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Abstract

internalize two-thirds of the true externality.

If not restricted by tolls, private decisions to drive on a highway result in inefficiently high usage which leads to traffic
jams. When traffic demand is high, traffic jams can occur simply because of the interaction of vehicle drivers on the
road, a phenomenon called phantom jam. The probability of phantom jams occurring increases with traffic flow.
Unpriced externalities lead to inefficiently high road usage. We offer a method for quantifying traffic jam externalities
and identifying and isolating the phantom jam externality. We examine the method by applying it to a specific
highway section in Germany. The maximal congestion externality for the analyzed highway section is about 38 cents
per vehicle and kilometer. Congestion charges that are calculated ignoring phantom jam externalities, can only
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1 Introduction

Traffic congestion during the rush hour remains an
observable phenomenon worldwide. It results in signifi-
cant travel time losses for commuters, additional external
environmental costs and a loss of attractiveness of the
affected areas. Reasons for congestion on highways can be
on the demand side, (on-ramps with high inflows or fluc-
tuations in demand) and on the supply side (traffic acci-
dents, construction sites, tunnels, inhomogeneous road
design or simply insufficient capacity). Besides these rea-
sons, [1-3] show that traffic jams can also occur randomly
due to driving behavior. When traffic density exceeds
a critical value, phantom jams may occur even in the
absence of supply side reasons. Although density remains
constant in their experiment, traffic is freely flowing ini-
tially, but breaks down after a while. To make the initial
free flow unstable, it is sufficient that drivers on a high-
way merely interact with each other. For each phantom
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jam, there may be a deterministic reason like tailgat-
ing, excessively fast driver reactions to speed changes,
slow overtaking by a truck, slow reactions because of
drivers inattentiveness or queue-jumping, but in the sys-
tem, these driving errors occur stochastically and may or
may not culminate in a traffic jam [4]. The probability of
their causing a traffic jam increases with the saturation
of the highway. For this reason, capacity cannot be con-
sidered as a fixed value, but seen rather as a stochastic
concept [5, 6].

Whereas economists refer to the traffic state rep-
resented by the upper branch in a speed-flow dia-
gram (see Fig. 1) as congested, because this traffic
state already imposes marginal speed losses on other
drivers (externalities), transportation engineering consid-
ers this traffic state as freely flowing. For economists,
only the small horizontal part of the upper branch flows
freely, because there is no externality. Given that, for
our analysis, the section without externalities is small,
we use the two terms synonymously, and refer to the
upper branch as congested or as freely flowing traffic.
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Economists refer to the traffic state represented by the
lower branch as hypercongestion, whereas traffic engi-
neering refers to it merely as congestion. To avoid confu-
sion, we refer to the lower branch as hypercongested or
jammed traffic.

Although the European Union [7, chapter 7] currently
uses a speed-flow model to calculate congestion costs,
such models have not been used recently in the academic
literature on economic congestion modeling , because,
under the assumption of deterministic road capacity, they
may yield dynamically inconsistent results. Nonetheless,
we show that speed-flow models do indeed provide valu-
able results, if a stochastic concept of road capacity is
incorporated. In this paper, we thus revisit speed-flow
models by incorporating stochastic road capacity and
derive an average cost curve that yields dynamically con-
sistent results. We only consider congestion costs under
prevailing traffic-flow conditions and do not analyze
demand reactions due to congestion charges. However,
the calculated congestion costs are based on real traffic
flow-data and therefore, our model can be applied to any
highway section for which the respective data is available.
As we consider stochastic traffic-flow breakdowns, we are
able to calculate the costs of phantom traffic jams and
show that these jams that are caused by driving behavior,
increase the deterministic congestion costs considerably.
We calculate the congestion costs over the course of a
day and obtain a maximum during the peak of the rush
hour of about 38 cents per kilometer. The calculated con-
gestion costs should be internalized by means of dynamic
congestion charges.

The remainder of the paper is structured as follows.
The following section contains the literature review. The
third section describes our theoretical model, the fourth
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section applies the model to German highway data and the
fifth section contains a discussion while the sixth section
concludes.

2 Literature review

Economic congestion models can be classified as bottle-
neck, bathtub, speed-flow and phantom jam models (see
Table 1). The standard bottleneck model does not feature
hypercongestion, since bottleneck capacity is independent
of the length of the queue [8—11]. Modified versions of the
model have been developed, in which capacity declines
with the length of the queue [12, 13]. Different tolling
systems can be evaluated regarding their ability to elim-
inate queuing in front of the bottleneck. [14] models the
bottleneck capacity as a result of queue spillovers, and
if the queue is large enough, bottleneck capacity drops.
[15] explore the fact that interactions between drivers can
reduce the capacity of a bottleneck, and determine how
tolls should be set when accounting for such stochastic
capacity.

