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Abstract

A doubly stochastic, conditionally binomial model is proposed to describe volumes of vehicular origin-destination
flows in regular vehicular traffic, such as morning rush hours. The statistical properties of this model are motivated by
the data obtained from inductive loop traffic counts. The model parameters can be expressed as rational functions of
the first and second order moments of the observed link counts. Challenges arising from the inaccuracy of moment
estimates are studied. A real origin-destination traffic problem of Tampere city is solved by optimisation methods and
the accuracy of the solution is examined.
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1 Introduction
Origin-destination (O-D) matrices are required for many
transport modelling and planning purposes, in particu-
lar, if there are changes in the use of land, economic
states, or transportation habits. Consider a connected
non-complete graph, and assume that a non-negative flow
with a fixed route is associated to each ordered pair of
nodes. The matrix of the flow volumes is often called the
traffic matrix or the O-D matrix of the system. Typically,
the traffic matrix cannot be inferred from the aggregated
flows observed on edges, as the number of edges is smaller
than the number of node pairs. Since theO-D volumes in a
transportation network are valuable information in many
contexts and the available observations often consist only
on edge flow measurements (e.g., vehicle counts on a road
section), traffic matrix estimation has been an interest for
decades.
The O-D estimation problems need to be studied from

observability and identifiability points of view. Observ-
ability holds, when short-term O-D flows can be uniquely
inferred from the observations, see [3, 5]. A recent work
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on observability involves, e.g., problems of designingmea-
surements and input control [6, 23]. The notion of iden-
tifiability refers to the uniqueness of parameters that
govern the underlying probability distributions of travel
demands. The concepts of observability, identifiability and
estimation are explained in a unifying manner by [25].
When the data consist of a time series of edge count

vectors, the system is seldom observable, but possibly sta-
tistically identifiable. The O-D matrix estimation has a
long history — see, e.g., the review by [1]. We point to
the seminal paper [21] on identifiability of the O-Dmatrix
and work in [12] on vehicular O-D matrix estimation
with variety of stochastic models and statistical methods.
[20] continued [21] with identifiability theorems for wider
classes of distributions, still assuming, however, statistical
independence of basic blocks of traffic.
Traffic random variables and models have been covered

from the probabilistic and physical point of view by [4].
O-D flows have typically been modelled using Poisson,
multinomial, uniform, gamma or Gaussian distributions.
The use of doubly stochastic models for road traffic has
been quite rare. However, [17] analysed a doubly stochas-
tic model, where a stationary process runs on the day
timescale. [14] compares Poisson and doubly stochastic
negative binomial models. Different Poisson mixtures and

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12544-020-00433-7&domain=pdf
mailto: pirkko.kuusela@vtt
http://creativecommons.org/licenses/by/4.0/


Kuusela et al. European Transport Research Review           (2020) 12:43 Page 2 of 12

two other hierarchical structures are examined in [18]
with a Bayesian estimation approach.
Optimisation offers a general methodology for solving

observability, estimation and prediction problems in traf-
fic networks. A review by [6] examines these problems in a
unified framework. Recently, [24] has generalized method
of moments through integrating statistics and optimisa-
tion techniques with transportation domain knowledge.
This study was motivated by the observation that traffic

counts were positively correlated also between the edges
that had negligible physical connection in terms of traffic
flows, e.g., between the opposite directions of one street
section. This calls for models, in which some common fac-
tors influence the traffic variation from day to day. The
correlations caused by shared flows are then shadowed by
those caused by the common factors, and the latter have
to be filtered out to facilitate utilisation of the former. On
the other hand, it is natural to assume that the random
variations of distinct O-D flows are conditionally inde-
pendent, given the common factors. Thus, the observed
positive correlations prompt to consider doubly stochastic
models. Suchmodels suit well to European cities that offer
multiple ways to commute and people favour the most
suitable one depending on some common factor, e.g.,
weather.
Our traffic matrix estimation approach is similar to [12],

but with a conditionally binomial model of vehicular traf-
fic. To our knowledge, such a model has not been studied
before in this context. Our graph structure is the simplest
interesting case that illustrates the problem of traffic split-
ting between two paths. However, our topology model can
also be seen as a network abstraction as discussed in [12].
Our vehicle count data suggested modelling the traffic by
a conditionally binomial distribution. The model is too
simple to be considered as an accurate representation of
the reality, but it captures those features we consider to
be themost essential. However, the conditionally binomial
model exposes us to statistical challenges illustrated in the
paper.
The results in this paper are threefold. First,we show

that a doubly stochastic model agrees with statistical
properties of our data and that the model parameters
can be computed as rational functions of the first and
second order moments of the observed edge counts. Sec-
ond, the estimation turns out to be practically feasible
only when the overall vehicle population is not too large.
This problem can, however, be alleviated by optimisation.
Third, experiments with such techniques are made using
real world data, focusing on rush hours of working day
mornings. The overall conclusion is that a doubly stochas-
tic structure can be considered adequate for regular rush
hour traffic at least, but in our case the model parame-
ters lie in an area in which only very rough estimation is
possible.

