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Assessing cyclists’ routing preferences by
analyzing extensive user setting data from
a bike-routing engine
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Abstract

Introduction: Many municipalities aim to support the uptake of cycling as an environmentally friendly and healthy
mode of transport. It is therefore crucial to meet the demand of cyclists when adapting road infrastructure. Previous
studies researching cyclists’ route choice behavior deliver valuable insights but are constrained by laboratory
conditions, limitations in the number of observations, or the observation period or relay on specific use cases.

Methods: The present study analyzes a dataset of over 450,000 observations of cyclists’ routing settings for the
navigation of individual trips in Berlin, Germany. It therefore analyzes query data recorded in the bike-routing
engine BBBike and clusters the many different user settings with regard to preferred route characteristics.

Results and Conclusion: Results condense the large number of routing settings into characteristic preference
clusters. Compared with earlier findings, the big data approach highlights the significance of short routes, side
streets and the importance of high-quality surfaces for routing choices, while cycling on dedicated facilities seems a
little less important.
Consequentially, providing separated cycle facilities along main roads – often the main focal point of cycle plans –
should be put into the context of an integrated strategy which fulfills distinct preferences to achieve greater
success. It is therefore particularly important to provide a cycle network in calm residential streets as well as
catering for short, direct cycle routes.
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1 Introduction
Regarding negative external effects, the bicycle is an
attractive mode of transport. In recent years, many
western cities have seen an increase in cycling rates
[1–3]. Most recently, due to the covid-19 pandemic
bicycle use increased strongly while utilization of pub-
lic transport declined [3–5]. This stresses the long-
term importance of supporting the bicycle as alterna-
tive mode of transport and as feeder to boost public
transport [6]. One important measure aimed at sup-
porting the uptake of cycling is adapting the urban
infrastructure to meet the demand of cyclists. Accord-
ingly, cyclists’ route choice behavior and preferences
are highly relevant in planning and practice. To assess
this behavior, previous studies are based mainly on
two research approaches:

� In revealed preference studies (RP), the actual
behavior is observed. Most recent studies track
cyclists and compare the route chosen to potential
alternatives to evaluate the impact of route
characteristics on route choice [7–10].

� In stated preference studies (SP), participants take
decisions based on a set of hypothetical alternatives.
In an interview setting, probands choose between
defined route descriptions which normally differ in
route characteristics and travel time [11–14].

Apart from these two main research paradigms, stud-
ies differ widely from each other when looking at the pa-
rameters under observation. Different investigation areas
also vary in terms of the local significance of bicycle
transport or the network as is. The latter is very import-
ant when defining alternatives in revealed preference
studies. In general, earlier research found that short
travel times and routes avoiding disturbance by motor-
ized transport were more preferred [8, 11, 14]. Studies
with different contexts therefore deliver varying findings
when it comes to the importance of route characteristics
that ensure fewer disturbances. For instance, some stud-
ies see calm side streets as a first choice [8, 15] while
others conclude that separated facilities are preferred
[11, 16]. The importance of smoother pavements or
paved over unpaved road is demonstrated [10] but, in
the context of other route characteristics, their import-
ance is limited [16]. These prior studies related to two
different approaches (RP and SP) enabled to gain a good
understanding of the complex route choice behaviour.1

Although using well developed and broadly accepted
methods, any overt survey situation involves response

biases, such as the observer bias [17] or social desir-
ability bias [18], which potentially distort the results.
In addition, the observation periods and sample sizes
are limited due to extensive and costly data collec-
tion. Both paradigms (RP and SP) also have individual
strengths and limitations [19, 20]. The hypothetical
nature of choice experiments often leads to an over-
estimation of the willingness to pay [21]. In addition,
by the example of recreation research other limita-
tions like the perception or image of the alternatives
as well as the estimation of context effects in relation
to the range of levels provided are shown [22].
Researching route choice behavior also reaches limits
because stated choice sets can only present single
route segments. In real-life, a route is normally com-
posed of several varying route segments, including
real-life constraints. For instance, a route along side
streets is usually more complex than cycling along a
main road, which cannot always be captured by
standard measures of detour or expenditure of time.
On the other hand, revealed preference studies de-
pend heavily on the given network in the observation
area. It is not possible to evaluate infrastructure ele-
ments that are not present as attractive alternatives to
the participants. Likewise, the research may include
alternatives that may be unknown to the participants.
Either way, the individual choice of a certain route
may have other reasons that are not observed. In re-
cent years, big data methods are being applied in cyc-
ling research [23, 24]. While these approaches are
mainly focused on bike sharing, further promising
data sources on every day cycling have the potential
complete the picture of route preferences.
This paper uses requests of a bike-routing engine to