The bathtub model [16—19] analyzes urban hypercon-
gestion at an aggregate level. In the morning rush hour,
cars enter the downtown urban center and when density
is sufficiently large, traffic flow becomes inefficiently low
and the outflow of cars decreases, which makes hyper-
congestion more persistent. A time-varying toll or traffic
management systems should therefore avoid hypercon-
gestion. Some of the above mentioned models involve
simulations. Generally, simulations are also performed
by engineers for specific roads and road networks. For
instance, [24] builds a simulation based optimization
framework for an optimal time-varying pricing of toll
roads. The results enable, for example, the evaluation of
toll adjustments regarding their impact on changes in
demand, length of peak periods or toll revenue. [25] show
that macroscopic hypercongestion can occur as a purely
emergent effect of dynamic equilibrium behaviour on a

Table 1 Different models of traffic congestion

Model Main/seminal Source of Economic policy
authors externality

Bottleneck [11] demand exceeds toll to change
bottleneck departure times
capacity

Bathtub [16,19] traffic jam at one toll to reduce
point spreads inflow in
into large area congested area

Speed-flow [20-22] other drivers toll to reduce
induce speed number of
reduction vehicles

Phantom [15, 23] unspecified toll to reduce

jam driving errors number of
resultin vehicles and
stochastic traffic change

flow break down

departure times
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network, even if the underlying link dynamics do not
exhibit hypercongestion.

Speed-flow models directly use the fundamental dia-
gram to analyze congestion and hypercongestion. How-
ever, [26] shows that in speed-flow models, hyperconges-
tion is dynamically infeasible when considering capacity
as deterministic. In order to depict hypercongestion in a
static model with continuous demand, inflows onto the
road must have exceeded the maximum possible inflow
at some point in the past, which is inconsistent with the
concept of maximum deterministic capacity. Moreover,
[26, 27] shows that for roads without a downstream bot-
tleneck, the average cost curve is backward-bending, and
intersections with the demand curve yield multiple and
unstable equilibria®.

In contrast, traffic engineers still use speed-flow mod-
els to determine the capacity of highways, for instance in
Highway Capacity Manuals. To incorporate the fact that
road capacity is not a fixed value, [5, 28] and [29] show
how to implement the stochastic nature of traffic flow
breakdowns.

We revisit speed-flow models by incorporating stochas-
tic road capacity. We calculate the expected costs of
congested and hypercongested traffic states. In our appli-
cation, we obtain a dynamically consistent average cost
curve that is not backward-bending. This is due to the
fact that the probability of costly traffic hypercongestion
occurring, increases with flow as well.

As we only consider congestion costs under prevail-
ing traffic-flow conditions, we are not able to analyze
demand reactions, because traffic-flow cannot be equated
directly to demand. For this reason, we do not offer a
complete economic model that allows for analyzing wel-
fare gains due to congestion charges. However, speed-
flow data offers a very precise description of traffic
situations and is available for various road sections in
developed countries. We do not need to make assump-
tions about travel behavior, as our model can be applied
directly to road sections for which respective data is
available.

A stochastic capacity approach enables us to establish
a static model using the speed-flow diagram. For some
flow rates, there are two types of speed, congested and
hypercongested, and the probability as to which of the
speeds prevail depends on the flow. A driver entering
the road to travel a certain distance faces a stochastic
travel time, depending on the number of cars on the

1[27] also shows that hypercongestion will occur as a dynamic equilibrium
phenomenon, either on a road with a queuing facility in front of its entrance,
or on road segments with a downstream bottleneck. This applies provided
demand is sufficiently large and that in this case, the average cost curve is not
backward-bending, but will eventually rise vertically. As these weaknesses
hamper a reasonable economic interpretation of hypercongested traffic states
of roads without a downstream bottleneck, deterministic speed-flow models
have no longer been considered in recent economic research.
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road. The idea that the expected costs depend on two
possible outcomes, congestion and hypercongestion, has
been formalized by [23] for the special case of a circuit
on which density is constant?. We augment the existing
model to handle real highway traffic data, and incorpo-
rate the capacity drop. In a similar approach, [15] assume
two possible outcomes of bottleneck capacity caused by
endogenous non-recurring congestion, and also allow
for an endogenous probability of breakdown, where the
probability is increasing in the flow. However, they con-
sider a bottleneck model, whereas we use the speed-flow
model. Furthermore, they do not apply their approach
to real data, but simulate equilibria with and without
tolls.

3 Stochastic speed-flow model

As the famous speed-flow diagram shows traffic on a
highway section can either be congested at a (high) travel
speed of v, or jammed at a low travel speed of v;, both
depending on the flow g of cars using the highway dur-
ing the same time interval. Figure 1 shows v, as the
upper branch and v; as the lower branch of the speed-flow
correspondence.

When traffic breaks down, the input flow g; entering a
highway section is higher than the output flow ¢, leav-
ing the highway section because of the capacity drop.
As the inflow is larger than the outflow, a queue devel-
ops, whereas when the traffic is not hypercongested, input
and output flow are equal. As our underlying model is
static, we need to make one assumption that makes it pos-
sible to deal with the capacity drop in this model. We
assume for the lower branch that the empirical speed flow
correspondence describes the output flow speed. How-
ever, the input flow describes how many cars want to
use the highway section and determines the possibility of
breakdowns.