Our network topology and the conditionally binomial
traffic model is presented in section 2, followed by sta-
tistical methodology in section 3. In section 4, the model
and the optimisation methods are tested based on traf-
fic data from Tampere, Finland. Conclusions are drawn in
section 5.

2 Modelling framework
The modelling framework is discussed mainly in the con-
text of a simple model, in which the theoretical develop-
ment and the real traffic case study illustrate the main
characteristics of the framework. However, we elaborate
also a more complex topology in section 2.3 and derive
equations that apply to any network topology and route
system.

2.1 Minicity model
We focus on a simple network abstraction to study how
well the amount of local and through traffic can be
inferred fromminimummeasurements of the total traffic.
Our network, called “Minicity”, is shown in Fig. 1.
There are 3 sink/source nodes, denoted by W=West,

C = Centre, E=East, and 4 measurement points, denoted
by 1, 2, 3, 4. There are 6 flows with O-D pairs
(W ,C), (W ,E), (C,E), (E,C), (E,W ), and (C,W ). At each
measurement point, we observe the number of vehicles
during fixed time intervals. In the West-East direction,
denote the traffic flows F(W ,C), F(C,E), F(W ,E) as X,Y ,Z,
and the observations as O1 = X + Z, O2 = Y + Z. The
Minicity model is not observable (see [5] and [25]): the
flows X,Y ,Z and X − δ,Y − δ,Z + δ, with δ some con-
stant, yield identical observations O1 and O2. However,
the analysis is possible as a stochastic demand estimation
problem, in which a traffic model has an important role in
identifiability.

2.2 Stochastic modelling of regular traffic flows
We focus on the flow structure of regular traffic consist-
ing of a rather stable amount of vehicles. Assume that

Fig. 1 The Minicity model



Kuusela et al. European Transport Research Review           (2020) 12:43 Page 3 of 12

the observation data consist of a long sequence of mea-
surements on usual working days. Then the traffic follows
steady patterns at large, but stochastic variation makes
each day a bit different. To get an idea of this variation,
Fig. 2 presents the variation of two very illustrative quan-
tities on working day Mondays at the resolution of 15
minutes. The upper plot shows the index of dispersion
of counts (IDC; variance over mean) and the lower plot
the coefficient of variation (CoV; standard deviation over
mean).
First, recall that the IDC of a Poisson distribution always

equals one. The upper plot shows that the traffic can be
considered Poissonian during themost silent period of the
night, but not at any other time. However, the IDC is rela-
tively low (about 2) and stable also during the day between
9:30 and 15:30, whereas it is notably higher during the
morning and afternoon rush hours. The non-Poissonian
character of vehicular traffic is generally recognised, but
the upper plot of Fig. 2 offers a more detailed picture.

Fig. 2 The index of dispersion (IDC, σ 2/μ,upper) and the coefficient
of variation (CoV, σ/μ, lower) of the observed vehicle counts are
illustrated on normal working day Mondays at Tampella
measurement point. Inbound and outbound traffic are illustrated in
black and red, respectively

Although a popular extension of Poissonian modelling
has been to introduce additional variables, ε and θ , to
scale the relation between the variance and the mean, e.g.,
Var(X) = ε(E(X))θ [7], we study a more specific model.
In a normal working day, the majority of the morn-

ing rush hour traffic consists of people’s regular drives to
workplaces, educational institutions etc. There is a steady
population of the same vehicles that create this traffic,
but the actual presence of each particular vehicle can be
considered as random. This suggests a binomial type of
model; from n vehicles potentially appearing in a rush
time interval I, each one actually appears with some prob-
ability p. Such amodel is, however, immediately refuted by
statistical data. The IDC of Bin(n, p) is 1−p, i.e., still lower
than that of a Poisson distribution. Obvious shortcomings
in the motivation of the above binomial model are that the
probability of using a car (i) is not homogeneous in the
population, and (ii) varies according to time by common
external factors like weather, seasonal holiday activity, flu
epidemics etc. The inhomogeneity challenge is serious,
but it is not in the scope of this paper. Instead, we focus on
the time variation by considering a doubly stochastic, con-
ditionally binomial model, in which the parameter p is the
same for all flows but varies from day to day as a stochastic
process.
The presence of a common “activity factor” of a day is

suggested by the data; we observed a strong positive cor-
relation of measured vehicle counts at separate locations
that cannot logically contain more than a negligible num-
ber of the same cars, i.e., at the opposite directions of the
same road. For a comprehensive statistical analysis of the
data utilised in this paper, see [16]. In particular, the corre-
lation matrices of the measurement locations O1, . . . ,O4
onMonday – Thursday mornings at 7:45 – 8:45 A.M. and
8:45 – 9:45 A.M.,

O1 O2 O3 O4
O1 1 0.87 0.55 0.50
O2 0.87 1 0.60 0.51
O3 0.55 0.6 1 0.79
O4 0.50 0.51 0.79 1

and
O1 O2 O3 O4

O1 1 0.94 0.74 0.56
O2 0.94 1 0.77 0.58
O3 0.74 0.77 1 0.80
O4 0.56 0.58 0.80 1

,

show the highest correlations between physically con-
nected locations (motorway passing the city). However, all
location pairs indicate considerable positive correlation.
We interpret this common correlatedness to be due to a
kind of “activity factor”, see also [2].
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The assumption of an “activity factor” is also compatible
with the lower plot of Fig. 2. The CoV is roughly constant
throughout the working time, the rush hours included,
despite of strongly differing traffic volumes. This means
that the random variation of the daily sequence of traffic
counts in a fixed quarter-hour is dominated by a common
random factor, not by individual level variation, whose
aggregated variance scales with n, not n2. A detailed anal-
ysis of the variance in the conditionally binomial model is
given in the next subsections.

