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Abstract

Background: Urban safety performance functions are used to predict crash frequencies, mostly based on Negative
Binomial (NB) count models. They could be differentiated for considering homogeneous subsets of segments/
intersections and different predictors.

Materials and methods: The main research questions concerned: a) finding the best possible subsets for
segments and intersections for safety modelling, by discussing the related problems and inquiring into the
variability of predictors within the subsets; b) comparing the modelling results with the existing literature to
highlight common trends and/or main differences; c) assessing the importance of additional crash predictors,
besides traditional variables. In the context of a National research project, traffic volumes, geometric, control and
additional variables were collected for road segments and intersections in the City of Bari, Italy, with 1500
fatal+injury related crashes (2012–2016). Six NB models were developed for: one/two-way homogeneous segments,
three/four-legged, signalized/unsignalized intersections.

Results: Crash predictors greatly vary within the different subsets considered. The effect of vertical signs on minor
roads/driveways, critical sight distance, cycle crossings, pavement/markings maintenance was specifically discussed.
Some common trends but also differences in both types and effect of crash predictors were found by comparing
results with literature.

Conclusion: The disaggregation of urban crash prediction models by considering different subsets of segments
and intersections helps in revealing the specific influence of some predictors. Local characteristics may influence
the relationships between well-established crash predictors and crash frequencies. A significant part of the urban
crash frequency variability remains unexplained, thus encouraging research on this topic.
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1 Introduction
The use of Safety Performance Functions (SPFs) is cru-
cial for road safety purposes. Several functions were de-
veloped for rural and urban roads [1, 12–14, 23, 26].
Few of these studies were conducted in Europe, espe-
cially for urban areas. While functions may be calibrated

for being applied in other countries/regions [1, 10], their
transferability is not without issues [9, 24].
Different aspects related to driving behaviour, cultural, geo-

graphic variables [1] may affect the model transferability.
Transferability issues may be solved by applying a locally de-
rived calibration factor. However, the effect of some variables
(e.g., traffic volumes, geometric characteristics) may depend
on the geographic context thus, a single calibration factor
may not solve transferability issues [4, 10]. In fact, the reli-
ability and variability of calibration factors with geographic
and road-related variables should be studied in detail (see
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e.g., [15]). Another option consists in estimating local SPFs,
which may be particularly important in countries where they
are scarcely used [5, 6]or where the transferability of foreign
models have been shown to be questionable (such as trans-
ferring HSM SPFs to the Italian urban environment, see [2]
Some European urban predictive models were devel-

oped, e.g., for Danish arterial segments and intersections
[13], Portuguese intersections [12]; Italian segments and
intersections [3, 8]. Some other studies were focused on
specific crashes, such as vulnerable users (e.g., [16]).
However, some of these studies are old, limited to spe-
cific road elements (e.g., roundabouts, segments, or in-
tersections), and/or the considered predictors were
limited. In parallel, some other recent studies were fo-
cused on developing macro-level SPFs [18, 22], including
high-level variables, not specifically related to segments
and intersections.

1.1 Research questions
Given the presented background, this study is based on
the following research questions, which are intended to
contribute to the existing body of research:

� systematically explore the crash performances of
both urban segments and intersections, with the
related influential variables thus searching for the
best subsets of segments and intersections with
homogeneous characteristics for modelling
purposes, among different possibilities.

� Compare the significant predictors highlighted in
the modelling stages with the significant crash
predictors retrieved in previous research, to reveal
specific local differences which may be of interest
for further studies.

� Explore the influence of several other potential crash
predictors, which are usually not considered in
safety prediction studies, besides the traditional
geometric and traffic control variables used in
previous research.

Note that the article is not focused on assessing the opti-
mal model and functional form for urban safety predictions,
since the above reported research questions are explored in
the context of the application of NB count models, which
are best practice for urban safety predictions (e.g. [12, 23,
26]). For this reason, it is important to stress the exploratory
and research purpose of this study, specifically with regard to
the possible variability of predictors with the different subsets
of segments and intersections, by highlighting similarities
and differences between the type and the effect of predictors
across the different subsets of road elements. The purpose is
corroborated by the few evidences of this type of analysis in
previous research, especially considering the European
context.

2 Methods
2.1 Main dataset
In the context of the Pa.S.S.S. (Scientific Park for Road
Safety) National research project (main agency: City of
Bari, granted by the Italian Ministry of Transport and
Infrastructures), the City of Bari (Italy) was chosen for
data collection.
Fatal and injury crash data were collected in the

period: 2012–2016.1 They are crashes provided with
generic information (e.g., date, hour), exact localization,
information about vehicles and persons involved, crash
type and circumstances, road-related variables.
Available traffic data from the City of Bari were

coupled with crash data on the main interconnected
urban network within the considered urban area (see
Fig. 1). After, weekday peak hour traffic counts were
manually conducted (during 2018–2019, then converted
into average daily volumes) to fill gaps in data obtained
and to check for inconsistencies due to old traffic vol-
umes and new roads openings. Traffic volumes were as-
sumed as constant in the period: 2012–2019, coherently
with average traffic volume trends in Southern Italy.

2.2 Samples of sites
The selected network was further divided into segments
and intersections. Crashes were then linked to each seg-
ment and intersection identified for this research. To
verify the exact location of crashes on segments and in-
tersections, each crash was preliminarily localized on the
map based on both its geographic coordinates and the
textual description of the segment or intersection in
which it occurred, reported in the dataset. After, the fol-
lowing information present in the dataset were further
analysed: crash location coded as road segment or inter-
section; crash type; crash circumstances, such as the
regular/illegal manoeuvre that the driver was undertak-
ing. That information was manually matched with the
geographic coordinates, the presence of stop/yield lines
or zebra crossings and the descriptions of segments and
intersections, to determine, one crash at the time, the
appropriate location of the crash. This approach was
also deemed to reduce the location bias in segments and
intersections, particularly related to the distance between
the initial crash event and when it comes to rest (e.g.,
two vehicles hitting each other and one of the vehicles
ends up 50 ft. down the road on the sidewalk). However,
the issue related to the location during the crash process

1Data provided by the Puglia Regional agency ASSET (Puglia Strategic
Regional Agency for the Eco-Sustainable Area Development), in coord-
ination with ISTAT (National Institute of Statistics). The City of Bari
(to which crash data are referred) is the County Seat of the Italian Pu-
glia Region. All crash data collected by ISTAT are fatal and injury
crashes with at least one vehicle involved. Fatal crashes in the City of
Bari dataset account for 0.5% of the total.
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is more critical for collision types, such as run-off-the-
road and sideswipe crashes, which were not frequent in
the dataset analysed. Manual data explorations were pre-
ferred to predefined distance-based thresholds since they
could present some arbitrariness and they may depend
on the specific local context. Traffic volumes were di-
vided into volumes on the main and the secondary
entering roads. Segments were divided into “homoge-
neous” segments (Fig. 2), by considering internal geo-
metric or traffic control differences. Four hundred forty-
seven road “sites” were initially investigated: 325 homo-
geneous segments and 122 intersections. The sample
sizes for the various models were considered good
enough for this study (given the study objectives), al-
though the dispersion parameter of the NB models could
be mis-estimated [19, 21].

