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Abstract

Technological advancements in the field of transportation are gradually enabling cooperative, connected and
automated mobility (CCAM). The progress in information and communication technology (ICT) has provided
mature solutions for infrastructure-to-vehicle (I2V) communication, which enables the deployment of Cooperative-
ITS (C-ITS) services that can foster comfortable, safe, environmentally friendly, and more efficient traffic operations.
This study focuses on the enhancement of speed advice comfort and safety in the proximity of signalized
intersections, while ensuring energy and traffic efficiency. A detailed microscopic simulation model of an urban
network in the city of Thessaloniki, Greece is used as test bed. The performance of dynamic eco-driving is evaluated
for different penetration rates of the dynamic eco-driving technology and varying traffic conditions. The simulation
analysis indicates that speed advice can be comfortable and safe without adversely impacting energy and traffic
efficiency. However, efficient deployment of dynamic eco-driving depends on road design characteristics, activation
distance of the service, traffic signal plans, and prevailing traffic conditions.

Keywords: Dynamic eco-driving, Enhanced speed advice, Connected vehicle, Microscopic traffic simulation,
Signalized intersection, Greenhouse gas emissions

1 Introduction
C-ITS and Advanced Driver Assistance Systems (ADAS)
can significantly enhance comfort, safety, traffic efficiency
and energy savings via real-time information provision
(tailored to the needs of individual vehicles), and coopera-
tive driving [30]. Road safety impact assessment of the lat-
ter systems has been conducted through real world
experiments [26] and with the use of microscopic traffic
simulation tools [31] that utilize surrogate measures of
safety to indicate conflict risk for both uninterrupted and
interrupted traffic flow [3, 9, 10, 12, 22].
C-ITS applications and ADAS that enable eco-driving

and yield environmental benefits have also received
significant attention from funding agencies, vehicle

manufacturers, road authorities, technology providers, and
the research community. Specifically, dynamic eco-driving
in the proximity of signalized intersection uses real-time
traffic and Signal Phase and Timing (SPaT) information to
communicate robust and real-time speed and/or count-
down advice to connected vehicles (CVs). Comprehensive
reviews discussing different aspects of dynamic eco-
driving in a connected (and automated) road environment
can be found in [2, 13, 16, 29, 45, 47, 49].
Methodologically, the operation and performance of

dynamic eco-driving was previously assessed through
microscopic traffic simulation studies, driving simula-
tors, controlled field experiments and real-world experi-
ments [29].
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The operation of most dynamic eco-driving models re-
lies on the assumption that traffic signals are pre-timed
[5, 20, 27, 40, 41, 50, 55]. However, researchers devel-
oped and simulated methodologies that facilitate the
implementation of dynamic eco-driving services for ac-
tuated and adaptive traffic lights using empirical signal
and loop detector data [6, 14, 25, 32, 44, 53]. Erdmann
and Liang et al. [11, 23] proposed the combination of
adaptive signal control with Green-Light-Optimal-
Speed-Advisory (GLOSA) to develop signal plans that
exploit vehicle state information.
Efforts were also placed for the development of dy-

namic eco-driving models that can estimate energy and
traffic efficient speed advice for CV platoons in the prox-
imity of signalized intersections [7, 43, 52, 54, 59].
Recently, artificial intelligence has been also used for ap-
plying dynamic eco-driving control in the proximity of
signalized intersections [33, 58].
The majority of proposed dynamic eco-driving models

that were evaluated with the use of microscopic traffic
simulation tools considered hypothetical networks with
simplified demand scenarios [5, 18, 27, 41, 42, 55, 56]. A
few studies focused on real-world isolated signalized in-
tersections [21, 48], and others simulated either single
vehicle [15] or multi vehicle [4, 46, 51] scenarios along
actual urban arterial corridors (very limited information
is provided though regarding the calibration and valid-
ation of the respective real-world simulation models).
Moreover, deceleration strategies received greater inter-
est, since they provide higher energy savings potential,
while some researchers considered the recommendation
of acceleration as safety critical [41]. Finally, focus has
been also placed in modelling and simulation of human
factors related to dynamic eco-driving [24, 38, 40, 57].
The literature review indicates that limited focus was

previously placed on the comfort and safety of dynamic
eco-driving technologies [29]. Early evidence from field
testing of an eco-cruise control system in the vicinity of
traffic signalized intersections showed that manual speed
adaptation based on countdown advice proved less com-
fortable, but equally safe and desirable compared to au-
tomated eco-cooperative adaptive cruise control (Eco-
CACC) [39]. Thus, there is significant potential for en-
hancing dynamic eco-driving performance via the intro-
duction of novel features that improve comfort, user
acceptance and safety.
Undoubtedly, drivers/passengers would be more will-

ing to adopt dynamic eco-driving if it ensured comfort-
able, safe and intuitive speed advice. According to the
profile of existing deceleration strategies, a CV initially
decelerates and subsequently cruises at a steady-state
speed towards a signalized intersection until the signal
status changes to green, when vehicle accelerates back to
its desired speed beyond the signalized intersection. This