2.3 Conditionally binomial model
Consider a fixed time interval I of a day, and the
daily traffic counts in I at four measurement stations as
depicted in Fig. 1. Assume that for each day k, k =
1, 2, . . ., there is a random variable γk with values in
(0, 1), interpreted as the “activity level” of day k. The
sequence (γk) is assumed stationary and ergodic, i.e., its
time average agrees with its average over the probabil-
ity space. Let us then assume that, conditioned on γk ,
the daily West-East traffic flows in period I, denoted
as XWE

k , YWE
k , and ZWE

k (see section 2.1) are indepen-
dent and have distributions Bin(nWE

X , γk), Bin(nWE
Y , γk),

Bin(nWE
Z , γk), respectively, and similarly for the East-West

counterparts. Assume Minicity to be uncongested so that
the traffic via the city centre is not a realistic option for
the through traffic and there is only one path for each O-D
flow (see [11] for estimation under congestion).
To simplify, we use the notation nX = nWE

X , nY =
nWE
Y , nZ = nWE

Z ,mX = nEWX , mY = nEWY , mZ = nEWZ .
When considering the model of a single day, the index k
is omitted. The n andm parameters represent the sizes of
relatively stable populations of vehicles that can be used to
make a trip from an origin to a destination, hence passing
through some of the measurement points. The numbers
nX , nY , nZ ,mX ,mY ,mZ as well as the distribution of γ are
considered as unknown.
One obvious candidate for modelling γ is the family of

beta distributions, resulting in the so-called beta-binomial
distributions. In a beta-binomial distribution with param-
eters (α,β , n) with large n, the squared CoV is approxi-
mately β/α, i.e. independent of n, which coincides well
with the properties of the measured traffic.
Consider the measured quantitiesO1 = X+Z andO2 =

Y+Z, and denote their first and secondmoments asm1 =
E (O1), m2 = E (O2), v1 = Var (O1), v2 = Var (O2) and
c12 = Cov (O1,O2). Using the equations

Var(U) = E (Var [U |A]) + Var (E [U |A]) ,
Cov (U ,V ) = E (Cov [U ,V |A])

+ Cov (E [U |A] , E [V |A])
(1)

that hold for any square integrable U, V and any con-
ditioning random variable A, we obtain the following

expressions in the conditionally binomial model:

m1 = (nX + nZ)E(γ ),
m2 = (nY + nZ)E(γ ),
v1 = (nX + nZ)2Var(γ )

+ (nX + nZ)(E(γ ) − (E(γ ))2 − Var(γ )),
v2 = (nY + nZ)2Var(γ )

+ (nY + nZ)(E(γ ) − (E(γ ))2 − Var(γ )),
c12 = (nX + nZ)(nY + nZ)Var(γ )

+ nZ(E(γ ) − (E(γ ))2 − Var(γ )).

(2)

Corresponding equations hold for the East-West direc-
tion, we denote them by (2)EW . The role of covariance
c12 is essential in identifying nZ as the other equations
involve either nX + nY or nY + nZ . Note that because
the value of γ is common for both directions, (2) and
(2)EW together provide 10 equations for 8 unknowns:
nX , nY , nZ ,mX ,mY ,mZ , E(γ ), and Var(γ ).
Let us denote the IDCs and squared CoVs of O1 and O2,

respectively, as

δ1 = Var (O1)

E (O1)
= v1

m1
, δ2 = Var (O2)

E (O2)
= v2

m2
,

ζ1 = Var (O1)

(E (O1))2
= v1

m2
1
, ζ2 = Var (O2)

(E (O2))2
= v2

m2
2
.

Now, straightforward computations yield the following
result.

Proposition 1 Assume that the moment Eqs. 2 hold for
some E(γ ) ∈ (0, 1), Var(γ ) ∈[ 0, E(γ )(1 − E(γ ))] and
nX , nY , nZ ≥ 0.

1. When nX �= nY and Var(γ ) > 0, (2) has a unique
solution whose components are rational functions of
the moments and can be written as

E(γ ) = 1 + m1m2
m1−m2

(ζ1 − ζ2)

1 + δ1−δ2
m1−m2

Var(γ ) = δ1 − δ2
m1 − m2

(E(γ ))2

nX = δ1
E(γ )

(
c12
v1

− δ2
δ1

) m1
m2

− 1
ζ1 − ζ2

nY = δ2
E(γ )

(
c12
v2

− δ1
δ2

) m2
m1

− 1
ζ2 − ζ1

nZ = (m1 − m2)c12 + δ1−δ2
ζ1−ζ2

m1m2E(γ )(ζ2 − ζ1)
,

(3)

with all the denominators being non-zero.
2. When nX �= nY and Var(γ ) = 0 (a purely binomial

model with non-random γ ), (2) has the unique
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solution

γ = 1 − v1
m1

= 1 − v2
m2

,

nZ = c12
γ (1 − γ )

, nX = m1
γ

− nZ , nY = m2
γ

− nZ .