If traffic does not break down, the input flow equals the
output flow and the speed is v (g;). With probability p(g;),
traffic breaks down and the speed is v;(g,). [14, Table 1]
presents findings from the transportation engineering lit-
erature on throughput drops, and identifies a median
estimate for the size of the drop of 10% with estimates
ranging as high as 25%. Our estimates for the capacity
drop on the highway section range from 3% to 13%. We
assume that there is a function g.4(q;) which describes the
capacity drop of the considered highway section, that is,
the output flow g, if a breakdown occurs at an input flow
of g;. In the empirical part of our paper we assume that
qc4(qi) = 0.9 g;, a ten percent capacity drop. Compared to
[30], g; can be considered as the pre-queue capacity.

2[1, 2] and [3] show experimentally that traffic jams can occur on a circuit
even if the number of cars is constant and therefore demand is fixed.
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To summarize, in our model, the travel speed depends
on g; and is either high (but congested) v, (g;) with prob-
ability 1 — p(g;) or low (and jammed) v;(g.4(g:)) with
probability p(g;). Because the expected speed depends
only on the input flow, we drop the subindex i below and
only write g for the input flow.

The expected travel speed can be written as

E\(q) = p(@vi(qea(q) + (1 — p(@)vi(q). (1)

The marginal speed losses that an additional driver
imposes on subsequent drivers can be written as

dE, dv, dp( @ @)
=— — — (v -,
dq dq dq n\q 1\9cd

th dV[ dch>
—p( )( - . 2)
PP\ dq ~ dga dg

Eq. 2 can be split into two parts. The first term is the nor-
mal speed loss due to congestion (dvy/dq), while the sec-
ond is the hypercongestion adjustment that incorporates
the probabilities of a traffic jam.

To simplify matters we ignore drivers’ heterogene-
ity and that commuters prefer reliable highway travel
[31-33] but assume homogenous and risk neutral drivers.
Travel time costs ¢ then depend only on the speed, which
in turn depends on the number of vehicles per hour, and
the expected travel time costs C of a driver are

Clg) = p(@c(vi(Gea(@)) + (1 — p(@)c(vi(q)). (3)

When we assume homogenous drivers, these costs are the
average costs of all vehicles®.

Social costs are SC = g - C(q) and marginal social costs
are MSC = C + q - dC/dq. The external effect (on other
drivers), which is not taken into account by individual
drivers, is g - dC/dq. The marginal external travel time
costs are:

dc dvy,

de dv; dqeq
dv dq

P a4y dqe dq

ac_ 1
qdq —q[( - p) "
d
+d—” (c(Vi(qea)) — cwh(q)))} .
q

Considering a distance of s and a value of time of ¢, c¢(v) =
ts/v and dc/dv = —ts/v?, Eq. 4 can be written as:

dcC 1-p) (—ts) dvy, » ts dv; dq.q
49— =49 —bp)- iy 2
dq vi o dq v?dqea dq )

dp (ts ts
(o))

Rearranging Eq. 5, yields the congestion and hypercon-
gestion costs

3 As common in congestion models (compare Table 1), we only include travel
time costs. Further research and other types of models are needed to extend
calculations to other internal or external cost components.
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dcC . 1 dvy,
o~ _ats | =2
qdq 1 v2 dq

N— ——
Deterministic congestion costs

; 1 dv; dq 1 dvy, . dp ( 1 1)
—qts = - = — ——==).
s p vl2 dqe.q dq v%, dq dg \vy, v

Stochastic hypercongestion adjustment

(6)

The first term of Eq. 6 represents the congestion costs
due to speed losses on the upper branch of the speed-flow
curve in a deterministic setting (Deterministic congestion
costs). The second term incorporates the probabilities
that come into play in a stochastic setting (Stochastic
hypercongestion adjustment). As congested traffic only
prevails with probability 1 — p, the congestion effect is
overestimated in a deterministic setting insofar as the
congestion effect in a deterministic setting is assumed
to apply all the time. The term (p- (—l/v%, -dvh/dq)) in
the hypercongestion adjustment corrects this. The term
(1 / Vl2 -advi/dqcq - Aqcq /dq) in the hypercongestion adjust-
ment displays the marginal costs in hypercongested traf-
fic, and the last term (dp/dq - (1/vy, — 1/v;)) shows the
expected speed losses due to phantom traffic jams.

The part labeled stochastic hypercongestion adjustment
therefore augments the speed-flow model for hypercon-
gested traffic states and thus incorporates a traffic state
that could not have been analyzed with the earlier deter-
ministic speed-flow models. If one wants to exclude the
capacity drop, g4 can be set equal to ¢, which eliminates
the corresponding derivative in Eq. 6.