implies that existing dynamic eco-driving services in-
struct CVs to cruise at significant steady speed while the
vehicle approaches the signalized intersection and the
signal status remains red. In this case, many drivers/pas-
sengers would feel uncomfortable driving/riding a ve-
hicle that cruises in close vicinity to a signalized
intersection while the traffic light status is still red. That
would be especially true in the early stages of CVs mar-
ket introduction when mixed traffic conditions are ex-
pected to prevail on the streets and drivers/passengers
will be less familiar with CV technology.
This study proposes and evaluates enhancements on

an existing dynamic eco-driving model (velocity plan-
ning algorithm – VPA) that encompass the following
novel features:

� provision of non-crawling speed advice, and
� vehicle acceleration begins prior to CV arrival at

signalized intersection after deceleration strategy

The enhanced VPA is examined with the use of micro-
scopic traffic simulation along an actual urban arterial
corridor that was thoroughly calibrated against real traf-
fic conditions.

2 Enhanced speed advice
Enhanced dynamic eco-driving accounts for intuitive
speed advice that drivers/passengers can easily and con-
veniently adapt to, and encompasses comfortable accel-
erations/decelerations, acceptable cruising speeds, as
well as guidance that facilitates safe interactions with
surrounding road users and elements (e.g. traffic lights).
As mentioned above, existing literature has overlooked
specific aspects of speed advice pertaining to comfort
and safety which this study aims to address. To this end,
we present in the following sections the reference model
(VPA) previously developed by [55] and an enhanced
VPA version proposed by this study that promotes speed
advice comfort and safety without adversely impacting
energy and traffic efficiency.

2.1 Velocity planning algorithm (VPA)
Xia et al. [55] introduced VPA considering that energy
savings can be realized when drivers exhibit the follow-
ing behavior:

� maintain a steady-state speed near the speed limit,
� keep a safe headway distance from the leading

vehicle, and
� avoid idling, or idle the least possible time at the

traffic light if this is unavoidable.

Thus, an optimization problem was formulated that
minimized a vehicle’s tractive force and idling time while
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accounting for ride comfort and the local speed limit
(vlim). To avoid stopping at a traffic light, a vehicle
should arrive at the signalized intersection during a
green signal status. Based on the current signal status, a
green arrival interval can be estimated as:

tarrival ¼
0; trg½ or t½ g ; tr1Þ; if signal status ¼ green

tg ; trÞ;
�

if signal status ¼ red

�

ð1Þ

where tr is the time to the upcoming red phase, tg rep-
resents the time to the next green phase, and tr1 is the
time to the second red phase. Thus, if the signal is green,
a vehicle can either cruise at current speed or accelerate
to a target speed to pass through the intersection during
the first green window or decelerate and cross the inter-
section during the second green window. If the signal is
red (yellow time is considered to be red time), the ve-
hicle can cruise at current speed or decelerate to a target
speed to cross the intersection during the upcoming
green window.
The possible values of tarrival can range between [tl, th],

where tl and th are low and high values according to Eq.
1. Given the range [tl, th] and the vehicle’s distance to
intersection dint, the possible target velocities varrival can
be expressed as the range [vl, vh], where vl is the max-
imum between zero and vlo(vlo = dint/th) and vh is the
minimum between vlim and vho(vho = dint/tl). Evidently,
dint and signal timing information are key parameters
for the estimation of optimal speed trajectories.
When varrival is estimated, the provision of speed ad-

vice to CV is determined according to its current speed
vc. If vc lies within [vl, vh], then the vehicle can pass the
intersection cruising at current speed. Alternatively, it
can accelerate or decelerate with respect to vh, which
[55] have selected as the target velocity to achieve travel
time savings apart from environmental benefits. The
energy-efficient speed profiles are estimated according
to the following functions:

vopt ¼

vh − vd� cos μtð Þ; for 0≤ t <
π
2μ

vh − vd� μρ � cos t −
π
2μ

þ π
2ρ

� �
; for

π
2μ

≤ t <
π
2ρ

þ π
2μ

� �

vh þ vd� μρ for
π
2ρ

þ π
2μ

� �
≤ t≤

dint

vh

8
>>>>>><

>>>>>>:

ð2Þ

where vd is equal to vh − vc. Positive vd values generate
acceleration profiles, and negative values generate decel-
eration profiles. The only unknown parameters in Eq. 2
are μ and ρ, which determine the acceleration/deceler-
ation rate. The higher the value of μ, the higher the

acceleration/deceleration rate. The values of μ and ρ can
be computed by solving the following three constraints:

Z π
2μ

0
vh − vd� cos μtð Þð Þdt þ

Z π
2ρþ π

2μ

π
2μ

vh − vd� μρ � cosρ t −
π
2ρ

þ π
2μ

� �� �
dt

þ vh þ vd� μρ
� �

� dint

vh
−

π
2ρ

−
π
2μ

� �
¼ dint

jerkmax ¼ vd�μ�ρj j≤10 and amax≤2:5 m=s2

μ ¼ max μf g

8
>>>>>>><

>>>>>>>:

ð3Þ

The first constraint in Eq. 3 is the distance constraint,
which ensures vehicle’s arrival at the downstream signal-
ized intersection in the shortest time. The second con-
straint pertains to ride comfort. The third was set based
on the finding of [55], which suggests that minimization
of fuel consumption and emissions occurs for the largest
possible μ value (i.e. a vehicle accelerates sharply instead
of smoothly to vh). Moreover, it has to be noted that
VPA can be explicitly implemented at signalized inter-
sections with fixed signal control plans, and it does not
consider queue dynamics at signalized intersections. A
more detailed description of VPA can be found in [55].

2.2 Enhanced velocity planning algorithm (EVPA)
This study introduced enhancements to the control logic
of the reference model (VPA) accounting for actual be-
havioral traits of drivers. The enhanced velocity planning
algorithm (EVPA) increases the comfort and safety of
the provided speed advice to facilitate acceptance of dy-
namic eco-driving service from the driver’s/passenger’s
side.
The control logic of the reference model implies that

the minimum speed advice is an explicit function of the
vehicle’s traveling state (approach speed and distance to
the signalized intersection) and the signal timing infor-
mation of the signalized intersection. Thus, vl could ac-
quire rather low values (e.g. 10 km/h), which implies
that a vehicle might be advised to cruise towards a sig-
nalized intersection at a crawling speed. However, in
practice, drivers would refrain from driving below a
minimum speed threshold (anxiety reasons), irrespective
of the provided speed advice. Thus, the authors propose
that varrival is not only bounded on the upper limit by
the speed limit, but also on the lower limit by a mini-
mum acceptable speed value (vmin). Therefore, vl would
become the maximum between vmin and vlo(vlo = dint/th).
It is expected that this enhancement will increase the in-
direct benefits of dynamic eco-driving, since legacy vehi-
cles (LVs) will overtake CVs less frequently, thus
inducing less turbulence to traffic. Additionally, previous
research has shown that cruising at low speeds at the
end of deceleration strategies might incur higher energy
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consumption, even compared to a standstill strategy
[41].

The second enhancement also pertains to deceleration
strategies. According to the control logic of existing dy-
namic eco-driving models, a CV’s arrival at traffic lights
after the implementation of a deceleration strategy is
concurrent with the onset of the green phase. However,
many drivers/passengers would feel uncomfortable rid-
ing a vehicle that cruises at high steady speed in close
vicinity to a signalized intersection while the signal sta-
tus is still red. Therefore, this study suggests that the
lowest cruising speed vcr of the initially estimated decel-
eration profile is used for the computation of the CV’s
practical stopping distance, assuming it had complied
with the initial deceleration strategy. In this case, the ve-
hicle’s practical stopping distance dstop is given by the
following formula:

dstop ¼ v2cr

2g
ad
g

� �
� G

� � ð4Þ

where ad is the deceleration rate, g is the gravitational
constant, and G is the roadway grade. Eq. 4 provides an
estimate of typical braking distances and is more sim-
plistic and usable than the theoretical stopping distance
one. Given the assumption that CVs fully stop and road
grades are small, mass factor accounting for moments of
inertia during braking (which is considered for the esti-
mation of theoretical stopping distance) can be ignored
due to its small effects [28]. Moreover, we assume that
friction is always guaranteed in our simulation experi-
ments and anomalous situations such as sudden and
strong braking do not occur.

Subsequently, the practical stopping distance is sub-
tracted from dint, and the result (d′ = dint − dstop) is
returned to the algorithm for the estimation of an en-
hanced deceleration profile. According to this updated
deceleration profile, the vehicle decelerates to a lower
cruising speed v

0
cr compared to the initial one, but the

onset of the green phase occurs prior to the vehicle’s ar-
rival at the signalized intersection. Moreover, sufficient
time and space remain available for the CV to stop in
case of red light running from the opposite direction.
Since the practical stopping distance is a function of the
vehicle’s cruising speed, the EVPA is expected to per-
form efficiently within a wide range of cruising speeds.
The enhanced dynamic eco-driving service is expected
to be perceived as more intuitive, convenient and safer
by drivers, who would thus increase their confidence re-
garding the system’s operation and performance.