(4)

3. When nX = nY , (2) has infinitely many solutions.

It is not hard to see that a similar model with con-
ditionally Poissonian distributions (instead of binomial
distributions) is not identifiable. We summarise briefly
other model candidates and their identifiability in our
context in Table 1.
We close this section by discussing the use of the condi-

tionally binomial model in more complex networks. As an
example, consider a line topology with 4 nodes {1, 2, 3, 4},
3 directed links {
1, 
2, 
3} := {(1, 2), (2, 3), (3, 4)}
and 6 routes R := {r1, r2, r3, r4, r5, r6,} :=
{{
1}, {
2}, {
3}, {
1, 
2}, {
2, 
3}, {
1, 
2, 
3}}. Line topolo-
gies are relevant for vehicular traffic as well as for train
passenger traffic.
Assume that, conditionally on a random parameter γ ,

the amount of vehicles on route ri in a time period is a ran-
dom variable Xi with distribution Bin(ni, γ ), the Xis being
independent given γ . Assume that the traffic Oi on link 
i
is measured, i = 1, 2, 3. Denote by A the 3 × 6 matrix (the
route incidence matrix)

Aij = 1{
i∈rj}, i = 1, 2, 3, j = 1, . . . , 6.

The counterpart of the moment Eqs. 2 can then be written
in matrix form as

E(O) = E(γ )An,
Cov(O) = E (γ (1 − γ ))A diag(n)AT + Var(γ )AnnTAT ,

(5)

where O = (O1,O2,O3)T and n = (n1, . . . , n6)T . Since
Cov(O) is symmetric, (5) amounts to 9 equations for the 8
unknowns E(γ ), Var(γ ), n1, . . . , n6. Substituting the first

equation into the last term of the second, (5) is trans-
formed into

E(O) = E(γ )An,

Cov(O) = E (γ (1 − γ ))A diag(n)AT+Var(γ )

E(γ )2
E(O)E(O)T .

(6)

In fact, Eq. 6 is valid for any network and route system
with conditionally binomial traffic. The (i, j)-element of
A diag(n)AT is

[A diag(n)AT ]ij =
∑

rk∈R: 
i∈rk , 
j∈rk
nk . (7)

It is straightforward to check (for example, by comput-
ing the determinant) that the linear map (n1, . . . , n6) �→
A diag(n)AT is bijective. Thus, the vector n can be solved
from the second equation of (6) as a linear combination of
the elements of the matrix

1
E (γ (1 − γ ))

Cov(O)− Var(γ )

E(γ )2E (γ (1 − γ ))
E(O)E(O)T .

Feeding this expression of n into the first equation of
(6) yields three (effectively, two) non-linear equations for
the two first moments of γ . Thus, the model is identi-
fiable (except for some singular cases, cf. Proposition 1).
An analytical solution of the equations is probably hard
to find, but the optimisation approach of section 3.2 can
be applied in practical cases. We point out that the above
solution works in two steps separating the vector n and γ .
This topic will be elaborated in section 4.3.

3 Traffic matrix estimation with the conditionally
binomial model

Let us consider the estimation of the model parame-
ters from the estimated first and second moments of the
observations when nX �= nY and Var(γ ) > 0.

3.1 Challenges of the use of proposition 1
Despite of the existence of the explicit solution (3), the
model presents a principal challenge by depending on the
accurate estimation of variances. To consider this in some
detail, let γ1, . . . , γN be independent copies of a random
variable γ with values in (0, 1), and for k = 1, . . . ,N , let

Table 1 Summary of possible traffic models and their identifiablity

model identifiability and comments

Poisson, extended Poisson identifiable, not compatible with Tampere data, used in [12]

normal model (2-parameter models in general) not identifiable; 6 parameters with 5 equations

normal model with common variance not identifiable; unable to separate local and through traffic

conditionally Poissonian distributions, e.g., negative binomial
distribution [14], Poisson-lognormal, Poisson - inverse Gaussian
[18]

not identifiable; no bijection between the model parameters and the observation

conditionally binomial model identifiable, has similar properties to Tampere data
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Uk be an independent random variable with distribution
Bin(n, γk). The unbiased sample variance

s2N = 1
N − 1

N∑
k=1

(Uk − Ū)2, Ū = 1
N

N∑
k=1

U ,

has variance

Var
(
s2N

) = 1
N

(
μ4 − N − 3

N − 1
σ 4

)
, (8)

where σ 2 = Var(U) and μ4 = E
(
(U − EU)4

)
(e.g., [8]).