derive cyclists routing preferences from user settings in
the context of bike navigation. This refers to individual
settings which are stated by the user to specify the navi-
gation according to the users’ desires for each individual
trip regarding various route characteristics. The object-
ive of this study is therefore to deliver insights into the
desired routing characteristics of urban cycle journeys
following a different approach than classical RP or SP
studies. It analyzes cyclists’ recorded settings when per-
forming routing requests in a clustering procedure to
derive typical types of routing preferences. They are
based on the large variety of possible combinations of
user settings as users may specify graduated routing
preferences in the input fields street category, surface
quality and green pathways. Accordingly, appropriate
routes are suggested for the origin-destination relations
based on these settings. Based on the data, the number
of requests for each preference type is analyzed in order
to evaluate its importance. This enables us to derive rec-
ommendations for planning and practice.

1For a detailed overview of all studies cited, regarding framework
conditions of the area under investigation and variables included in the
model see table 3 in the appendix.
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The research is conducted in Berlin using the bike-
routing engine BBBike [25]. This is an appropriate
case, as the local bike-routing engine has a long his-
tory and high usage level. In addition, standing at
18% in 2018, Berlin has a substantial mode share of
cycling [26].

2 Methods
Recently, search engine data (mainly Google Trends
or internet search queries) is being used for various
research questions like estimating future tourism de-
mand [27], modelling suicide rates [28] or evaluating
the perception of mental health in the context of
mass shooting events [29]. Using these data in the
present approach allows us to validate results derived
from classical approaches by researching route search-
ing behaviour. The approach has advantages com-
pared to SP or RP studies: first, there are no
laboratory conditions or any survey situation when
gathering the data. The queries raised by regular
users are recorded in the back end. These real-life
conditions promise a rather realistic picture since
they include given interrelations between different
characteristics as well as side-effects, such as a less
direct route when intentionally avoiding main roads.
Second, the sample size of the analyzed dataset is
large. The data collection method enables us to rec-
ord and analyze a full sample of users of the bike-
routing engine with almost half a million queries.
Third, the observation period is long. The data is col-
lected over a whole year. Finally, the structure of the
data means that we can use a relatively simple ana-
lysis method. Compared with rather complex model-
ling approaches, when looking at stated preference
studies or difficulties when generating alternatives in
revealed preference studies, the present approach uses
simple hierarchical clustering.
The methodological approach of the present study

contains five steps. First, data is gathered by record-
ing the request in the bike-routing engine. Second,
the data is preprocessed and transformed to a consist-
ent geographical reference system. Third, the data is
explored and compared with municipal household
survey data. Fourth, a hierarchical clustering is per-
formed to derive preference types. Finally, preference
types are described and the importance of each pref-
erence type is evaluated.

2.1 Data basis
The main component of the present study is analyz-
ing data recorded by BBBike. BBBike is a bike-routing
engine for cyclists. The initial version was developed
in 1999 for the city of Berlin [25]. It is now available
in many towns and cities. The software is accessible

via web browser and as a mobile app. BBBike
searches cycle routes between two points. After
choosing for origin and destination of the trip, the
setting menu opens. Users are encouraged to specify
routing preferences with various settings as shown in
Table 1. After confirming the settings, the route is
calculated.
The proposed route is described, can be displayed

on an interactive map and exported in various for-
mats. The interactive map can display cycle paths,
surface quality, public transport, greenery and other
data and can also show current weather conditions.
The bike-routing engine uses the OpenStreetMap
(OSM) road network for routing [30]. The street net-
work in the investigation area is diverse. With regard
to the total length of the street network, our own cal-
culations based on the OSM describe the infrastruc-
ture as follows: 69% is assigned to residential roads
and 17% to main roads. Of the main roads, 39% of
the length is covered by a cycle infrastructure, while
27.5% of the municipal area is green area. In the side
street network, a significant number of streets have
cobblestones or bad surfaces. Residential roads almost
never have any cycle infrastructure.
Based on the differences in the road network and