3 Simulation experiment
3.1 Microscopic traffic simulation model
A detailed microscopic simulation model of an urban ar-
terial corridor in the city of Thessaloniki, Greece, was
developed with the use of the microscopic traffic simula-
tion tool Aimsun. Its total length is 15 km (road grade is
nearly zero across the full length of the corridor) and it
encompasses 26 signalized intersections (17 equipped
with road-side units) which are controlled by pre-timed
signal control plans. The reference and the enhanced dy-
namic eco-driving services were deployed on 23 signal-
ized intersection approaches (IA) (highlighted in yellow)
of the examined simulation network (Fig. 1). Side-street
parking and seven public transport lines (along with
their corresponding time plans) that travesrse the central
business district (CBD) of Thessaloniki were simulated
as well.
A thorough macroscopic calibration process was con-

ducted to ensure the ability of the microscopic traffic
simulation model to replicate actual traffic operations
(without dynamic eco-driving service) on the examined
road network. Calibration parameters of Aimsun driver
models (car-following, lane-changing, and gap-
acceptance models) were adjusted for the reconciliation
of field and simulated traffic counts. Field traffic data
were obtained from several traffic detectors that monitor
traffic conditions in the CBD of Thessaloniki. The latter
data contain traffic volumes, average time mean speed,
and travel time information for selected network routes.
Field and simulated traffic counts were used for the

conduct of the appropriate statistical test (GEH) to verify
the validity of the simulation model [8]. The estimated
GEH values were lower than 5 for more than 85% of the
selected detector stations (volume and speed counts).
Moreover, GEH index was also lower than 5 when com-
paring average travel time between field and simulation
along the urban arterial corridor shown in Fig. 1. Thus,
the calibration procedure demonstrated that the simula-
tion model can credibly replicate traffic operations per-
taining to manual driving on the test network.
However, we also deem that our simulation model re-

mains valid for different market penetration rates of dy-
namic eco-driving technology, since we assumed that
CVs are manually driven beyond the service activation
zone (cf. Section 3.2) and existing literature [2, 13, 16,
29, 45, 47, 49] addressing the impacts of dynamic eco-
driving on traffic operations does not indicate changes
to route choice due to speed advice provision in the
proximity of signalized intersections.

3.2 (E)VPA - Application Programming Interface (API)
VPA and EVPA were simulated in Aimsun with the use
of an Application Programming Interface (API) that was
directly interfaced with the core Aimsun models. The
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API estimates a single energy optimal driving strategy
for every CV that enters the dynamic eco-driving service
activation zone. Then, the CV becomes “tracked” in the
simulation and strictly follows the provided speed advice
(every simulation time step) until it crosses the signal-
ized intersection. Thus, CVs fully comply with the esti-
mated speed advice within the service activation zone.
However, a CV can discard speed advice if it enters car-
following state. An empirical formula was used to assess
the car-following state of CVs during the simulation
[37]. The maximum car-following distance is given as:

xcf ¼ Tuk − 1 þ β ð6Þ

where T is a time constant, uk − 1 is the speed of the
following vehicle, and β is the average distance between
two vehicles in standstill. If a CV’s distance to the leader
becomes shorter than xcf, then it becomes “untracked” in
the simulation and its motion is subsequently dictated
by the Aimsun driver models. In this case, an updated
speed advice is not provided to the CV even though it is
still driving within the activation zone. The behavior of
CV beyond the activation zone is determined by Aimsun
driver models that are parametrized to reflect manual
driving conditions.
The length of the activation zone (per signalized IA) is

set equal to the total length of the corresponding signal-
ized IA (road section between two consecutive intersec-
tions). During the simulation of VPA, the estimated
speed advice can range between 5 and 50 km/h. On the
other hand, while EVPA is simulated the estimated
speed advice can range between the minimum cruising
speed after deceleration (20 km/h) and the speed limit

(50 km/h). Table 1 provides an elaborate list of the par-
ameter values that affect the operation of the reference
and enhanced models in the simulation experiments.

3.3 Microscopic emission model
To estimate carbon dioxide (CO2) emissions within the
simulation loop (second-by-second estimation, 1 Hz.),
the Panis microscopic emission model calibrated with
real world emission data is used [36]. As this model
combines multiple non-linear regression models to esti-
mate emission functions per vehicle type and pollutant
(with instantaneous speed and acceleration as explana-
tory variables) it was considered relevant for the evalu-
ation of the environmental impacts of dynamic eco-
driving.
The fleet composition with respect to engine type for

Greece was obtained from [1]. To this end, in our simu-
lation experiments taxis, heavy duty vehicles (HDV), and
buses run on diesel engines. Passenger cars are divided
into the following shares according to their fuel type:
92% petrol, 5% diesel, and 2% LPG. The emission

Fig. 1 Test site in Thessaloniki, Greece (real world and simulation)

Table 1 Parameter values used in the simulation experiments

Variables Description Value(s)

vlim Speed limit (km/h) 50

μ Acceleration rate parameter (m/s ^ 2) 0.15

vmin Minimum cruising speed after deceleration (km/h) 20

g Gravitational constant (m/s ^ 2) 9.807

ad Normal deceleration rate (m/s ^ 2) 4.00

G Road grade (%) 0

T Time constant (sec) 1.02

β Average headway distance in standstill (meters) 3.5
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constants used for the estimation of CO2 emissions per
combination of vehicle and engine type are presented in
Table 2.