2.3 Crash predictors
Several crash predictors were considered; most of them
derived from ad-hoc inspections and/or online sources.
For the sake of comparison with similar European
models (taken from a previous literature review: [6]), the
main variables considered in Greibe [13] and Gomes
et al. [12] were used. Lengths, speed limits, paved widths,
minor roads/driveways, parking, land-use were collected
for segments; while the number/width of intersecting
road lanes, medians, turning lanes, number of one-way
legs were collected for intersections. Other variables
were considered such as sidewalks [3], vertical signs on
minor roads/driveways, maintenance of pavements (i.e.,
pavements in poor conditions such as those shown in
the examples of Fig. 3, or otherwise good, if those issues
are absent) and markings (visually inspected), cycle

Fig. 1 Definition of the study area: City of Bari, Italy. Legend. On the left: localization of the city of Bari within Italy. On the right: limit of the urban
area studied (the main urban centre inside the City of Bari), highlighted through the red line

Fig. 2 Division of the road network into sites: intersections and homogeneous road segments
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paths, bus stops, reserved lanes, critical sight distance at
intersections. The “critical” sight distance is considered
in this article as the minimum available sight distance
measured on all the intersecting legs of a road intersec-
tion, considering the obstacles on the roadside.
The selected variables and associated descriptive statis-

tics are listed in Table 1.

2.4 Data analysis techniques
Negative Binomial (NB) count data models were used to
link crash frequencies to predictors. These models can
account for the over-dispersion of crash data [20, 21]
and they were used in similar studies (e.g., [12, 23, 26]).
NB models were estimated in R (Mass library: [25]). The
general SPF model structures used are reported as
follows:

NSPF ;segments ¼ eβ0;S�AADTβ1;S�Lβ2;S�e
Pn

i¼3

βi;S Xi;S
ð1Þ

NSPF;intersections ¼ eβ0;I� AADTmaj þ AADTmin
� �β1;I�e

Pn

i¼2

βi;I Xi;I

ð2Þ

Where:
AADT = Annual Average Daily Traffic for segments;
AADTmaj = AADT for the major intersecting road

(carrying the highest amount of traffic);
AADTmin = AADT for the minor intersecting road

(carrying the lowest amount of traffic). Note that at-
tempts at estimating separate coefficients for the major
and minor traffic volumes were made, which however
indicates the functional form in Eq. 2 as the most appro-
priate for the dataset;
L = segment length (m);
Xi,S = other predictors for segments (numerical or cat-

egorical, in case of categorical variables they are

transformed into binary dummy variables with modal-
ities 0 and 1, 0: reference modality);
Xi,I = other predictors for intersections (numerical or

categorical, in case of categorical variables they are
transformed into binary dummy variables with modal-
ities 0 and 1, 0: reference modality);
βi,S = estimate of the coefficients associated to each

crash predictor for segments through maximum likeli-
hood estimation (β0,S is the estimate for the intercept).
βi,I = estimate of the coefficients associated to each

crash predictor for intersections through maximum like-
lihood estimation (β0,I is the estimate for the intercept).
One of the research questions concerned the most ap-

propriate way of disaggregating segments and intersec-
tions into subsets. Hence:

� preliminary models for the whole datasets of
segments and intersections were run;

� two sub-categories for each family of sites (segments
and intersections) were selected as based on results
from preliminary models;

� models for each sub-category were run.

Disaggregating the dataset for research purposes re-
sults in reducing the initial sample size. The chosen level
of significance was then set to p = 0.10, given the ex-
ploratory purposes and the limited dataset (similarly to
e.g., [12]). Injury severity modelling was not considered
due to the scarce number of fatal crashes and the ab-
sence of injury scales (e.g., slight/serious/incapacitating)
in the dataset. The Akaike Information Criterion (AIC)
was used to comparatively assess different models and
the Nagelkerke R2 as a goodness-of-fit measure. In gen-
eral, for each subset, the model having the least number
of all significant variables included among different can-
didate best fitting models was selected. Results from
each model obtained were compared to the correspond-
ing null and full models through likelihood ratio tests.

Fig. 3 Example of pavement conditions considered as “poor” conditions (i.e., with cracks, deformations, or potholes on the left; with irregular
surface on the right [7];)
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Table 1 Descriptive statistics of potential crash predictors for segments and intersections

Variables [for segments] Modalities Homogeneous Segments
(n = 320a)

One-way homogeneous
segments
(n = 190)

Two-way homogeneous
segments
(n = 130)

Mean (st. dev.)/
Counts

Min-max/
Percentages

Mean (st. dev.)/
Counts

Min-max/
Percentages

Mean (st. dev.)/
Counts

Min-max/
Percentages

Fatal+Injury (F + I) crashes Numerical 689 – 283 – 406 –

F + I crashes/segment/year Numerical 0.43 (0.86) 0–6 0.30 (0.68) 0–5 0.63 (1.03) 0–6

One-way 0 – No (two-way) 0–130 0–0.41 0–0 0–0.00 0–130 0–1.00

1 – Yes 1–190 1–0.59 1–190 1–1.00 1–0 1–0.00

One-lane 0 –No (multilane) 0–226 0–0.71 0–96 0–0.51 0–130 0–1.00

1 – Yes 1–94 1–0.29 1–94 1–0.49 1–0 1–0.00

AADT Numerical 8637.2 (5889.3) 300.0–29,960.0 6228.8 (4569.5) 300.0–22,600.0 12,157.1
(5843.5)