WithN large and n not too small, the standard deviation
of s2N is well approximated by

STD(s2N ) ≈ √
2p(1 − p)

n√
N

=
√
2(1 − p)√

N
E(U). (9)

Although the value of p can thus be consistently estimated
as p ≈ 1 − s2N/Ū , the simultaneous estimation of both
parameters of the binomial distribution is known to be dif-
ficult. [10] showed that there is no unbiased estimator of
either parameter alone. The difficulty is intuitively obvi-
ous for the case of small p and large n, because Bin(n, p)
is then very close to Poisson(np), a distribution with a sin-
gle parameter. However, the usually powerful principle of
maximum likelihood fails in this problem also for larger
values of p, because the likelihood function turns out to be
almost constant on the set

{
(n, p) : np = Ū

}
.

When Var(γ ) > 0, an estimate of STD(s2N ) can be
obtained by approximating U by a normal distribution
with the same mean and variance. By Cochran’s theorem
[9], N i.i.d. samples from the normal distribution satisfy

(N − 1)
s2N
σ 2 ∼ χ2

N−1, (10)

where χ2
N−1 is the Chi-squared distribution with N − 1

degreees of freedom. Figure 3 illustrates the confidence
intervals of s2N/σ 2 at the risk levels α = 0.05, 0.1, 0.2.
Beyond N = 104, increasing the sample size decreases
the uncertainty of the sample variance estimate extremely
slowly.
The most frequently appearing element in the solution

(3) is the difference ζ1 − ζ2 of the relative variances of
O1 and O2. In order to provide satisfactory inference, the
errors of the estimates ζ1 and ζ2 should be at the level of
a fraction of their difference, say, at most ξ |ζ1 − ζ2|, with
some not too high ξ ∈ (0, 1).
Assume now that we have an i.i.d. N-sample from the

conditionally binomial model, and let s2N be the unbiased
sample variance ofO1. The requirement STD(ζ1) ≤ ξ |ζ1−
ζ2| is roughly equivalent to

STD(s2N )

(E (O1))2
≤ ξ |ζ1 − ζ2|

= ξ · E(γ ) − E
(
γ 2)

(E(γ ))2
· |nX − nY |
(nX + nZ)(nY + nZ)

.

(11)

Fig. 3 Confidence intervals for the ratio s2/σ 2 derived by using
normal approximation for vehicle counts

Inserting to (10) σ 2 = (nX + nZ)2Var(γ ) + (nX +
nZ)(E(γ ) − E

(
γ 2)) and Var

(
χ2
1
) = 2, writing

(nX , nY , nZ) = n(βX ,βY ,βZ)

with βX + βY + βZ = 1 and simplifying, we obtain from
(11) the condition for N :

N ≥ 2
[

βY + βZ
ξ |βX − βY |

(
1 + n

Var(γ )(βX + βZ)

E(γ ) − E
(
γ 2)

)]2

.

(12)

This expression reveals an important feature of the condi-
tionally binomial model. When

n ≤ E(γ ) − E
(
γ 2)

Var(γ ) (βX + βZ)
, (13)

the required number N of samples does not depend heav-
ily on n. In the opposite case, however, the required N
grows quadratically in n. To illustrate magnitudes, assume
that E(γ ) = 0.8 and STD(γ )=0.05 — then (E(γ ) −
E

(
γ 2))/Var(γ ) = 63. Thus, the system size n affects the

estimation precision adversely. Intuitively, the effect of the
binomial fluctuations, on which the identification of nZ is
based, becomes with large n negligible in comparison to
the effect of the variation of γ .
The estimation challenge is illustrated in Fig. 4. We

simulated the model with γ being uniform on the inter-
val (0.6, 0.8) and the relative population sizes being
(βX ,βY ,βZ) = (2/6, 1/6, 3/6), and studied the accuracy
of estimation from (3) with system sizes n = 60 and 600,
which are below and above the critical magnitude given
in (13). The model parameters were estimated in both
cases in hundred samples of size N = 5000, comput-
ing the estimates from increasing subsamples to see the
speed of convergence. Figure 4 presents the mean relative
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Fig. 4Mean relative errors of estimates of E(γ ) (left), n (middle) and βZ (right), computed by (3) from hundred series of simulated observations. In
each series, the estimates are calculated in an incremental fashion by increasing the sample size (given on the horizontal axis). The true parameter
values were E(γ ) = 0.7, Var(γ ) = 1/300, βX = 2/6, βY = 1/6, βZ = 3/6, and n = 60 in the upper row and n = 600 in the lower row

errors of the estimates of E(γ ), n = nX + nY + nZ and
βZ = nZ/(nX + nY + nZ). The experiment suggests that
the smaller system can be identified rather well with about
600 samples, whereas estimates from the larger system
can easily be nonsense (e.g., negative) even when there are
several thousands of samples (individual simulation runs
were quite different, and the shapes of the point clouds
varied). Note that the number of daily samples with some
degree of homogeneity can hardly exceed 1000 in the real
world.