3.4 Simulation scenarios
The performance of the reference (VPA) and the pro-
posed (EVPA) speed advice algorithms was assessed for
different traffic demand levels and different penetration
rates of the dynamic eco-driving technology (Table 3).
In total, 48 scenarios were simulated (38 with service on
and 10 with service off). The calibration scenario corre-
sponds to D100 traffic demand level (initial demand in-
put to the microscopic simulation model). The effect of
the penetration rate of the CV technology was tested
both for uncongested (D50) and congested (D100) traffic
conditions. On the other hand, the performance of CV
technology for a wide spectrum of traffic conditions
(uncongested – near congested – congested/D10 –
D100) was evaluated for three different penetration rates
(low – moderate – high/P15 – P50 – P100). Speed ad-
vice was explicitly provided to passenger cars and taxis
among the simulated vehicle types (passenger cars, taxis,
trucks, and buses), since the reference model was expli-
citly developed for light-duty vehicles.
Aimsun is a stochastic microscopic traffic simulation

tool. Thus, multiple runs of each simulated scenario
were executed so that the obtained simulation outputs
can be statistically significant. Initially, five runs of the
calibration scenario were executed (each corresponding
to a different random seed) and statistics of the average
network speed were collected. The required number of
runs is determined based on the standard deviation of
speed for a specific significance level and the tolerable
error [35]. In this case, for 95% significance level and tol-
erable error equal to 0.5 km/h, the required number of
runs was determined to be 10.

4 Results
Simulation results were analyzed for the “do-nothing”
(i.e. no dynamic eco-driving), VPA, and EVPA scenarios
in three different aggregation levels:

� single vehicle performance (along different routes)
� average section statistics (along different IAs)

� average network-wide statistics (whole simulated
network)

To facilitate the description of the results we use the
capital letters assigned to different traffic lights of the
test site (Fig. 1) to indicate road sections of interest in
the context of this analysis. Specifically, the notation
{R→Q} connotes the road section between traffic lights
R and Q. The arrow symbol determines the direction of
traffic along the road section. In the cases of VPA and
EVPA scenarios, it is also implied that dynamic eco-
driving is deployed on the corresponding road section.
The analysis of simulation results is presented in three
dedicated subsections (per aggregation level) below.

4.1 Single vehicle performance
The analysis of single vehicle performance encompasses
four different types of plots: a) speed vs distance, b)
speed vs time, c) cumulative CO2 emissions vs distance,
and d) acceleration vs speed. These plots reveal the in-
fluence of dynamic eco-driving on CV behavior and the
corresponding CV performance in terms of CO2 emis-
sions. The CV performance displayed in Figs. 2 and 3
pertains to traffic demand level D50, penetration rate
P100 and two different routes of the test site.
Figure 2 shows information about a single CV per-

formance along IA:{R→Q} (one-way multi-lane road
segment). While the CV has to stop at the traffic light in
the “do-nothing” scenario, it can adopt a deceleration
strategy in the VPA and EVPA scenarios to avoid a
standstill and generate lesser CO2 emissions. However, it
can be seen (in the focus area of the right top plot) that
the EVPA algorithm allows the CV to cruise at a mar-
ginally lower speed compared to the VPA one, and con-
sequently begin acceleration approximately 10 m
upstream of the traffic light (when the signal status
changes to green).
As explained in Section 3 of this study, the latter be-

havior can promote comfort, safety and user acceptance
of the system since the CV will not reach the traffic light
(in red status) at cruising speed (enhanced speed advice);
and increase intersection safety since there will be fur-
ther available time for intersection clearance or CV tac-
tical maneuvering in case of red light running from

Table 2 CO2 emission constants per combination of vehicle and engine type

Vehicle Type Engine Type E0 f1 f2 f3 f4 f5 f6

Car Petrol 0 0.553 0.161 −0.003 0.266 0.511 0.183

Car Diesel 0 0.324 0.086 0.005 −0.059 0.448 0.23

Car LPG 0 0.6 0.219 −0.008 0.357 0.514 0.17

Taxi Diesel 0 0.324 0.086 0.005 −0.059 0.448 0.23

HDV Diesel 0 1.52 1.88 −0.07 4.71 5.88 2.09

Bus Diesel 0 0.904 1.13 −0.043 2.81 3.45 1.22

Mintsis et al. European Transport Research Review            (2021) 13:2 Page 6 of 14



Table 3 Simulated demand levels and penetration rates of the dynamic eco-driving service