1160.0–29,
960.0

Length (m) Numerical 138.3 (183.3) 30.0–1510.0 124.1 (175.4) 30.0–1510.0 159.1 (193.0) 30.0–1415.0

Speed Limit = 50 km/h 0 – Yes 0–309 0–0.97 0–190 0–1.00 0–119 0–0.92

1 – No (> 50 km/h) 1–11 1–0.03 1–0 1–0.00 1–11 1–0.08

Road width (m) Numerical 10.5 (3.0) 4.1–28.0 9.9 (2.6) 5.5–20.0 11.3 (3.5) 4.1–28.0

Type of lanes 0–1 lane 0–116 0–0.36 0–116 0–0.61 0–0 0–0.00

1 – > 1 lane (up to 3) 1–74 1–0.23 1–74 1–0.39 1–0 1–0.00

2–1 + 1 lane 2–89 2–0.28 2–0 2–0.00 2–89 2–0.68

3 – > 1 + 1 lanes (up to
3 + 3)

3–41 3–0.13 3–0 3–0.00 3–41 3–0.32

Density of minor roads/
driveways per km

Numerical 26.9 (26.0) 0.0–143.0 22.4 (22.8) 0.0–142.9 33.3 (28.9) 0.0–143.0

Vertical signs on minor
roads/ driveways

0 – No 0–256 0–0.80 0–158 0–0.84 0–98 0–0.75

1 – Yes 1–64 1–0.20 1–32 1–0.16 1–32 1–0.25

Poor maintenance of
pavements

0 – No 0–71 0–0.22 0–49 0–0.26 0–22 0–0.17

1 – Yes 1–249 1–0.78 1–141 1–0.74 1–108 1–0.83

Road markings 0 – No/Partially absent or
illegible

0–60 0–0.19 0–24 0–0.13 0–36 0–0.28

1 – Illegible 1–124 1–0.39 1–82 1–0.43 1–42 1–0.32

2 – Yes 2–136 2–0.42 2–84 2–0.44 2–52 2–0.40

Parking type 0 – Prohibited 0–85 0–0.27 0–26 0–0.14 0–59 0–0.45

1 – One side 1–109 1–0.34 1–74 1–0.39 1–35 1–0.27

2 – Both sides 2–119 2–0.37 2–87 2–0.46 2–32 2–0.25

3 – Mixed 3–7 3–0.02 3–3 3–0.02 3–4 3–0.03

Cycle paths 0 – No 0–291 0–0.91 0–163 0–0.86 0–128 0–0.98

1 – Yes 1–29 1–0.09 1–27 1–0.14 1–2 1–0.02

Sidewalks 0 – No 0–31 0–0.10 0–4 0–0.02 0–27 0–0.21

1 – Yes 1–289 1–0.90 1–186 1–0.98 1–103 1–0.79

Median 0 – No 0–244 0–0.76 0–114 0–0.60 0–130 0–1.00

1 – Yes 1–76 1–0.24 1–76 1–0.40 1–0 1–0.00

Bus stop 0 – No 0–227 0–0.71 0–143 0–0.75 0–84 0–0.65

1 – Yes 1–93 1–0.29 1–47 1–0.25 1–46 1–0.35

Bus/taxi lane 0 – No 0–284 0–0.89 0–154 0–0.81 0–130 0–1.00

1 – Yes 1–36 1–0.11 1–36 1–0.19 1–0 1–0.00

Land use 0 – Residential 0–115 0–0.36 0–71 0–0.37 0–44 0–0.34

1 – Mainly commercial 1–150 1–0.47 1–110 1–0.58 1–40 1–0.31

2 – Other 2–55 2–0.17 2–9 2–0.05 2–46 2–0.35
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Table 1 Descriptive statistics of potential crash predictors for segments and intersections (Continued)

Variables [for
intersections]

Modalities Intersections
(n = 120a)

Three-legged intersections
(n = 48)

Four-legged intersections
(n = 72b)

Mean (st. dev.)/
Counts

Min-max/
Percentages

Mean (st. dev.)/
Counts

Min-max/
Percentages

Mean (st. dev.)/
Counts

Min-max/
Percentages

Fatal+Injury (F + I) crashes Numerical 906 – 232 – 674 –

F + I crashes/intersection/
year

Numerical 1.51 (1.84) 0–15 0.97 (1.41) 0–15 1.87 (1.99) 0–12

Traffic lights 0 – No 0–59 0–0.49 0–38 0–0.79 0–21 0–0.29

1 – Yes 1–61 1–0.51 1–10 1–0.21 1–51 1–0.71

Type = 4 legs 0 – No 0–48 0–0.40 0–48 0–1.00 0–0 0–0.00

1 – Yes 1–72 1–0.60 1–0 1–0.00 1–72 1–1.00

Main AADT Numerical 12,192.4
(5313.2)

2475.0–23,
680.0

12,588.4
(5350.8)

3550.0–22,
340.0

11,928.4
(5309.1)

2475.0–23,
680.0

Secondary AADT Numerical 5084.1 (4271.5) 300.0–17,880.0 4008.3 (3897.4) 300.0–18,520.0 5801.4 (4384.2) 345.0–17,880.0

Total AADT Numerical 17,276.5
(7981.8)

4175.0–41,
560.0

16,596.6
(7018.3)

5420.0–32,
300.0

17,729.7
(8582.2)

4175.0–41,
560.0

Main AADT/ Total AADT Numerical 0.53 (0.03) 0.50–0.62 0.55 (0.03) 0.50–0.62 0.53 (0.02) 0.50–0.61

Lane balance 0 – No 0–81 0–0.67 0–38 0–0.79 0–43 0–0.60

1 – Yes 1–39 1–0.33 1–10 1–0.21 1–29 1–0.40

Median on the main road 0 – No 0–100 0–0.83 0–48 0–1.00 0–52 0–0.72

1 – Yes 1–20 1–0.17 1–0 1–0.00 1–20 1–0.28

Median on the secondary
road

0 – No 0–107 0–0.89 0–43 0–0.90 0–64 0–0.89

1 – Yes 1–13 1–0.11 1–5 1–0.10 1–8 1–0.11

Entering lanes on the main
road

Numerical 1.5 (1.1) 0.0–5.0 1.1 (1.0) 0.0–4.0 1.8 (1.1) 0.0–5.0

Mean lane width at
intersections (m)