Expected average travel time costs are increasing in g if
dC/dg > 0 which depends on the specific functions that
describe the road section, but is independent of time costs
and distance travelled.

4 Application to traffic data of the highway A42
Similar to the U.S. Highway Capacity Manual, the Ger-
man Highway Capacity Manual (HBS) describes the
design capacities of highways and provides standardized
methodologies and values for evaluating the performance
of highway sections. Underlying research for the HBS
comprises amongst others, the specification of the func-
tional forms describing the speed-flow relationships, as
well as the functional form of the distribution of the traf-
fic flow breakdown probability. To calculate the effects of
Eq. 6, we need to know those functional forms. With this
knowledge we are able to calculate the expected marginal
speed losses depending on the number of cars traversing
the highway section. For this reason, we apply the same
methodology as in the HBS following [5, 29, 34, 35]%.

4As we want to give an example how to use our theoretical model to calculate
congestion costs, we keep the calculation quite simple. We are aware of the
fact, that more sophisticated methods are available for example for the
calculation of the breakdown probability.
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4.1 Data

We use traffic data for the highway section 44092161 from
Straflen.NRW for the highway A42 which is located in
the northern Ruhrgebiet in North Rhine-Westphalia (see
Fig. 2). The highway section lies in a metropolitan area
and has two lanes and the speed limit is 100 km/h. We
employed data for 5-min intervals covering the flow in
veh/5 min, speed in km/h and the density in veh/km.
Speed and flow are available separately for cars and trucks.
Local speeds are converted into space mean speeds fol-
lowing [29].

As the highway capacity depends on weather conditions
and the amount of daylight, we match the traffic data with
weather and sunrise and sunset data®. By doing so, we can
exclude all intervals where road capacity was below the
maximum possible capacity. Rain, darkness and frost, for
instance, influence road capacity negatively. In addition,
this information can also be used directly to analyze the
impact of weather conditions on external costs®.

4.2 Functional forms of speed-flow relationships

The fundamental relationship describes the relation
between flow g, density k and space mean speed v. [36]
compare the performance of eight different functional
forms in modelling different traffic regimes. They find

5Data on rainfall and temperatures are from the Deutscher Wetterdienst,
Germany’s national meteorological service, and sunrise and sunset data are
taken from the webpage: https://www.timeanddate.de/sonne/deutschland/
muenster’monat=1&year=2015.

6 A figure that shows how rain and darkness increase the marginal external
costs is provided in the Appendix: Additional costs caused by rain and darkness.

that each model has certain advantages in represent-
ing specific traffic regimes, but fails to represent oth-
ers. [37, 38] compare Greenshield’s single-regime, Pipe’s
two-regime and Van Aerde’s single-regime model. They
demonstrate the shortcomings of Greenshield’s and Pipe’s
models in capturing the entire range of traffic stream sit-
uations. They find that the four-parameter Van Aerde
model is able to reflect different traffic situations on differ-
ent road types, as it best approximates the field data. Van
Aerde’s ([39]) model describes the speed-density relation-
ship by means of the minimum distance headway between
consecutive vehicles. In a stable relationship between traf-
fic density, traffic flow and space mean speed, the Van
Aerde model can be written as
v

c1+c2/(o —v) +e3v’
where ¢; are parameters of the function and vg is the
speed at a flow or density of zero. The Van Aerde func-
tion is backward-bending and each value of g can be
assigned to one speed of congested vy, as well as to one
speed of hypercongested v; traffic. [29] analyze traffic
flows on German highway segments in order to revise
the design capacities. They found that the Van Aerde
model provides the best fit for highway sections where
hypercongestion occurs’. For this reason, we calibrate the

qv) = (7)

7 To obtain good estimates for the Van Aerde model, further data cleansing is
necessary, such as removing intervals with temporary obstacles. Moreover, all
data points where the standard deviation of the speed travelled in the 5-min
intervals and in the corresponding 60-min interval exceeded a value of 10, are
removed for the estimation of the speed-flow relationship. The data cleansing
is described in both [5, 29].
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four parameters (cy, ¢z, ¢3,vp) of the Van Aerde function,
minimizing the squared errors with respect to speed, flow
and density following [29]. The parameters are displayed
in Table 2 in the appendix. The model is also employed by
[40] to calculate link-specific free flow travel times.

4.3 Probability of traffic flow breakdowns

In the fundamental diagram, coming from very low traf-
fic flows corresponding to high speeds, the more cars use
this highway section per hour, the greater the probability
that the traffic will break down. It is widely accepted in
the literature that the breakdown flow/density has prop-
erties of a random variable [5, 6, 41, 42]. Focusing on
highway capacity analysis, [5, 29] use the non-parametric
Product Limit Method of [43] to calculate the breakdown
probabilities. The method builds on the idea that for high
traffic flows, it is possible to observe either freely flow-
ing/congested traffic or hypercongested traffic in the next
interval®. For this reason, it is possible to calculate the
number of intervals with an observed traffic volume of g
which are not followed by traffic breakdowns (censored
intervals), and the number of intervals with traffic volume
q that are indeed followed by a traffic flow breakdown in
the next interval. Inserting this information into the Prod-
uct Limit Function, enables calculating the breakdown
probability. Applying the Product Limit Method to traf-
fic data requires defining a threshold speed, above which
traffic is congested/freely flowing, and below which traf-
fic is hypercongested with stop-and-go patterns. [5] found
out that a threshold speed of 70 km/h is representative for
German highways. For this reason, we follow [5, 44] and
also employ a threshold speed of 70 km/h°.