the level of detail the routing engine provides, the
suggested routes vary widely from each other depend-
ing on the preference settings. Based on the routing
preference settings, the routes for the same origin-
destination relation can be up to one third longer
compared with the shortest route (the default setting).
Accordingly, routes under different settings may over-
lap completely or not have any segment in common
(see Fig. 1). Figure 1 shows different routes for the
origin-destination relation between two university lo-
cations in Berlin. These routes are between 6573 and
7440 m long; the overlap with the shortest route
under default settings ranges from 20 to 76%. For a
detailed overview of the length and overlap of differ-
ent routes for varying settings, see Table 2 in appen-
dix and figures in the appendix. These provide an
impression of the sensitivity of the routing algorithm.
These routes display one specified routing preference
per alternative. Since the routing preferences in the
individual categories can be combined the resulting
variety of proposed routes in very large.
For this study, all requests in the city of Berlin were

logged over a period of 1 year (the whole of 2017), in-
cluding the timestamp of the request, start and end
point coordinates, addresses and postcodes as well as all
user settings regarding the routing preferences for the
individual trip. In total, the observation period covers
461,170 valid requests, an average of approximately 1263
per day.
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Due to methodological reasons, the sample does not
show representative data for all trips travelled by bicycle.
As shown in Fig. 2, compared with the municipal house-
hold travel survey data (SrV) [31], the BBBike data does
not show strong morning and afternoon peaks. In con-
trast, BBBike requests start later in the day and the num-
ber per hour remains similar during the daytime.
Regular journeys like work, education or childcare re-
quire no repeated routing, so such trips are underrepre-
sented in the data but account for a large proportion of
the volume of cycle traffic.
With regard to the distribution over the course of the

week, on average there are about 15 % less requests on
the weekend compared with weekdays. In traffic count-
ing data, this decrease in cycling on weekends is much
greater and shows a difference of 40.3% over all counting
stations in the whole year 2017 [32].
In addition, the distances in BBBike requests are much

longer than those of all cycle journeys reported in the
municipal survey (see Fig. 3). The mean distance for
BBBike requests (7.9 km) is more than twice that for
journeys reported in SrV data (3.3 km). This difference
in distribution indicates that the tool is being used for
longer and possibly unknown routes where routing is
helpful. With regard to the spatial distribution and time
of year, the requests in BBBike and trips in the

representative municipal household travel survey data
are distributed similarly (see Fig. 4). The bike-routing
engine is not designed for specific use cases like fitness
cycling but for everyday traffic. Consequently, it is nei-
ther being used by a specific user group, nor does it in-
clude any gamification elements distorting the results.
Overall, an extensive cross-sectional dataset is gathered
over a long period of time. These data do not rely on
any artificial situation that might potentially affect the
individual. The enormous number of cases and the data
collection, unnoticed by the user, are the primary ad-
vantages of the data. Nevertheless, the data has two
main limitations: first, there is no information about
the individual user who is performing the request.
Second, as users are not tracked, there is no informa-
tion as to whether the requesting user took the sug-
gested route or even made the trip at all. To some
extent, users search for the ideal route by making
more than one request with different settings for the
origin-destination relation within 5 minutes. This re-
lates to 10,662 requests. The service should therefore
be seen as an information tool. Given the high num-
ber of requests, the data reveals interesting insights
into cyclists’ routing preferences. It therefore opens
up the opportunity for an innovative approach which
aims to investigate route search behavior.

Table 1 Characteristics available for routing requests in the BBBike bike-routing engine (http://www.bbbike.de)

Variable Value

Speed Free field, default is 20 km/h

Street category No preference

Prefer residential roads [calm]

Use only residential roads [calm*]

Prefer main roads [main]

Use only main roads [main*]

Avoid main roads without cycle paths/bus lanes [infra]

Avoid main roads without cycle paths [infra*]

Surface quality No preference

Avoid cobblestones and bad surfaces [smooth]

Use only very good surfaces (suitable for racing bikes) [smooth*]

Avoid traffic lights No

Yes

Avoid unlit streets No

Yes

Green pathways No preference

Prefer green pathways [green]

Strongly prefer green pathways (may result in longish routes if there are no suitable routes surrounded by greenery available, so
use with caution) [green*]

Use unknown
streets

Allow routing through “unknown” streets (streets which are not yet researched for cyclist usage)
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Analysis of the routing preferences required data prep-
aration which aimed to build a geodatabase from the log
files provided by BBBike. The large volume of data was
processed using Python scripts and PostgreSQL queries.
This meant re-projecting the data, which initially re-
ferred to an internal coordinate system of BBBike, to the
destination system WGS84. Using these coordinates, a
geometry was assigned to each start and end point and
visualized in QGIS.