Numerical 4.5 (1.1) 2.8 (8.7) 4.3 (1.0) 2.8–6.6 4.6 (1.2) 2.8–8.7

Critical sight distance (m) Numerical 31.2 (26.0) 0.0–139.5 30.0 (28.1) 0.0–139.5 32.0 (24.6) 1.6–100.0

One-way legs Numerical 1.7 (1.5) 0.0–4.0 1.4 (1.1) 0.0–3.0 2.0 (1.6) 0.0–4.0

Specialized turning lane 0 – No 0–88 0–0.73 0–43 0–0.90 0–45 0–0.63

1 – Yes 1–32 1–0.27 1–5 1–0.10 1–27 1–0.37

Traffic control 0 – No 0–22 0–0.18 0–16 0–0.33 0–6 0–0.08

1 – Give-way/Stop 1–37 1–0.31 1–22 1–0.46 1–15 1–0.21

2 – Traffic lights 2–35 2–0.29 2–7 2–0.15 2–28 2–0.39

3 – Traffic lights with
dedicated turning

3–26 3–0.22 3–3 3–0.06 3–23 3–0.32

Poor maintenance of
pavements

0 – No 0–18 0–0.15 0–9 0–0.19 0–9 0–0.13

1 – Yes 1–102 1–0.85 1–39 1–0.81 1–63 1–0.87

Cycle path crossing 0 – No 0–103 0–0.86 0–36 0–0.75 0–67 0–0.93

1 – Yes 1–17 1–0.14 1–12 1–0.25 1–5 1–0.07

Sidewalks 0 – No 0–8 0–0.07 0–3 0–0.06 0–5 0–0.07

1 – Yes (both sides) 1–112 1–0.93 1–45 1–0.94 1–67 1–0.93

Bus stops 0 – No 0–111 0–0.93 0–46 0–0.96 0–65 0–0.90

1 – Yes 1–9 1–0.07 1–2 1–0.04 1–7 1–0.10

Bus/taxi lanes on
intersecting roads

0 – No 0–92 0–0.77 0–43 0–0.90 0–49 0–0.68

1 – Yes 1–28 1–0.23 1–5 1–0.10 1–23 1–0.32
aNote: Five segments were discharged from the initial dataset due to segment length minor than 30m, which were deemed as irrelevant for safety
modelling purposes. Two intersections were discharged from the initial dataset due to possible errors in the counts of traffic volumes, leading to
unrealistic data
bThese intersections include one five-legs intersection
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3 Results
3.1 Predictive models for segments
A model was firstly developed for the whole dataset of
segments.
The main interest in this stage was to understand if

the initial dataset can be efficiently differentiated into
subsets. Among the different attempts performed, the
explanatory power of the variable “Type of lanes” seems
to be promising for a one-way/two-way classification.
On the other hand, the variable “One-lane” (one or mul-
tilane segments) is never found as a statistically signifi-
cant predictor. Hence, the dataset was divided into: one-
way and two-way segments, rather than one-lane and
multilane segments. The possible classification: undiv-
ided/divided segments was not considered since the seg-
ments divided by medians (for all their length) were
firstly divided into two one-way segments (one for each
direction), since directional traffic counts were generally
available.
The model developed for all the segments is reported

in Table 2. Crash frequencies increase with traffic vol-
umes, segment length, two-way segments (with respect
to one-way segments), presence of vertical signs on
intersecting minor roads, parking on both sides (with re-
spect to no parking). Poor pavement maintenance is as-
sociated with a decrease in the crash frequency.
However, the included predictors can only explain a lim-
ited part of crash frequency, as based on the Nagelkerke
R2 value.
When differentiating into one-way and two-way seg-

ments, some predictors are confirmed, while others are
highlighted as well. For one-way segments, crash fre-
quencies increase with traffic volumes, lengths, number
of driveways/minor roads, vertical signs on minor roads/
driveways; while they decrease with poor pavement
maintenance. For two-way segments, crash frequencies
increase with lengths, traffic volume (not significantly),
parking (especially at both sides compared to prohibited
parking), visible markings (although marginally signifi-
cant at the 5% level), vertical signs on minor roads/
driveways. Note that the model which includes traffic
volume was selected among other possibilities to avoid
further worsening the limited model fit (traffic volume
coefficient is significant, p < 0.10, if traffic is the only
predictor).

3.2 Predictive models for intersections
A model was firstly developed for the whole dataset of
intersections.
The main interest in this stage was to understand if

the initial dataset can be efficiently differentiated into
subsets. In this case, two promising models for the
whole intersections were selected (see Table 3). The first
model indicates the number of legs as an important

explanatory variable. However, when trying to exclude
all other possible correlated variables (turning lanes,
number of legs, intersection control), the variable signal-
ized/unsignalized assumes a notable importance in the
alternative model. Hence, based on this, specific models
were developed for two pairs of subsets: three-legged
and four-legged intersections, signalized and unsigna-
lized intersections. The consideration of the signalized/
unsignalized subsets can be important for practical use.
Another choice was made between considering: the
main and the secondary traffic volume (separated) or the
total volume and the main-to- total volume ratio. The
second alternative has generally led to a better
goodness-of-fit.
Based on the overall models for intersections, crash

frequencies increase with the total volume, the four-
legged configuration, traffic signals, specialized turn-
ing lanes/cycle paths (first model in Table 3), critical
sight distance (alternative model in Table 3). Crash
frequencies decrease with the main-to-total AADT ra-
tio (thus the more the secondary AADT, the more
crash frequencies increase, the main AADT being
equal) and the poor pavement maintenance. The pre-
dictors can explain the crash frequency better than in
the segments case, as based on the Nagelkerke R2

values.
For three-legged intersections, sight distance, turning

lanes and cycle path crossing are confirmed as predictors
(similar coefficients). The presence of traffic lights does
not seem to be influential (except for traffic lights with
dedicated turning lights). Moreover, more entering lanes
(main road) results in a decrease of crashes (p < 0.10).
For four-legged intersections, sight distance and turn-

ing lanes are confirmed as significant predictors, while
bicycle crossings are not. Traffic lights seem not influen-
tial, while the poor pavement maintenance is associated
to a decrease in crashes.
For signalized intersections (highest R2), four-legged

intersections are comparatively less safe than three-
legged intersections. As the critical sight distance in-
creases, the crash frequency increases (similarly to three/
four-legged intersections). Specialized turning lanes and
poor pavement maintenance are confirmed, namely, with
positive and negative coefficients. Bus stops close to sig-
nalized intersections are related to crashes decreasing.
For unsignalized intersections, other predictors result

in crashes decreasing, besides of those already men-
tioned: median on the main road (p < 0.10) and
sidewalks.