[5] found that the normal Weibull distribution best fits
the non-parametric distribution function of the investi-
gated German motorway sections. The distribution func-
tion of the Weibull distribution has the following form:

F(g) =1—¢e 9P", (8)

where ¢ is the traffic volume, « is the shape parameter and
B is the scale parameter. We follow the approach of [5] to
determine the distribution of traffic flow breakdowns.

As breakdowns of traffic flows occur suddenly, only
short time intervals are appropriate for analyzing traffic
breakdowns. The time intervals employed in the empiri-
cal literature vary between 1-minute [45] and 10-minute
intervals [44]. We follow [5, 29], who use 5-min intervals
to estimate the parameters of the Weibull distribution.
By assuming that the variance of the traffic flow is nor-
mally distributed over the interval, it is possible to convert

8We only include traffic flow breakdowns at traffic flows greater than 2,400
vehicles per hour. With lesser flows, traffic breakdowns are probably caused
by bottlenecks.

9In robustness analyses we found out, that changes in the threshold speed
within a range between 60 and 80 km/h only marginally affect the shape of the
probability distribution function.
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the Weibull distribution function to hourly intervals. The
procedure is described in detail in [5], and is necessary,
as the capacity estimation with the Van Aerde function
and the calculation of time costs also builds on hourly
data. The parameters are presented in Table 2 in the
appendix. Figure 3 shows the speed-flow relationship and
the Weibull distribution functions. The breakdown prob-
ability distribution function for hourly intervals is shifted
inwards, as the probability that traffic flow will break
down within the next hour is ceteris paribus higher than
the probability that the traffic flow will break down within
the next five minutes. The displayed distribution func-
tions were calculated including all weather and light con-
ditions. Breakdown probabilities would increase ceteris
paribus if only time intervals with, for example, rainfall
were considered for calculation.

Knowing the functional forms of the speed-flow rela-
tionships and the breakdown probabilities, we are able to
calculate the external costs. The functional form of the
Van Aerde function allows for calculating the marginal
speed changes caused by additional drivers on the road
per hour (from g to g + 1). The distribution function of
the breakdown probability yields the probability of the
traffic states of congestion or hypercongestion prevail-
ing. More precisely, the breakdown probability measures
the probability that the traffic flow will break down in
the next interval given the traffic flow in this interval.
However, using this probability for the traffic state of
hypercongestion is not entirely correct as at this traffic
state, flow has already broken down in previous intervals.
As the hypercongested intervals are quite short in our data
(approximately 14 minutes), the error we make using the
breakdown probability also for the state of hyperconges-
tion is small. Furthermore, each additional driver using
the road per hour, marginally increases the probability of
a breakdown. For this reason, we also need to investigate
the changes in p for increases from g to g + 1.

4.4 Capacity drop

The capacity drop has received considerable attention in
transportation science literature. It describes the obser-
vation that the discharge rate of hypercongested traffic
is lower than the maximum flow in congested but freely
flowing traffic [30, 46]. At a traffic breakdown, in our
model, the traffic state simply switches from the con-
gested to the hypercongested branch. The capacity drop
renders the hypercongested traffic state more persistent,
because, due to the lower traffic flow, traffic demand
has to fall to a much lower level to dissolve the traffic
jam [47].

Research has tended to concentrate on the mechanism
of the capacity drop phenomenon at bottlenecks, taking
into account various aspects like the impact of driving
behavior [48], the existence of lane-drops, on-ramps with
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or without ramp controls [49, 50] or the impact of differ-
ent jam types like standing queues or stop-and-go waves,
e.g. [30]. The results of [30] indicate that the outflow of
stop-and-go waves is lower than those of standing queues.
As stop-and-go waves are especially relevant for phan-
tom jams, their results indicate the importance of this
phenomenon in this context.

Estimates of the capacity drop range between 3% and
18%, with [49] obtaining this entire range of estimates.
[46, 50] have estimates in the medium range of 6% and
15% respectively. The US [51] recommends 7% as a default
value. [52] augments the Van Aerde Model by an addi-
tional parameter, so as to take the capacity drop into
account and applies it to German highway data. He finds
that capacity drops by 11% when the traffic flow breaks
down. [14, Table 1] presents findings of transportation
engineering literature about throughput drops and identi-
fies a median estimate for the size of the drop of 10% with
estimates ranging as high as 25%.