3.2 Optimisation approach
We discuss the optimisation approach first in the context
of the Minicity problem as it illustrates the main elements
of the approach and serves our real traffic case study.
A natural approach to solve the traffic matrix esti-

mation problem in both directions simultaneously is
to minimise the squarred error of moment Eqs. 2
and (2)EW . However, the covariance equations pose
an additional challenge in the minimisation approach:
if the last equation in (2) produces an error 
 =
c12 − (

(nX + nZ)(nY + nZ)Var(γ ) + nZ(E(γ ) − E
(
γ 2))

with parameters (nX , nY , nZ , E(γ ), Var(γ )), then the mod-
ified parameters (nX + ε, nY + ε, nZ − ε, E(γ ), Var(γ )),
where ε = 2
/(E(γ )−E

(
γ 2)), produce an equal error with

an opposite sign. Thus the minimisation of the moment
equations cannot uniquely determine optimal parameter
values as the equations allow shifting traffic between local
and through traffic.

To avoid this difficulty, we require that the covariance
equations (the last equations of (2) and (2)EW ) be solved
exactly. In the general form, the problem is

min
∑
i

(
Ōi − E (Oi)

)2 + κ
∑
i

(
s2(Oi) − Var (Oi)

)2

s.t. Cov
(
Oi,Oj

) = qij ∀i, j,
where i, j run over traffic count measurement locations,
Ōi is the sample mean over the days, and s2 and qij stand
for sample variance and covariance, respectively. Expres-
sions containing the parameters are E (Oi) , Var (Oi), and
Cov

(
Oi,Oj

)
, given by (2) and its counterpart (2)EW ; κ is a

weight and scaling parameter.
In our case, the solution of the quadratic equation for nZ

is

nZ =
{

− E(γ ) + (E(γ ))2 − (nX + nY − 1)Var(γ )

+
([ − E(γ ) + (E(γ ))2 − (nX + nY − 1)Var(γ )

]2

+ 4Var(γ )(c12 − nXnYVar(γ ))

)1/2}/
(2Var(γ )),

(14)

and a similar one holds for the East-West counterpart
mZ . The quadratic equation has exactly one positive solu-
tion, because c12 − Var(γ )nXnY > 0 by the positivity
of nZ . To summarise, in the bidirectional traffic matrix
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estimation we search for (nX , nY ,mX ,mY , E(γ ), Var(γ ))

that minimise the cost function

(E (O1) − (nX + nZ)E(γ ))2

+(E (O2) − (nY + nZ)E(γ ))2

+(E (O3) − (mX + mZ)E(γ ))2

+(E (O4) − (mY + mZ)E(γ ))2

+κ ×
{
(Var (O1) − (nX + nZ)2Var(γ )

− (nX + nZ)(E(γ ) − E
(
γ 2)))2

+(Var (O2) − (nY + nZ)2Var(γ )

− (nY + nZ)(E(γ ) − E
(
γ 2)))2

+(Var (O3) − (mX + mZ)2Var(γ )

− (mX + mZ)(E(γ ) − E
(
γ 2)))2

+(Var (O4) − (mY + mZ)2Var(γ )

− (mY + mZ)(E(γ ) − E
(
γ 2)))2

}
,

(15)

where nZ is given by (14) and mZ respectively. As the
estimation of the first moments is more robust than the
estimation of the second moments, we require that the
first moments to be fittedmore accurately than the second
moments. This is achieved by the weight parameter κ that
multiplies the fitting error of the second order moments,
see [12] and [13]. Additionally, κ scales the different orders
of magnitude in the first and second moments.
The optimisation approach of a more general topology

follows from Eq. 6 in section 2.3. The first task is to solve
the vector n as explained in that section. The optimisa-
tion is applied to the observed link means to solve for E(γ )

and Var(γ ). Note that this process naturally separates the
parameters expressing the number of potential vehicles in
each OD pair and the common intensity variable γ . The
discussion of our case study in section 4.3 elaborates more
the interplay of these parameters, as well as benefits of
separating them.

4 Case study: morning traffic in the city of
Tampere

4.1 Data
We studied the O-D estimation from a 15 minute interval
traffic count data collected in the city of Tampere during
2011-2014. The city topology and themeasurement points
are illustrated in Fig. 5.
Unfortunately, various construction works caused inter-

ruptions in data and we selected the northern motorway
with measurement locations Santalahti and Tampella for
the traffic matrix estimation in the Minicity model. This
road is a fast way to enter the city centre, but there is a
large amount of traffic passing by the city centre.

An earlier study of the data suggested that the week-
day morning traffic between 06:00 and 10:00 A.M. indi-
cates the traffic flows most clearly. In the afternoons
between 3:00 and 9:00 P.M. there can be some correla-
tion between measurement points due to the traffic flows,
but it is hard to detect from the general simultaneous
activity in all the directions of the traffic. For other time
periods, traffic bursts at the measurement locations near
the city centre can be considered independent.
For the Minicity traffic matrix estimation, we select two

morning periods 7:45 - 8:45 A.M. and 8:45 - 9:45 A.M. on
weekdays from Monday through Thursday. The morning
rush hour tends to shift slightly later on Fridays. Also, we
exclude all public holidays, school holidays, isolated work-
ing days next to a public holiday, days between Christmas
Eve and the New Year as well as months June – August
due to lower traffic volumes. In this way, we end up with
N=528 andN=522 days of traffic count measurements for
the former and the latter rush hour period, respectively.