4 Discussion
4.1 Subsets of road sites and associated predictors
The predictive models for urban segments were strati-
fied into one-way and two-way models, since significant
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Table 2 Selected models for segments

Predictor Estimate Std. Error z- value p-value

All segments

(Intercept) −6.054 0.728 −8.318 < 0.001

Ln (AADT) 0.375 0.084 4.449 < 0.001

Ln(L) 0.292 0.060 4.907 < 0.001

Type of lanes 1: > 1 (reference: 1 lane) 0.079 0.167 0.470 0.638

Type of lanes 2: 1 + 1 (ref.: 1 lane) 0.524 0.151 3.471 < 0.001

Type of lanes 3: > 1 + 1 (ref.: 1 lane) 0.707 0.181 3.906 < 0.001

Vertical signs on driveways/minor roads (Yes - ref.: No) 0.652 0.110 5.943 < 0.001

Poor maintenance of pavements (Yes - ref.: No) −0.268 0.114 −2.348 0.019

Parking type 1: At one side (ref.: No parking) 0.218 0.131 1.668 0.095

Parking type 2: At both sides (ref.: No parking) 0.258 0.126 2.053 0.040

Parking type 3: Mixed (ref.: No parking) −1.092 0.556 −1.964 0.050

Cycle paths (Yes – ref.: No) 0.308 0.182 1.694 0.090

Goodness-of-fit measures

LRT (reference: null model) = 200.96 (df = 11), p < .001; LRT (reference: full model) = 6.64 (df = 11), p = .828

Nagelkerke R2 = 0.158, AIC = 2609.9

Over-dispersion parameter (theta) = 1.08 (std. error: 0.17)

Interval of continuous predictors

AADT: 300–29,960 vehicles/day, L: 30–1510m

One-way segments

(Intercept) −8.794 0.961 −9.151 < 0.001

Ln (AADT) 0.695 0.108 6.434 < 0.001

Ln(L) 0.333 0.095 3.505 < 0.001

Driveways/minor roads per km 0.010 0.003 3.163 0.002

Vertical signs on accesses/minor roads (Yes - ref.: No) 0.477 0.169 2.825 0.005

Poor maintenance of pavements (Yes - ref.: No) −0.497 0.159 −3.137 0.002

Goodness-of-fit measures

LRT (reference: null model) = 101.68 (df = 5), p < .001; LRT (reference: full model) = 9.77 (df = 10), p = .460

Nagelkerke R2 = 0.153, AIC = 1226.8

Over-dispersion parameter (theta) = 1.01 (std. error: 0.26)

Interval of continuous predictors

AADT: 300–22,600 vehicles/day, L: 30–1510m, Density of driveways/minor roads: 0.0–142.9 number/km

Two-way segments

(Intercept) −3.764 1.122 −3.356 < 0.001

Ln (AADT) 0.134 0.117 1.140 0.254

Ln(L) 0.310 0.079 3.944 < 0.001

Vertical signs on accesses/minor roads (Yes - ref.: No) 0.432 0.141 3.074 0.002

Markings 1: Illegible (ref.: No/partially absent/illegible) 0.317 0.177 1.791 0.073

Markings 2: Yes (ref.: No/partially absent/illegible) 0.309 0.175 1.767 0.077

Parking type 1: At one side (ref.: No parking) 0.287 0.156 1.836 0.066

Parking type 2: At both sides (ref.: No parking) 0.441 0.152 2.903 0.004

Parking type 3: Mixed (ref.: No parking) −0.973 0.640 −1.521 0.128

Goodness-of-fit measures

LRT (reference: null model) = 57.69 (df = 7), p < 0.001; LRT (reference: full model) = 5.63 (df = 7), p = 0.584
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differences between these two conditions were found
(overall model in Table 2), differently than Greibe [13],
who did not include the variable one-way/two-way.
Two-way segments result as less safe compared to one-
way segments, other conditions being equal; while sig-
nificant differences between one-lane and multilane seg-
ments were not highlighted. Moreover, since the variable
“Type of lanes” was not included in the disaggregated
models, it seems that the organization of one-way seg-
ments in one or more lanes does not seem influential on
crash risk. However, on average, the sampled one-way
roads are about 10 m wide, thus they could be practically
two-lane operated, even if they are single-lane roads. In
the two-way segments model, significant differences be-
tween one lane and more lanes per direction were not
highlighted as well. However, in the overall segments
model, the multilane two-way segments seem slightly
less safe than two-way two-lanes segments (eTypeoflanes3/
eTypeoflanes2 = 1.20), coherently with AASHTO [1].
On the other hand, the predictive models for urban in-

tersections were stratified into signalized/unsignalized
models and three-legged/four-legged models. In fact, sig-
nificant differences were found between both categories.
As expected from the high number of conflicts, four-
legged intersections result as comparatively less safe
than three-legged intersections, by a factor of e0.443 =
1.557, which coincides with the results by Khattak et al.
[17] for unsignalized intersections. The effect of signals
on intersections is less clear, such as in Gomes et al.
[12], who developed three/four-legged models, in which
the traffic signal variable was insignificant. However,
very disaggregated intersection subsets were considered
by Canale et al. [3]: three/four-legged no-control/stop-
controlled, four-legged signalized intersections. In this
study, differences in predictors by separating unsigna-
lized from signalized intersections were found. More-
over, contrary to expectations, signalized intersections
seem comparatively slightly less safe than unsignalized
intersections (factor of e0.268 = 1.307, alternative model),
ceteris paribus. Four-legged intersections are compara-
tively less safe than three-legged intersections especially
for unsignalized intersections, as expected. Note also
that give-way/stop controlled three-legged intersections
seems even less safe than no-control intersections,
ceteris paribus. Specialized turning lanes seem consist-
ently negative for safety, coherently with Gomes et al.

