opti-
mal 5-year maintenance plan given a budget constraint
and a condition threshold. Based on the given crite-
ria, out of 800+ bridges, a group of 123 bridges was
found to have condition states below the required perfor-
mance level. The application of the framework prioritizes
the bridges and generate an optimal maintenance plan
for 28 bridges within the given budget limit, whereas,
the sequential maintenance plan (i.e., a bridge with the
poor condition is always maintained first), applied to
the same set of bridges, enables the maintenance of 18
bridges only.
The proof-of-concept on the case study data expresses

the usefulness of MMPF; however, there are few limi-
tations related to the scope and used methods. For the
detailed overview on the impact on users in case of (main-
tenance) interventions, the MMPF must be extended
with traffic flow modeling. The proposed framework
develops the static maintenance plan by filtering the
bridges that require maintenance. Here the assump-
tion is that filtered-out bridges are in good condition
state and will not require maintenance in the next
five years. However, factors like extensive usage, envi-
ronmental impacts may escalate deterioration process
of assets, thus resulting in an unexpected need for
maintenance.
Regarding the methodology, the transition probability

matrix developed in this study demands data of at least
the last two inspections and expects the ideal distribu-
tion of data over time. However, in reality, not all the
bridge elements can have detailed inspection records for
all the classes, which makes the calculation of transition

probability matrices a difficult activity. Similarly, despite
easy implementation and reasonable running times for the
genetic algorithm, it is well-known that they are unable to
guarantee an optimal solution due to possibly ample solu-
tion space of a combinatorial multi-objective problem.
However, genetic algorithms still promise good quality
solutions in a reasonable time, given the complexity of
multiple objectives and constraints.
From the application perspective, tool support is needed

to enable the seamless execution of various maintenance
planning scenarios. To encourage tool development and
to support the reproducibility, the implementation code
python has been made publicly available2. The future
work of this study aims to improve the MMPF further by
considering the specific structural aspects of each bridge
while defining specific maintenance treatment. Another
potential improvement of MMPF is to employ the mod-
els of machine learning for the performance prediction
of each bridge on the bases of particular bridge charac-
teristics, condition and maintenance history, and usage
intensity. This will also enable a more accurate estimation
of the required budget for the owners.
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