4.2 Estimation results
Although we removed atypical working days a priori there
have been accidents and other events that produce outlier
traffic counts that we removed by FAST-MCD covariance
estimation [19]. We can safely assume that our data set
contains less than 25% of contamination and configure
the algorithm as recommended in [19]. To minimise the
cost function of (15) with κ = 0.00001, a global optimi-
sation routine NMinimize in Mathematica is utilised in
algorithm autoselectionmode. Also, the region of minimi-
sation is constrained to be (nX , nY ,mX ,mY , E(γ ), Var(γ ))

such that nZ > 0, nY > 0,mX > 0,mY > 0, E(γ ) ≤
1, Var(γ ) ≥ 0, c12 − nXnYVar(γ ) > 0, Var(γ ) ≥ 0, c34 −
mXmYVar(γ ) > 0. The two last constraints assure that
nZ andmZ have positive solutions. The optimisation esti-
mates the mean and the variance of the random variable
γ . When plotting solutions against the measured data, we
model γ by a beta distribution. The beta-binomial distri-
bution has properties that fit well with our observations
on the index of dispersion and the coefficient of the vari-
ation of the measured traffic, see section 2.2. However,
some other distribution for γ may provide a better fit to
the data.

4.2.1 Morning traffic 7:45-8:45 A.M.
The minimum cost of Eq. 15 is 89.70 with the optimal
parameter values provided at the top of the Table 2.
If we wish to model γ with a beta distribution, then the

distribution parameters would be α = 43.54 and β = 4.59.
The majority of vehicles travelling from West to East

pass both measurement locations. This is expected,
because the western section of Tampere has large housing
districts (single houses), whereas the universities, hospi-
tals, and other large offices are located in the eastern part
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Fig. 5 Illustration of inductive loop measurement points in the city of Tampere. This research utilises locations Santalahti and Tampella and our
measurement points are denoted as in Fig 1. The city centre, denoted by C, is located at southwest of Tampella

of Tampere. 622 potential vehicles arriving to the city
centre is a feasible estimate. The value E(γ ) = 0.91 is
somewhat high, but well in line with analysis of other rush
hour traffic counts. As expected, in the opposite direction,
most vehicles pass both measurement locations and only
a few vehicles start from the city centre in order to reach
the western part of the city.
The measured and estimated vehicle counts are illus-

trated by smooth histograms in Fig. 6, with an approxi-
mation by the above beta-binomial distribution. The traf-
fic counts at the measurement locations O1,O2 and O4
can be estimated reasonably well. There is peakness and
skewness present in the observed traffic counts that is

Table 2 Optimal parameter values for Monday - Thursday
morning traffic

Optimal parameter values at 7:45-8:45 AM

nX nY nZ mX mY mZ E(γ ) Var(γ )

622 49 2140 221 89 1273 0.91 0.0017

Optimal parameter values at 8:45-9:45 AM

nX nY nZ mX mY mZ E(γ ) Var(γ )

783 170 2227 28 116 1782 0.54 0.0007

challenging to model with simple statistical models. The
Kolmogorov – Smirnov distance between the measured
data and the model, i.e, between the blue and red distri-
butions, is 0.11, 0.08, 0.10, and 0.11 (atO1,O2,O3, andO4,
respectively). By Kolmogorov – Smirnov test, the mea-
sured and modelled distributions are different at all the
locations.

4.2.2 Morning traffic 8:45-9:45 A.M.
ForMonday-Thursday morning traffic at 8:45-9:45 A.M. ,
the minimum cost of (15) is 1396, with the parameter val-
ues given at the bottom of Table 2. The beta distribution
parameters for γ are α = 180.00 and β = 153.88.
This period ends the Monday-Thursday morning rush

hour traffic. Now the result is qualitatively different with
a clearly lower value E(γ ) = 0.54. Illustration in Fig. 7
shows that the shape of the observed vehicle count dis-
tribution is more rounded and flatter, but skewness of
the observed distribution is clearly visible at locations
O3 and O4. The beta-binomial distribution, with esti-
mated parameter values, is more symmetric. The Kol-
mogorov – Smirnov distance between the measured data
and the model is 0.09, 0.14, 0.15, and 0.06 at O1,O2,O3,
and O4, respectively. By Kolmogorov – Smirnov test, the
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Fig. 6 Smooth histogram illustrations of measured (blue) and modelled (red) vehicle counts on Monday – Thursday mornings between 7:45 – 8:45
AM. A beta distribution has been taken to model γ

measured and modelled distributions are different at all
the locations, but at O4 the p-value is 0.047.

4.3 Robustness of the estimation results
We examine the robustness of the estimation results in
two ways. First, we apply resampling to the original data,
and then we examine the optimal parameter values with
generated data.