[12], in case of right turn on the major road. This could
be explained by: a) the turning lanes variable being a
surrogate measure for total conflicts, b) aberrant driving
behaviours causing additional conflicts. Moreover,
Canale et al. [3], found mixed results for left/right turn-
ing lanes according to the intersection type.
Models for different subsets of urban intersections and

segments are extremely useful for identifying predictors
which are specifically only related to some subsets. For
example, the increasing intersecting minor roads on seg-
ments are generally associated to crashes increasing [8,
13]. In this study, this variable is significant only for
one-way segments, which is an important difference. In
fact, one-way roads (especially if wide as in this dataset)
may allow high speeds. Moreover, drivers should not
care about other vehicles eventually crossing the travel
direction from the other lane, such as on two-way un-
divided roads. Another difference relates to parking,
which is generally associated to an increase in crashes
with respect to rarely/prohibited parking [13]. In this
study, this effect was found only for two-way segments
(especially for parking on both sides, as expected due to
the increased conflicts). Parking-related conflicts may
even be more unexpected than in case of known minor
roads (which seem less influential on two-way segments)
and then drivers could not react in time. The traffic vol-
ume coefficient indicates a slower than linear increasing
tendency for both subsets of segments; it is insignificant
(close to zero) in case of two-way segments (for which
the sample size is very limited). Hence, urban congestion
seems more detrimental to the safety of one-way than of
two-way segments. Moreover, note that the average seg-
ment length is included between 100m and 200m. This
could explain the slower than linear increasing tendency
of crashes with traffic, since several crashes on short seg-
ments may be influenced by the presence of intersec-
tions in case of high traffic volumes. Note that speed
limits, road width and land use were not included in the
segment models, differently than in Greibe [13]. How-
ever, note that speed limits are almost always equal to
50 km/h and land use is largely homogeneous in the
central city area (Fig. 1).
For what concerns intersections, the coefficients esti-

mated for traffic volumes (and main-to-total ratio) are
approximately similar between subsets. The relationship
between crash frequency and the total traffic volume is

Table 2 Selected models for segments (Continued)

Predictor Estimate Std. Error z- value p-value

Nagelkerke R2 = 0.102, AIC = 1369.2

Over-dispersion parameter (theta) = 1.32 (std. error: 0.29)

Interval of continuous predictors

AADT: 1160–29,960 vehicles/day, L: 30–1415 m
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Table 3 Selected models for intersections

Predictor Estimate Std. Error z- value p-value

All intersections

(Intercept) 0.930 1.524 0.610 0.542

Ln (Total AADT) 0.285 0.106 2.675 0.007

Main AADT/Total AADT −6.870 2.021 −3.399 0.001

Type: Four-legged (reference: Three-legged) 0.443 0.105 4.210 < 0.001

Critical sight distance 0.005 0.002 2.762 0.006

Specialized turning lane (Yes – ref.: no) 0.496 0.114 4.362 < 0.001

Poor maintenance of pavements (Yes - ref.: No) −0.397 0.115 −3.444 < 0.001

Cycle path crossing (Yes – ref.: No) 0.327 0.122 2.677 0.007

Goodness-of-fit measures

LRT (reference: null model) = 5.63 (df = 12), p = .934; LRT (reference: full model) = 161.11 (df = 12), p < .001

Nagelkerke R2 = 0.283, AIC = 1877.6

Over-dispersion parameter (theta) = 2.84 (std. error: 0.52)

Interval of continuous predictors

Total AADT: 4175–41,560 vehicles/day, Main/Total AADT: 0.50–0.62, Critical sight distance: 0.0–139.5 m

Three-legged intersections

(Intercept) 4.696 2.895 1.609 0.108

Ln (Total AADT) 0.366 0.220 1.661 0.097

Main AADT/Total AADT −16.376 3.711 −4.413 < 0.001

Number of entering lanes on the main road −0.211 0.119 −1.768 0.077

Critical sight distance 0.006 0.003 2.009 < 0.001

Specialized turning lane (Yes – ref.: no) 0.927 0.228 4.061 < 0.001

Traffic control 1: give-way/stop (ref.: no control)a 0.359 0.214 1.675 0.094

Traffic control 2: traffic lights (ref.: no control)a 0.377 0.289 1.306 0.192

Traffic control 3: main + turning lights (ref.: no control)a 0.556 0.313 1.777 0.076

Cycle path crossing (Yes – ref.: No) 0.900 0.235 3.830 < 0.001

Goodness-of-fit measures

LRT (reference: null model) = 63.39 (df = 9), p < .001; LRT (reference: full model) = 5.79 (df = 9), p = .761

Nagelkerke R2 = 0.292, AIC = 610.4

Over-dispersion parameter (theta) = 5.26 (std. error: 2.75)

Interval of continuous predictors

Total AADT: 5420–32,300 vehicles/day, Main /Total AADT: 0.50–0.62, Critical sight distance: 0.0–139.5 m, Number of entering lanes on the main road: 0–4

Four-legged intersections

(Intercept) −0.127 1.623 −0.078 0.938

Ln (Total AADT) 0.372 0.108 3.450 0.006

Main AADT/Total AADT −5.427 2.624 −2.068 0.039

Critical sight distance 0.004 0.002 2.102 0.036

Specialized turning lane (Yes – ref.: no) 0.410 0.134 3.060 0.002

Poor maintenance of pavements (Yes - ref.: No) −0.446 0.151 −2.961 0.003

LRT (reference: null model) = 77.98 (df = 5), p < .001; LRT (reference: full model) = 7.55 (df = 12), p = .819

Nagelkerke R2 = 0.225, AIC = 1263.6

Over-dispersion parameter (theta) = 2.79 (std. error: 0.59)

Interval of continuous predictors

Total AADT: 4175–41,560 vehicles/day, Main /Total AADT: 0.50–0.61, Critical sight distance: 1.6–100.0 m

All intersections (alternative)

(Intercept) 1.713 1.513 1.132 0.257
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Table 3 Selected models for intersections (Continued)

Predictor Estimate Std. Error z- value p-value

Ln (Total AADT) 0.371 0.103 3.613 < 0.001

Main AADT/Total AADT −9.502 2.161 −4.397 < 0.001

Median on the main road (Yes – reference: No) 0.226 0.117 1.930 0.054

Critical sight distance 0.004 0.002 2.359 0.018

Type of intersection (Signalized – ref.: Unsignalized) 0.268 0.104 2.580 0.010

Poor maintenance of pavements (Yes - ref.: No) −0.321 0.118 −2.730 0.006

Cycle path crossing (Yes - ref.: No) 0.253 0.123 2.058 0.040

Goodness-of-fit measures

LRT (reference: null model) = 124.59 (df = 7), p < .001; LRT (reference: full model) = 8.29 (df = 8), p = .406