Fig. 2 Single vehicle performance on IA:{R→Q}
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vehicles driving along other directions (possible scenario
in mixed traffic conditions). Interestingly, the EVPA de-
celeration strategy does not adversely impact CO2 emis-
sions savings. This is also justified by the same
acceleration/deceleration patterns between VPA and
EVPA depicted in Fig. 2 (bottom right plot).
The behavior of a single CV with (VPA and EVPA)

and without (“do-nothing”) dynamic eco-driving tech-
nology is examined along the urban arterial corridor
{O→A}. Every signalized intersection is equipped with
a road-side unit (RSU) along the corridor (one-way four-
lane urban arterial corridor with reserved bus lane on
the right-most lane and side-street parking on the left-
most lane), thus enabling CVs to implement separate ac-
celeration/deceleration strategies per IA.
Figure 3 (top plots) indicates that VPA allows the CV

to successfully execute a deceleration strategy thrice,
while EVPA only once given road characteristics, pre-
vailing traffic conditions, and deployed traffic signal
plan. However, the first two deceleration strategies sug-
gested by VPA lead to rather low cruising speeds (< 20
km/h) that can be non-acceptable by drivers or passen-
gers in the case of fully autonomous vehicles. Moreover,
they yield CO2 emissions savings that are not significant
compared to the “do-nothing” and EVPA scenarios when
the same CV has to fully stop at the traffic light and ac-
celerate back to desired speed from standstill.
Nonetheless, a noteworthy observation is that dynamic

eco-driving alters the traffic patterns of CVs even in
space and time intervals that energy optimal driving

strategies are not applied or possible. This
phenomenon can generate unfavorable conditions for
the CV due to surrounding traffic (queued vehicles
disrupting the adoption of speed advice) or mistimed
entrance at an intersection approach. Hence, the cu-
mulative CO2 emissions of the CV (EVPA case) even-
tually surpass those of the unequipped equivalent (left
bottom plot) along the examined path. Finally, results
demonstrate that the VPA produces milder acceler-
ation/deceleration rates for the examined CV (right
bottom plot), and thus lesser cumulative CO2 emis-
sions along its travelled path {O→A}.

4.2 Individual intersection approach statistics
A plethora of information is provided to scrutinize the
performance of dynamic eco-driving on two benchmark
IAs of the test site and compare the behavior of VPA
and EVPA methods. The evaluation of the different algo-
rithms is conducted in terms of CO2 emissions (gr/km),
number of stops per vehicle, and mean travel time (sec-
onds). The reported travel time and CO2 emissions re-
sults also consider the road sections downstream of the
examined IAs where benefits from energy efficient decel-
eration strategies can be realized. Moreover, a compre-
hensive analysis of the provided speed advice is
presented per IA. Results are analyzed for traffic demand
levels D50 (uncongested conditions) and D100 (con-
gested conditions), and penetration rates ranging be-
tween P5 – P100.

Fig. 3 Single vehicle performance on urban arterial corridor {O→ A}
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IA:{R→Q} was selected as benchmark in the context
of this study since it is isolated and vehicle arrival pat-
terns are not influenced by implementation of dynamic
eco-driving along upstream IAs. Moreover, it is a one-
way four-lane road section spanning up to 360 m where
there is available space for CVs to adopt dynamic eco-
driving maneuvers. SPaT messages are received up to
360 m upstream of signalized intersection Q by CVs,
and 65.00 s of the signal cycle (72.22% of the cycle dur-
ation) are allocated to the through movement (speed ad-
vice is estimated specifically for this movement). The
minimum cruising speed is 20 km/h in the case of
EPVA, and 5 km/h in the case of VPA. An influence
zone calibration parameter of 0.01 indicates that CVs
will reach the traffic signal on red light status while driv-
ing at cruising speed in the end of a deceleration strategy
(VPA scenario). On the other hand, a 0.5 parameter
value (EVPA scenario) ensures that CVs’ acceleration
will commence prior to arrival on red signal status to
the intersection stop line.
Despite increased demand in D100, traffic conditions

remain uncongested along IA:{R→Q} (Fig. 4). Mean

travel time (min/km) is slightly affected by dynamic eco-
driving (bottom plots) and mostly for higher penetration
rates (> 75%). Both VPA and EVPA manage to signifi-
cantly reduce idling (number of stops/veh) in mixed traf-
fic, while stop events almost vanish in the case of fully
equipped fleet (middle plots). However, it can be noticed
that for low to intermediate penetration rates (P15 –
P50) and highest demand level (D100) EVPA outper-
forms VPA in terms of preventing CV stops at traffic
light Q. VPA advices lower cruising speeds in the con-
text of deceleration strategies, and thus non-equipped
vehicles (which represent the highest share in the fleet
mix for low penetration rates of dynamic eco-driving
technology) tend to overpass CVs causing more stops at
traffic lights compared to the EVPA scenario. Both algo-
rithms generate CO2 emissions savings beyond medium
penetration rate (P50) that are maximized for fully
equipped fleet (P100). Maximum CO2 emissions savings
rise approximately to 7.0% (top plots) and do not occur
in the expense of significant travel time costs (bottom
plots). Moreover, VPA and EVPA exhibit similar CO2

emissions savings potential in the case of IA:{R→Q}.