2.2 Cluster analysis
The bike-routing engine allows for several different
specifications of desired route characteristics in different
categories. This results in a wide range of possible com-
binations. A hierarchical cluster analysis is performed to
condense these into characteristic preference types. A
hierarchical cluster analysis divides data into clusters

that are as different from each other as possible and
merges similar cases together into one cluster [33]. The
goal is to determine a solution which on the one hand
consists of as few clusters as possible, and on the other
hand represents the structure of the data without losing
information. The cluster analysis is structured into eight
steps as shown by [34]. The process of the cluster ana-
lysis is illustrated in Fig. 5.

Sample (a): The dataset described in 2.1 is used as the
sample for clustering.
Data (b): The characteristics of the entities on which
the clustering is based are the preferences for various
route attributes. These routing preferences are present
as nominal data indicating preferences for various road
types, surface quality and green pathways. These data
include ordinal information as no, weak and strong
preference are stated for each street type as well as for
surface quality and greenery. To make this information
usable, the preference settings are transformed into five
ordinal variables defining the desired usage of side
roads, main roads, main roads without cycle
infrastructure, smooth road surfaces and green
pathways with three values each. That means for all
requests there is the information if no preference [0],
preference [1] or strong preference [2] for each
according category (residential roads, main roads, no
main roads without infrastructure, avoid cobblestones,
green pathways) is stated.
Dissimilarities (c): The asymmetric Manhattan
method as proposed by [35] is used to calculate a
distance matrix for the specific case of ordinal data. In
order to do so, the relative distance between every pair

0 1 20.5 Km

Default

Only residential roads

Only main roads

Avoid main roads without cycle paths

Only very good surfaces

Strongly prefer green pathways

Fig. 1 Different routing suggestions for the origin-destination relation between two university locations in Berlin. The routes are between 6573
and 7440 m long; the overlap with the default route ranges from 20 to 76%

Fig. 2 Distribution of BBBike requests over the course of the day
compared with the municipal survey. Both curves show the average
for weekdays Tuesday to Thursday
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of observations in the dataset is calculated and
organized in the distance matrix. To do this, the scale
for the distance measure is treated as an interval.
According to [36], the majority of authors do this so as
not to lose information, even though the differences
between the single values cannot be known in detail
and may be different.
Constraints (d): The hierarchical approach is chosen
as the clustering method. In hierarchical cluster
analysis, objects are merged together into clusters step
by step. For each step, similarity matrices are calculated
as described in (c) and objects are assigned to the
cluster which fits best. Thus, the analysis produces
results for a variety of cluster solutions according to
the number of resulting clusters. Hierarchical clustering
can thus deliver criteria to specify the optimum
number of cases, while partitioning algorithms need the
number of groups as input a priori. With regard to
constraints, there is no need for normalization as the
range and relations are identical for all variables
integrated in the clustering.

Criterion (e): Various measures of homogeneity exist
for different types of data and approaches. By
evaluating such measures, it is possible to determine
the optimal number of cases in the process. The
Calinski-Harabasz criterion (CHC) is used [37]. The
CHC combines two important measures for evaluating
each cluster solution. The total within-cluster covari-
ance shows how compact each cluster is. A low value is
preferred. The between-cluster covariance defines how
different the clusters are from each other. The
Calinski-Harabasz criterion is defined as

VRCk ¼ SSB
SSw

� ðN−kÞ
ðk−1Þ ;

where SSB is the overall between-cluster variance, SSW
is the overall within-cluster variance, k is the number of
clusters, and N is the number of observations.

Algorithm (f): The complete-linkage method is applied
as the cluster algorithm to identify similar clusters.
Complete-linkage measures the farthest pair of points
to calculate similarity. As agglomerative hierarchical
clustering, the algorithm starts from each element
representing one cluster. The clusters are successively
merged together until all elements are united in one
cluster. This approach allows the dendrogram to be
interpreted as graphical output of the clustering process
(see Fig. 7). The dendrogram illustrates the tree of clus-
ter solutions produces by the algorithm. The algorithm
is relatively robust against chaining and builds rather
compact clusters.
Computation (g): The algorithm (f) is applied to the
distance matrix (c).
Interpretation (h): Interpretation and choosing the
number of clusters that fits best is based on two

Fig. 5 Process of the cluster analysis

Fig. 3 Distances of BBBike requests compared with the municipal
survey. The values describe the percentage of each length category
on all trips in the respective dataset

Fig. 4 Distribution of BBBike requests over the course of the year
compared with SrV. In SrV, trip data are not collected during
summer holidays
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separate evaluations. First, the CHC as described in (e)
is evaluated. For the combined CHC, the best cluster
solution has the highest value [37]. The CHC offers
solutions with five or eight clusters (see Fig. 6).