Nagelkerke R2 = 0.222, AIC = 1914.1

Over-dispersion parameter (theta) = 2.40 (std. error: 0.41)

Interval of continuous predictors

Total AADT: 4175–41,560 vehicles/day, Main/Total AADT: 0.50–0.62, Critical sight distance: 0.0–139.5 m

Signalized intersections

(Intercept) 2.390 2.293 1.043 0.297

Ln (Total AADT) 0.407 0.142 2.863 0.004

Main AADT/Total AADT −11.302 3.586 −3.152 0.002

Type: Four-legged (reference: Three-legged) 0.452 0.182 2.479 0.013

Critical sight distance 0.004 0.002 1.986 0.047

Specialized turning lane (Yes – ref.: no) 0.307 0.148 2.076 0.038

Poor maintenance of pavements (Yes - ref.: No) −0.630 0.148 −4.243 < 0.001

Presence of bus stops (Yes – ref.: No) −0.914 0.357 −2.559 0.010

Goodness-of-fit measures

LRT (reference: null model) = 95.60 (df = 7), p < 0.001; LRT (reference: full model) = 4.39 (df = 9), p = 0.884

Nagelkerke R2 = 0.320, AIC = 1078.2

Over-dispersion parameter (theta) = 3.08 (std. error: 0.71)

Interval of continuous predictors

Total AADT: 5800–41,560 vehicles/day, Main/Total AADT: 0.50–0.61, Critical sight distance: 1.6–139.5 m

Unsignalized intersections

(Intercept) −2.604 2.185 −1.192 0.233

Ln (Total AADT) 0.759 0.163 6.343 < 0.001

Main AADT/Total AADT −7.868 0.173 4.389 0.001

Type: Four-legged (reference: Three-legged) 1.036 2.406 −3.270 < 0.001

Median on the main road (Yes – reference: No) −0.998 0.329 −3.031 0.002

Specialized turning lane (Yes – ref.: No) 0.516 0.204 2.523 0.012

Cycle path crossing (Yes - ref.: No) 0.997 0.193 5.156 < 0.001

Presence of sidewalks (Yes - ref.: No) −1.008 0.331 −3.042 0.002

LRT (reference: null model) = 65.07 (df = 7), p < .001; LRT (reference: full model) = 11.96 (df = 11), p = .367

Nagelkerke R2 = 0.238, AIC = 769.8

Over-dispersion parameter (theta) = 8.11 (std. error: 6.14)

Interval of continuous predictors

Total AADT: 4175–31,500 vehicles/day, Main/Total AADT: 0.50–0.62, Critical sight distance: 0.0–100.0 m
aNote: The variable traffic control device was further disaggregated into: no control, give-way, stop control for unsignalized intersections, and into:
traffic lights, traffic lights with dedicated left turning lights, traffic lights with dedicated right turning lights for signalized intersections
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less than linear (all coefficients are less than 0.5, except
for the unsignalized intersections, for which it is about
0.75). An almost linear relationship was found instead
by Giuffrè et al. [11] in a model developed for Italian
four-legged unsignalized intersections, in which however
traffic volume ratios between secondary and main roads
were not included. Main and secondary volumes were
separately considered in the NB models developed by
Khattak et al. [17], with estimated coefficients generally
less than 0.5. In this study, when the main-to-total
AADT ratio increases by 10%, crashes decrease by a fac-
tor of about 5.1 and 1.7, namely, for three-legged and
four-legged intersections, ceteris paribus. Considering
the models disaggregated according to traffic signals,
crashes decrease with a factor of about 3 and 2.2, namely
for signalized and unsignalized intersections. Hence, es-
pecially for three-legged and signalized intersections, as
long as the secondary traffic gets similar to the main
traffic, crashes may increase. This can be clearly ex-
plained by the increase in the number of angular con-
flicts due to similar intersecting traffic flows and this
was highlighted as particularly relevant for three-legged
intersections. This is in contrast with results obtained by
Gomes et al. [12], based on which an opposite tendency
for three-legged intersections was noted (even if weaker).
In another study [17], the increase in the number of
lanes on the secondary road was associated with an in-
crease in crash frequency for unsignalized intersections,
which is a similar effect to that observed for the main-
to-total AADT ratio in this study. The usually consid-
ered predictor: median on the main road is significant
(p < 0.10) and positive for safety, but only for unsigna-
lized intersections. This is in line with previous results
specific for three-legged intersections [12], in particular
stop-controlled [3]. In fact, medians may help in chan-
nelizing the traffic flow. Moreover, road markings were
previously found as negative for safety for three-legged
stop-control intersections [3], such as here for two-way
segments. Other predictors such as the lane balance, the
number of intersecting one-way legs [12], two-way oper-
ated major roads and the intersecting lane widths [3]
were not confirmed here. The increase in entering lanes
on the main road was weakly associated with a decrease
in crash frequency in three-legged intersections only,
while an opposite trend was found by Giuffrè et al. [11],
even for four-legged intersections.

4.2 Assessment of additional variables
Some additional variables, usually not often considered
for safety predictions, were considered in this study and
some of them were actually included in the models.
However, most of those present some unexpected
trends, which may seem surprising at a first glance. For
example, the presence of vertical signs on driveways/

minor roads seems to be detrimental to safety. However,
the number of driveways/minor roads provided with ver-
tical signs in the sample is scarce (Table 1). Hence, this
variable could be a surrogate measure for the driveway/
minor road importance (i.e., considering the unlikely
event that very-low volume driveways may have vertical
signs); indicating that different driveways/minor roads
may have variable effects on safety.
Maintenance-related variables (markings/pavement)