Fig. 4 Key Performance Indicators (KPIs) of dynamic eco-driving deployment on IA:{R→Q}
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The reason IA:{N → M} is selected as benchmark and
studied explicitly is multifold. IA:{N → M} is part of
urban arterial corridor {O→A} where dynamic eco-
driving is deployed on all signalized IAs (Fig. 1). It is one
of the few IAs on urban arterial corridor {O→A} that
spans 240 m long, thus providing enough space for CVs
to execute dynamic eco-driving maneuvers. Additionally,
it is fed with traffic by three different IAs (i.e. {O→N},
{P→N}, and {R→N}) where dynamic eco-driving is
also applied. Hence, vehicle arrival patterns vary signifi-
cantly on IA:{N → M} giving the opportunity to test dy-
namic eco-driving for different CV approach speeds
(also influenced upstream by dynamic eco-driving). Fur-
thermore, 62.00 s of the signal cycle (68.89% of the cycle
duration) are allocated to the through movement (speed
advice is estimated specifically for this movement).
Consequently, there is adequate red duration to induce
energy efficient deceleration strategies. Algorithmic set-
tings (VPA and EVPA) for IA:{N → M} are similar to
that of {R → Q}.
Congested conditions prevail along IA:{N → M} for

the highest demand level (D100). Mean travel time in-
creases four times compared to uncongested conditions
(D50) for the “do-nothing” scenario (Fig. 5). The deploy-
ment of dynamic eco-driving further disrupts traffic flow
on IA:{N → M} for higher penetration rates. As ex-
plained in Section 3 of this study, both VPA and EVPA
do not account for traffic light queues when estimating
acceleration/deceleration strategies. Therefore, CVs can
receive speed advice upon entrance to the intersection
approach but eventually will need to abort it (due to
reaching tail of queue), thus escalating travel time and
CO2 emissions. Noticeably, EVPA outperforms VPA on
the basis of the examined KPIs (left plots – D100) for
the majority of the tested penetration rates (most signifi-
cant difference for higher penetration rates). Due to the
higher minimum speed advice threshold in the case of
EVPA (i.e. 20 km/h), lesser speed advices are provided to
equipped vehicles, hence reducing the intensity of dis-
ruption to the traffic flow and CO2 emissions perform-
ance incurred by dynamic eco-driving.
On the other hand, traffic conditions are uncongested

along IA:{N → M} for the intermediate demand scenario
(D50). Queued traffic almost diminishes at traffic light
M (Fig. 5 – middle right plot) for higher penetration
rates (> 75%). EVPA generates CO2 emissions savings
along IA:{N → M}, which approximately rise to 13.0%
and 8.5% reduction compared to the “do-nothing” and
VPA scenarios respectively (Fig. 5 – top right plot). Not-
ably, EVPA exhibits significantly improved performance
compared to VPA with respect to emissions reduction,
although it adapts speed advice to improve comfort and
safety. Finally, it can be observed that for low to inter-
mediate penetration rates vehicle stops increase with

deployment of VPA. This phenomenon occurs due to
the behavior of non-equipped vehicles as it was ex-
plained in the aforementioned analysis of simulation re-
sults for IA:{R→Q} as well.

4.3 Network-wide statistics
The effects of dynamic eco-driving (VPA and EVPA) on
network performance are assessed in terms of: i) average
network speed, b) CO2 emissions per kilometer driven
(gr/km), and c) average stop time per kilometer driven
(s/km). Network-wide statistics are reported for the full
spectrum of examined demand levels (D10 – D100) and
two penetration rates (P50 and P100) to identify trigger-
ing points for VPA and EVPA activation according to
the prevailing traffic conditions on the examined test
site.
Figure 6 indicates that both VPA and EVPA can yield

CO2 emissions savings when average network speed is
over 25 km/h (D10 – D80), but the latter savings are in-
significant though. Moreover, network-wide savings di-
minish as traffic demand shifts from light to moderate
(D10 → D80). On the other hand, the tested algorithms
exhibit similar performance to the “do-nothing” case for
heavy traffic conditions (congestion) when average stop
time increases significantly both for 50% and 100% pene-
tration rates. As aforementioned, this is reasonable con-
sidering that both algorithms are not designed to
account for traffic light queues when estimating energy
efficient speed advice. Moreover, it can be seen that
lower share of CVs in the fleet mix (P50) results in
slightly lesser impacts of dynamic eco-driving on the
network scale compared to the case of fully equipped
fleet (P100).
VPA generates marginally higher CO2 emissions sav-

ings compared to EVPA in uncongested conditions
when the whole test site is considered. However, these
savings are realized in the expense of marginally in-
creased travel times. Longer travel times are expected in
the VPA scenarios due to the minimum speed advice
threshold (i.e. 5 km/h). Lower CO2 emissions on the net-
work level can be attributed to more energy efficient
patterns generated by VPA at areas of the network
where speed advice is not implemented successfully or
at all as previously highlighted and explained in the ana-
lysis of single vehicle performance. Finally, the lower
stop times observed for VPA can be also ascribed to
crawling speeds that can be advised by the latter
algorithm.