Resampling: The resampling data are generated by
selecting randomly without replacement 90% of the Mon-
day – Thursday morning data to produce a collection
of 1000 estimation samples. For morning traffic between
7:45 – 8:45 A.M. , we study closely 162 estimation results
with good fit to the data. In these results, the value of E(γ )

varies from 0.55 to 0.95, i.e., the probability of executing a
journey could also be clearly lower than the one estimated

Fig. 7 Smooth histogram illustrations of traffic between 8:45 - 9:45 AM, notation as in Figure 6
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from the original data. Clustering analysis of the results
indicates that most solutions are around the original data
estimate, but there could be an alternative model candi-
date that has a lower E(γ ) ≈ 0.65. We note that this value
of E(γ ) would be closer to the results of the traffic matrix
estimation for 8:45 – 9:45 A.M.. The traffic matrix proba-
bly evolves during the morning hours. For the peak traffic,
the value of E(γ ) is high, and when the traffic volumes
decrease, also the value of E(γ ) decreases.
The same processes are repeated with the morning traf-

fic data for 8:45 – 9:45 A.M., where 201 good estimation
results that are studied in more detail. These results are in
line with the ones from the original data.
Generated data: Next, we generate from a beta-

binomial distribution 1000 samples each of size 500,
with parameters that resemble the Tampere city case,
and examine the accuracy of our traffic matrix estima-
tion technique. Note that this realistic experiment is a
challenging one; the parameters are not in the range of
efficient inference identified in section 3.1, because the
mX and mY values for East–West local traffic are close to
each other. Results of section 3.1 and parameters at the
top line of Table 2 allow to calculate lower bounds for the
required number of samples: in the West–East direction,
Eq. 12 with ξ = 1 gives rise to a lower bound of 100
119 samples. In comparison, in the East–West direction,
the corresponding lower bound is 213 814 samples, which
reflects the difficulty of the estimation when mX and mY
values are close to each other. Eq. 13 provides an upper
bound for the total number of vehicles per traffic direc-
tion, nX +nY +nZ ormX +mY +mZ , so that the required
number of samples does not grow quadratically in the
total number of vehicles. These upper bounds are around
50 vehicles, whereas the estimated values for the first
morning period give rise to 2811 vehicles in West-East
direction and 1583 in the opposite direction. Thus this
experiment is extremely challenging for the optimisation.
In the estimation experiment with simulated samples

and known parameter values, the true value of the West–
East ratio nX/(nX + nZ) is captured very well, but the
East–West ratiomX/(mX +mZ) tends to be estimated too
low. Further, the estimation tends to favour high n or m
values together with low E(γ ) values. In the model, the
errors in the n andm parameters versus E(γ ) compensate
each other, which explains the good fits to the generated
traffic observations. We conclude that the sample size of
500 is not large enough to estimate the exact parameters
values in a robust and reliable manner.
In practice, there needs to be additional information

to judge the correct levels of the n or m parameters and
E(γ ). There is freedom to increase one and to decrease
the other while keeping the product intact, which is the
basic challenge of Bin(n, p) estimation with both p and
n unknown. [10] note that the estimation of n and p are

linked together. On the other hand, in our model the vari-
able γ , common to all flows, limits the degree of freedom.
Our further experiments indicated that the balancing the
overestimation/underestimation of the n orm values with
E(γ ) vanishes when some parameters are fixed to their
true values.

5 Conclusions and future perspectives
The analysis of daily quarter-hour traffic count time series
data on city traffic in Tampere shows strong positive cor-
relations even between measurement points that share no
traffic flows. This suggests the consideration of doubly
stochastic traffic models, in which some common factor
influences the traffic volumes of all O-D flows. Because
similar positive correlatedness of vehicular traffic can be
expected to hold rather generally, it deserves more atten-
tion as a challenge for modelling and statistical inference.
In this paper, we studied the ability of a conditionally bino-
mial model to utilise the correlations caused by shared
traffic, despite of the additional correlations caused by the
common activity factor. The model benefits from correct
statistical properties as well as a rather intuitive role of
parameters.
We focused on a simple network model, but we also

showed that conditionally binomial traffic models are
identifiable in rather general network and route scenarios.
Our study at the end of section 2.3 indicates that optimisa-
tion might be the best method for practical solutions, but
a detailed analysis of this matter remains an open research
topic.
We examined solving the O-D matrix problem using

the first and second order statistics of the observed
link counts. The conditionally binomial model can be
solved exactly and the solution is numerically feasible
when traffic volumes are sufficiently small. The analysis
reveals parameter regions in which estimation challenges
are expected. Unfortunately, our real traffic case of the
city of Tampere falls in such a parameter region. How-
ever, approximate solutions for the O-D matrix could be
obtained by optimisation methods. Our accuracy studies
indicated that the solutions may suffer from simultane-
ous over- and underestimation of parameters, similar to
the well known challenge of estimating Bin(n, p) when
both n and p are unknown. We regard link counts as the
primary source of information, but acknowledge, simi-
larly to [15], the benefits of some additional information.
The context of vehicular traffic allows incorporating addi-
tional geoinformatics, see e.g. [22] and separating the
n,m-variables from γ . We see those as succesfull future
approaches.

Abbreviations
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Bin(n, p): binomial distribution; STD: standard deviation; n,m: population size
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