Our estimates for the capacity drop on the highway
section range from 3% eastbound to 13% westbound.
As the studies cited in the previous paragraph perform
more extensive and sophisticated research on the extent
of capacity drops than is done in this paper, we sim-
ply assume a medium value of 10% in our calculations.
Within the framework of our model, we assume that the
capacity drop only affects hypercongested traffic states.
When traffic breaks down, we assume a 10% flow loss and
therefore, the shift from the upper to the lower branch
occurs diagonally, resulting in even greater speed losses.
For this reason, we use the Van Aerde function for the
whole range of traffic situations and do not estimate the
upper and the lower branch separately, as do [53]. We also
assume that in the state of hypercongestion, the traffic
flow is 10% lower, so that the dissolution of traffic jams is
less efficient.

4.5 Travel time costs

Following the German guidelines for infrastructure plan-
ning, we differentiate between three different travel time
cost categories. There are private trips (for shopping,
leisure activities or driving to the workplace and back),
business trips (during working hours) and trips of heavy-
duty vehicles (trucks). The German methodology hand-
book for the federal infrastructure plan differentiates
between private and business time cost parameters, with
both increasing in total trip length [65, pp. 97-101]'.
The study “Mobility in Germany” contains the average car
trip lengths, as well as the trips broken down by purpose
(66, p. 28, p. 89]. However, the results include all trips and
not just those on highways. For this reason, we made the
assumption that the average private trip length of approx-
imately 18 km is somewhat greater for trips on highways
(45 km). This assumption is necessary, because, as men-
tioned above, the value of time function is upward-sloping
with the trip length. The corresponding time costs are 8.17
Euro/h. The average length of business trips on highways
is assumed to be 100 km (time costs: 30 Euro/h) [65, pp.
97-101].

There are basically two types of heavy-duty vehicles
on the road: normal trucks and semi-trailer trucks. Due
to different trip lengths and vehicle specifications, the
drivers’ wages (17.64 and 20.14 Euro/h) and the capacity
maintenance costs (5.81 and 9.34 Euro/h) differ [65, pp.

10There is evidence that values of travel time are higher in heavily-congested
traffic than under free-flow conditions because stop-and-go driving is
frustrating [55-57] Allowing for this effect would increase the marginal
external costs of congestion. Slower highway traffic induces progressively
fewer severe accidents [58] as well as a better environmental performance
[59]. However, this statement only holds unambiguously, if the number of
vehicles remains unchanged. We analyze an increase in traffic density that
may result in reduced fast traffic, but the overall effect on accidents and
environment is ambiguous. We therefore do not include this externality in our
calculation. Furthermore, these externalities may already be internalized by
existing gasoline taxes [60].
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133-134]. Moreover, the methodology handbook also
offers an average value of time for transported goods of
6.88 Euro/h, with an average loading factor of 0.7 [65, p.
101]. The total time costs for normal trucks are therefore
assumed to be 28.27 Euro/h and 34.30 Euro/h for semi-
trailer trucks. On this highway section, among heavy-duty
vehicles, the shares of normal trucks versus semi-trailer
trucks are approximately 2/3 versus 1/3, which yields an
average time cost value for heavy duty vehicles of 30.28
Euro/h.

The shares of trips by purpose are also from the Mobility
in Germany study, although the trip purposes, including
routes on highways may differ from those within urban
centers. However, detailed data for highway trips is not
available. The same applies to the average rate of vehicle
occupancy for cars, to which we apply a value of ryp of
1.1 [54, p. 8]. The cost factors are weighted by the share
of private (wp), business (w;) and heavy duty vehicle (wj,;)
trips.

As the time costs of 8.17, 30.00, and 30.28 Euro/h for
private, business, heavy-duty vehicle-trips respectively,
are given in prices with base year 2012, the GDP defla-
tor has been applied to extrapolate them to 2019'l.
The time cost parameters employed in the cost cal-
culations therefore equal 9.22, 33.87, and 34.18 Euro/h
respectively.

It should be noted that the congestion effect corre-
sponding to the upper branch of the speed-flow curve,
barely affects heavy-duty vehicles, as their maximum per-
missible speed in Germany is 80 kilometers per hour.
They do not incur significant travel time prolongation in
congested traffic on the upper branch of the speed-flow
curve!?. The travel time cost parameter coy, is:

Ceon = Wp-rv0-9.22€+wy,-ry0-33.87€ = 1340 €, (9)

where the weights are w, = 0.88 and w;, = 0.12.

The hypercongestion externality is relevant for all vehi-
cles on the highway, including heavy-duty vehicles. For
this reason, the weights are somewhat different at w, =
0.77, wp = 0.10 and wy,; = 0.13.

Chyper = Wp - Tvo - 9.22€ +wp, - ryp - 33.87 €

(10
+ Wpg - 3418 € = 1598 €

Evaluating the travel time losses due to the normal con-
gestion effect and those due to hypercongestion with the
cost parameters, enables us to calculate external conges-
tion costs that depend on the current traffic flow situation.