4.4 Discussion
Simulation results indicate that EVPA can exhibit similar
or even better performance compared to VPA for spe-
cific road characteristics, activation distances of dynamic
eco-driving service, traffic conditions and traffic signal
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plans, despite adapting speed advice to improve user ac-
ceptance and intersection safety. It is also noteworthy,
that improved EVPA performance occurs when VPA ad-
vices deceleration strategies that encompass cruising
speeds that undercut the minimum cruising speed after
deceleration (vmin). For this reason EVPA and VPA
performance is similar along IA:{R→Q}, while EVPA
significantly outperforms VPA in the case of IA:
{N → M}. Moreover, the fact that EVPA suggests vehicle
acceleration prior to CV arrival at the signalized inter-
section after deceleration strategies does not weaken its
ability to yield CO2 emissions savings.
On the other hand, the analysis of single vehicle per-

formance and network-wide statistics revealed that VPA
slightly outperforms EVPA in terms of environmental
benefits on the network level. Nonetheless, this occurs at
the cost of marginally higher travel times. Both VPA and
EVPA generate different traffic patterns on the examined
test site even in areas where speed advice is not feasible
due to surrounding traffic or mistimed arrival at inter-
section approach.

Moreover, both algorithms do not produce significant
network-wide emissions savings compared to the “do-
nothing” scenario even for low to moderate traffic de-
mand. As it can be seen in Fig. 1, traffic lights are closely
spaced beyond traffic light M along the urban arterial
corridor {O→A}, where the speed limit is 50 km/h
along {O→A}. Thus, dynamic eco-driving benefits di-
minish due to low approach speeds, confined speed
range and space for adapting to speed advice, and VPA/
EVPA algorithmic logic that considers single signalized
intersections for estimating energy efficient driving strat-
egies instead of multi-intersection corridors controlled
by traffic lights. Previous research has also indicated that
inappropriate deployment of dynamic eco-driving could
even generate environmental disbenefits due to unfavor-
able factors [39, 40, 46, 55]. Hence, the deployment
scheme of dynamic eco-driving that encompasses road
design characteristics, activation distance of the service,
traffic signal plans and traffic conditions significantly
affect its energy efficiency and emissions savings
potential.

Fig. 5 KPIs of dynamic eco-driving deployment on IA:{N→M}
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According to the latter information, it is important to
identify the deployment scheme that enables EVPA to
perform efficiently (in terms of CO2 emissions reduc-
tion) on the network scale. Thus, travel time, user ac-
ceptance and safety benefits also provided by EVPA can
be realized.
Additionally, we show that VPA and EVPA deteriorate

traffic conditions during congestion since they do not
consider traffic light queues for speed advice estimation.
The corresponding simulation results pose irregular pat-
terns with respect to speed advice efficiency and CO2

emissions. Notably, interactions between CVs and non-
equipped vehicles become more complex especially in
the case of VPA when crawling speeds can be advised to
CVs.
Finally, it is of note that we assumed full diver compli-

ance to speed advice in the context of this simulation
study. However, human factors can exert significant im-
pacts on traffic flow performance [34] and intersection
safety [17, 19]. Hence, we plan to address partial compli-
ance to speed advice based on real-world data in future

research efforts and assess safety implications of human
factors with respect to dynamic eco-driving with the use
of rigorous mathematical methods such as the Surrogate
Safety Assessment Model (SSAM).

5 Conclusions
CV applications have received significant attention from
the research community in the past two decades. Several
dynamic eco-driving models were proposed for the esti-
mation of energy efficient speed advice in the vicinity of
signalized intersections. This study focused on the en-
hancement of speed advice comfort and safety without
negatively affecting energy and traffic efficiency. A
microscopic simulation analysis on an actual urban net-
work is conducted to evaluate the performance of an en-
hanced velocity planning algorithm (EVPA) for different
penetration rates of dynamic eco-driving technology and
traffic demand levels.
Simulation results indicated that EVPA can generate

CO2 emissions savings on the order of 13% along indi-
vidual intersection approaches and 2.5% on a network

Fig. 6 Average network KPIs of dynamic eco-driving deployment on Thessaloniki’s test site
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scale, without substantially escalating travel times. More-
over, EVPA ensures increased speed advice comfort and
safety due to its inherent control logic. However, it was
also identified that EVPA’s efficiency is dependent on
roadway characteristics, activation distance of the ser-
vice, traffic signal plans and traffic conditions. Thus, the
deployment scheme of dynamic eco-driving on urban
networks plays a significant role in warranting environ-
mental benefits and traffic efficiency.
Additionally, it was proven that speed advice estima-

tion should consider signal plans from consecutive traf-
fic lights on urban arterial corridors with closely spaced
signalized intersections to increase dynamic eco-driving
performance. Finally, this study explicitly assumed con-
nected vehicles that can precisely follow speed advice
using automation functions. In future research, the au-
thors plan to utilize actual speed advice data to model
the influence of human factors in the adoption of speed
advice when CVs are manually driven and meticulously
evaluate respective impacts on traffic safety and emis-
sions savings.
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