are also worth to mention. It seems counterintuitive that
deteriorated pavements may be positive for safety (one-
way segments, four-legged/signalized intersections), as
well as well-maintained markings (two-way segments).
This could be explained by drivers being more cautious
and driving at lower speeds on poor maintained pave-
ments. However, a temporal displacement exists between
the visual observations (mainly during 2018) and the
crashes observation period (2012–2016). Hence, it is
pavements (and markings) in good conditions in 2018
could have been resurfaced in the last years and vice
versa. Thus, the estimated coefficient could also hide an
opposite trend. However, the first explanation (prudent
drivers) could be more likely. In fact, an exploration ana-
lysis of the dataset revealed that the poor pavement con-
ditions are more frequent, on average, on segments and
intersections with higher traffic volumes than segments
and intersections showing good pavement conditions.
This relationship is expected since the presence of
cracking, potholes or similar damages is more likely to
be observed on high traffic roads. However, this also
means that, even if for this road type the resurfacing can
be more frequent (i.e., between 5 and 10 years), it is
more likely to observe some pavement damages after a
short period after resurfacing. Hence, it is likely that
most roads with poor pavement conditions were not in
optimal conditions in the crash observation period as
well. However, this phenomenon should be further con-
sidered in dedicated studies on the topic, given the re-
vealed importance of pavement conditions in urban
crash prediction.
The computed critical sight distance (the least value

among all the intersecting legs) needs cautious interpre-
tations as well. It was included in the models for three,
four-legged and signalized intersections with similar
positive coefficients. This can be explained by less cau-
tious drivers (e.g., prone to speeding, see [4]) when hav-
ing more available sight distance, especially at signalized
intersections. In fact, while sight distance is an import-
ant design pre-requisite; a longer sight distance could
have led in these cases to a false sense of increased safety
and possible aberrant behaviours, in specific conditions
such as running the red light. Manual explorations of
crash circumstances at signalized intersections in the
dataset seem to confirm this possibility.
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Moreover, all the segments/intersections in the dataset
were not originally designed with cycle paths/crossings,
which were only recently implemented. Hence, having
found that bicycle crossings are associated with crash in-
creasing for three-legged and unsignalized intersections
may indicate that such conflicts should be mitigated (es-
pecially at unsignalized intersections) e.g., by effective
traffic calming measures, which are generally not present
in the network studied. Moreover, bus stops close to
signalized intersections seem to be positive for safety.
This could be explained by drivers being forced to slow
down for the combined presence of bus stops and
intersections.
In general, the additional considered variables which

were included in most of the developed models and which
are dependent on ad-hoc geometric constructions or on-
site investigations are: the critical sight distance and the
pavement conditions assessment. Given that the data
preparation process was particularly time-consuming for
these variables, an assessment of their importance in pre-
diction was made, potentially useful for further research
and practice. Hence, additional likelihood ratio tests (LRT
tests) and other qualitative assessments of the importance
of predictors were carried out for these two variables.
In particular, a likelihood ratio test (LRT) was con-

ducted to determine if the inclusion of each of these
two variables significantly improves the prediction. All
the final models selected for presentation in the art-
icle, which include critical sight distance and/or pave-
ment condition were individually compared, step by
step, with the same models deprived of one of these
two variables, where present. In all cases, the inclu-
sion of pavement and visibility-related variables leads
to a prediction improvement at the 5% level of sig-
nificance (except for the inclusion of sight distance in
the signalized intersection model, significant at the
10% level). Moreover, an additional qualitative ana-
lysis was carried out, by analysing the decrease in the
Nagelkerke R-squared caused by the removal of each
variable included in the finally selected model pre-
sented in the article. Through this analysis, it was
possible to note that the pavement conditions may
explain a significant portion of crash variability, in
particular for signalized intersections and segments.
Instead, the portion of crash variability explained by
the critical sight distance seems limited in all models.
Hence, both variables could be considered for further
safety prediction studies in urban environment, in
particular pavement conditions.

5 Conclusions
Safety performance functions for urban segments and
intersections were estimated. The research aims of this
study were dedicated to: a) explore possible subsets of

segments and intersections for crash modelling, consid-
ering the predictors variability, b) find common trends
and/or significant differences from the relevant litera-
ture, c) assess additional predictors often not considered
for crash modelling.
The optimal subsets found are: one-way and two-way

segments for the homogeneous segments; three-legged,
four-legged, unsignalized, signalized intersections for the
intersections. The division into three-legged/four-legged
intersections seems the most effective, compared to the
signalized/unsignalized division. Whereas, significant dif-
ferences were not highlighted for the number of lanes on
one-way and two-way segments. Predictors of intersection
crashes share both commonalities and differences with
similar studies ([3, 11, 17];). Nevertheless, the segment
model is largely different than the relevant reference study
analysed [13].
Some additional predictors often not included in predic-

tion models were found as statistically significant. The ef-
fect of pavements/markings maintenance, critical sight
distance at intersections, vertical signs on driveways/
minor roads, cycle path crossings was discussed in detail.
Their influence on crash predictions was demonstrated,
even if requiring some additional explanations. These vari-
ables may be used in further urban safety studies.
The main aim of this article was explore and discuss

the variability of predictors with the different subsets of
segments and intersections. However, the results shown
in this study could be used for safety predictions in the
same area in which data were collected and should not
be directly used in other jurisdictions. This process
should be carefully conducted, especially if the functions
estimated for disaggregated subsets are used (mainly de-
veloped for explorative purposes and based on relatively
small sample sizes). Moreover, the transferability of
models in other contexts may provide a challenge such
as for all road safety prediction models, given their high
dependency on the local road, environmental, policy
context and the local driving behaviour. Some similar-
ities were shown with another European (Portuguese)
study [12], providing ground for the possible transfer-
ability of the intersection models in other Italian/Euro-
pean cities with similar configurations. However, as early
stated, calibrating models and/or developing local
models should be always preferrable.
Besides practical aspects, this study provides new in-

sights to overcome the problems and consequences of
dividing urban intersections and segments into possible
subsets and to increase the candidate crash predictors.
Clearly, this study is based on a limited number of seg-
ments and intersections with a small number of crashes
for some subsets (especially intersections), which may
negatively influence crash predictions [19]. Moreover, in
particular the effect of pavement conditions on urban
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crash frequency needs further investigations, given the
issues described in this article. Further data collection is
currently in progress during the research project, which
could help to enlarge datasets and to validate models/
variables. Roundabouts were not considered since only a
few roundabouts were present during the observation
period. In some models, the explained variability of
crash frequencies is someway small. Thus, there are sev-
eral other variables which may be considered. A first at-
tempt to enlarge them was conducted here, but further
research is surely needed.
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