1The GDP deflator is taken from the Destatis Genesis Database, time series
no. 81000-0033.

12 A5 the apex of the Van Aerde function is at a speed of 70 km/h (eastbound)
and 80 km/h (westbound), we accept a small error with the assumption that
heavy duty vehicles are not affected by travel time prolongation on the upper
branch. However, we believe that the error is small and that travel time losses
in congested traffic are primarily an issue for cars.
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4.6 Results

Figure 4 shows the total expected private, marginal and
social travel time costs (without and with capacity drop)
that have been calculated with the above mentioned time
cost parameters.

The expected average costs curve (blue line) is upward-
sloping. However, compared to the external costs, the
slope is quite moderate, underlining the importance of
internalizing the external costs in order to obtain socially
acceptable quantities.

Figure 5 shows the marginal external cost functions for
the highway section with and without capacity drop (indi-
cated with CD). The effects are split as in Eq. 6 in the
deterministic congestion effect (blue - dotted) and the
stochastic hypercongestion adjustment (red - striped). As
the cost functions display the expected costs of a specific
traffic volume g, they increase monotonously in g.

The upward-sloping cost curve and the surge at very
high traffic flows are driven by three factors:

1 The more vehicles that want to use the road at the
same time, the more other vehicles are affected by
travel time losses. If marginal effects were constant
over the entire traffic flow range, this would result in
a linearly increasing cost function.

2 However marginal effects of additional drivers are
not constant over the entire traffic flow range, as the
slope of the Van Aerde function at the apex is much
steeper than at low traffic flows.

3 The probability that the traffic flow breaks down
increases with flow, and therefore, the costs of the
shift from congested to hypercongested traffic
become more relevant at higher traffic flows. This
overcompensates for the fact that the absolute speed
losses due to breakdowns decrease with q.

These marginal cost functions enable us to assign cor-
responding costs to each traffic flow observed on the
highway. Our next step is thus to use the observed traffic
flow for an average Thursday (public and school holidays
excluded) at this highway section of the A42 (see Fig. 6).

Figure 7 shows the external congestion costs (blue -
dotted), as well as the hypercongestion adjustment (red
- striped). It is evident that at peak times, due to the
increase in probability of a traffic breakdown, the costs
of hypercongestion become more pronounced, whereas
in off-peak times, these costs equal zero. More precisely,
when the flow exceeds approx. 65% of design capacity flow
(striped line in Fig. 6), the hypercongestion costs start to
increase. This effect becomes especially relevant when the
capacity drop is taken into account as well (Fig. 7b and d).

In off-peak periods, the probability of a random break-
down is close to zero, as driver errors, except for those
causing accidents and thereby bottlenecks, do not affect
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the stability of the traffic flow up to a certain satura-
tion level and therefore, the hypercongestion externality
is zero as well. Traffic breakdowns at low traffic flows are
caused by bottlenecks and should therefore be analyzed
with bottleneck models.

In Fig. 8 in Appendix: Additional costs caused by rain
and darkness we use the information on different weather
and daylight conditions to show that this information
influences traffic flow conditions and thus also conges-
tion costs. Using only time intervals without daylight and
with rainfall, the breakdown probability function shifts
inwards and thus the undesired traffic state of hypercon-
gestion becomes more likely. This increases the marginal
costs by approximately 8 cents in the afternoon peak on
the A42 eastbound compared to Fig. 7b. Contrarily, if only
favorable weather and light conditions are included in the
calculation, external costs would be lower compared to
the baseline case.

In total, we identify a currently non-internalized con-
gestion externality for this highway section of a maximum
of about 38 cents per vehicle and kilometer. The aver-
age externality ranges roughly between 1.6 and 4.6 Euro
cents, when costs are spread equally over all intervals.
More precisely, the average externality in the eastbound
direction lies between 3.7 and 4.6 Euro cents without and
with capacity drop respectively. On the westbound section
the average externality, ranging within 1.6 and 2.0 Euro

cents, is lower due to fewer hours of traffic congestion.
The values may be on average large enough to justify a
congestion charge, when considering the costs of the
charging technology of arguably 2.5 Euro cents per
kilometer. If this is not the case yet, as the values
of the westbound direction might suggest, decreasing
costs of the charging technology and increasing conges-
tion will probably make congestion charges profitable
in future.

5 Discussion

The absolute size of the external costs we obtain can only
be taken as a reference value for other highway sections,
because they are very specific to the respective traffic
situations. The results depend on the estimated speed-
flow relation and the breakdown probability, and these
can be very different among different highways and high-
way sections. The highway section that we consider, for
example, has a speed limit of 100 km/h. Therefore, the
congestion externality of a car tends to be rather small,
compared to sections with no speed limits, because the
free flow velocity does not legally exceed 100 km/h. In
general, the lower the speed differences between different
cars on the highway, the more stable is the traffic flow.
Therefore, speed limits tend to smoothen out the traffic
and therefore reduce the probability of phantom jams.
Because the hypercongestion externality depends on
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both the value of the breakdown probability and the
marginal breakdown probability, the overall effect on
the hypercongestion externality is ambiguous. Because
travel time costs are relatively higher in hypercon-
gestion [55-57], and commuters may be risk avers
and prefer reliability [31-33], using the values of
the German methodology handbook for the federal infras-
tructure plan, we rather underestimate the hyperconges-
tion externality.

Autonomous cars will increase the capacity of a high-
way as well as reduce the occurrence of phantom jams
[61]. Vehicle to vehicle (V2V) communication trans-
mits information between vehicles on the road in real-
time, enables the anticipation of other cars’ actions and
contributes to the stability of traffic flow. While it is
not clear how autonomous cars and traditional drivers
would interact, especially because we do not know how
the autonomous cars will be programmed or how the
artificially intelligent car [62] will react to traditional
drivers, autonomous cars should be able to avoid facili-
tating phantom jams, and may therefore be exempt from
phantom jam tolls. In a perfect world of autonomous
cars, there should be no phantom jams and thus no
longer any phantom jam externality. Therefore, the aggre-
gated value of the phantom jam externality calculated
in this paper can be used as approximation of the
value autonomous cars generate by avoiding phantom
jams.

The extent of congestion and hypercongestion costs
are highly specific, so that future research should include
an analysis of more highway sections with different
characteristics regarding the number of lanes or the
speed limit, so as to determine which aspects affect
external costs. These calculations can also be extended
to the entire highway 42 because, for instance, traf-
fic detectors are located every 2.5 kilometers on this
highway.

6 Conclusion

Especially in metropolitan areas, highways are congested
during the rush hour. Travel times increase significantly
due to congestion, and the resulting additional time and
environmental costs place a large burden on economies.
There are several possible reasons for congestion at a spe-
cific site, but one that is relatively independent of a specific
location or road design, is the driving behavior. Driving
behavior is, however, the main reason for phantom traffic
jams.

Following [2], we also assume that there are random
traffic jam formations that are not caused by bottlenecks.
Departing from traffic experiments with stochastic traf-
fic flow breakdowns, we set up a model for calculating
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their external costs. We show that considering capacity
as deterministic ignores parts of the externality, which we
refer to as stochastic hypercongestion adjustment.

Directly using the speed-flow data, we calculate exter-
nal congestion and hypercongestion costs for a German
highway section. By incorporating the probabilities in the
speed-flow model, we obtain a cost function that increases
monotonously with flow and is not backward-bending,
as in deterministic speed-flow models. For this reason, a
unique cost value can be assigned to each level of traffic
flow.

Our results indicate that the stochastic hypercongestion
adjustment is not negligible, especially when considering
the capacity drop due to traffic flow breakdowns. We show
that the costs caused by stochastic traffic flow breakdowns
can increase the deterministic congestion costs by up
to 50%.

In order to calculate not only externalities, but also
Pigouvian congestion charges, our approach has to
be combined with a demand model. Because, in our
application, the cost function is increasing, a unique
equilibrium should exist. In this congestion (and hyper-
congestion) charge equilibrium, congestion externalities
will be reduced, and our maximum value of the exter-
nality (of about 0.38 Euro per km) could be consid-
ered as an upper bound of the equilibrium congestion
charge. If a congestion charge were imposed, drivers
would adjust their departure time, route choice or travel
mode, such that traffic flow over the course of the day
would change and the marginal external cost (observed
at a fixed time of the day) would change too. If users
change their travel behaviour to avoid the peak-charges,
and congestion charges are indeed all about such changes,
the peak-period externality and corresponding congestion
charge would decrease. The peak period might grow in
terms of duration, but should decline in terms of inten-
sity. Therefore, the equilibrium charge may be lower at the
maximum, but higher at the previous off-peak times.

In our model, we also assume that all drivers are
equal. Trucks, however, are longer, slower, and heav-
ier, and therefore warrant special treatment and impose
higher external congestion costs [63]. Based on [64],
who finds that many of the critical parameters of the
flow-density relationship depend on vehicle length, future
research should separate the external effects of trucks
and cars on travel times, so as to determine vehicle-
type-dependent external costs that could, in a next step,
be used to calculate congestion and hypercongestion
charges.

Appendix
Calibrated parameters



Goldmann and Sieg European Transport Research Review (2021) 13:12 Page 12 of 15

Table 2 Parameters and values used for application

A42 A42
Eastbound Westbound
van Aerde Model
a 0.007521 0.004880
@) 0475520 0.092570
c3 0.000001 0.000163
Vo 1141 110.0
Weibull-distribution
60-min intervals, baseline case
o 13.82 16.55
B 4377 4388
Weibull-distribution
60-min intervals, rain and darkness
a 16.07 1849
B 4162 4331
Travel time cost parameters in Euro?
Effects involving the congested branch 1340
Effects involving the hypercongested branch 15.98

@ Own calculations based on [65, 66]

Additional costs caused by rain and darkness
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