Second, the dendrogram (Fig. 7) is evaluated.
Complete-linkage allows the dendrogram to be used in
graphical interpretation to choose the number of clus-
ters that fits best (see Fig. 7). The dendrogram works
as a tree diagram and displays the clustering in ac-
cordance with the sequence of the process (in which
step clusters are merged together) and the distance
where merging occurs (indicated by the height as
shown in the Y-axis of the dendrogram). Taking the
steps of merging and the high of standardized

distance (Y-axis in the dendrogram) into account, a
solution of five or eight clusters would be possible
based on the dendrogram.
To achieve the goal of preferably few clusters, we de-

cided for a cluster solution with five clusters to represent
the data. This clustering result is indicated by red
squares around each cluster in Fig. 7. The height dis-
plays the relative distance between the merged clusters
in the process. It refers to the value of the according dis-
tance matrix. Interpretation of the chosen cluster solu-
tion in respect of content is described in the results
section.

3 Results
Now we present the results for routing preferences.
First, we present a descriptive overview. Then, we carry
out data processing and apply filters before applying
the methodology. Groups and subsets are analyzed
over time. We draw comparisons with the cycle traffic
in Berlin using the official municipal household travel
survey data of SrV 2013 [31]. Subsequently, we
analyze preferences and present the results of the
cluster analysis to describe preference types and re-
lated route characteristics.

3.1 Overview
The mean distance in BBBike requests shows a strong
peak during summer. With regard to the spatial dis-
tribution of requests in terms of start and destination
locations, we can observe a concentration in the inner
city. The heatmap of destination locations does not
differ substantially from this picture. Figure 8

Fig. 7 Dendrogram of the hierarchic cluster analysis

Fig. 6 Calinsky-Harabasz criterion for different number of clusters in
the data
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compares the spatial distribution of starting locations
of BBBike requests to the starting locations of cycle
trips according to SrV and the population density in
Berlin. In addition, we compare the frequency distri-
butions of BBBike and SrV. As seen in Fig. 8, these
distributions appear similar in general. As assumed,
the starting locations of both datasets, BBBike and
SrV peak in the inner city. Both distributions also
show more trips in western outskirts than in eastern
districts. More precisely, BBBike routing requests
seem to interrelate stronger to population density
than the bike trips in SrV data do. Hence, BBBike re-
quests clearly peak in dense inner-city districts. The
frequency distributions of BBBike and SrV are very
similar.
To gain insights into routing preferences, we ana-

lyzed BBBike-routing preferences as seen in Table 1.
When examining the data, we see a high proportion
of default requests. The request is defined as default

when only the origin and destination are given but
no routing preference is stated in any of the settings.
These default requests make up 36.1% or 166,341 ob-
servations. It can clearly be seen that much lower
rates of default requests occur on weekends than
weekdays and in summer over winter as shown in
Fig. 9. Accordingly, trips using the default settings
have a shorter distance than those with indicated
preferences (6877.3 vs. 7487.7 on average). BBBike
gives the shortest route whenever no preference is
specified.
The distribution of other preference settings differs

over the course of the year. The preference for main
roads makes up only 2 % in May and reaches the max-
imum of 4.3% of all requests in January.
Figure 10 summarizes the ten most frequently used

combinations of settings for individual requests. The de-
fault requests, clearly dominating the individual settings,
are not displayed. The six most common requests either

Fig. 8 Spatial distribution of the proportion of BBBike requests in a certain district in regard to all requests (top left), the proportion of SrV trips
starting in a certain district in regard to all trips (top right),), frequency distribution of percentages of BBBike and SrV across all districts (bottom
left) and population density (bottom right)
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include the preferred use of side roads or display a sim-
ple preference for either green pathways or smooth sur-
faces. Accordingly, when any routing preference is
specified by the user (no default queries), the most com-
mon individual preference is related to surface quality
(29,657 requests).
Figure 11 illustrates the interrelations between

preferences for road categories and preferences for
other characteristics like greenery or surface quality.
In the flow diagram the size of the bars indicate the
overlap between the characteristics on left side of
the diagram and the road categories on the right side

of the diagram. It therefore illustrates the structure
of the data. We can grasp the importance of the in-
terrelations between specific characteristics from this.
For example, a preference for green pathways is
often stated solely (lowest red bar linking “Green” to
“No Preference”) or together with a preference for
calm side roads (top red bar). On the contrary, the
joint preference for green pathways and smooth sur-
face mainly goes together with a preference for calm
side roads (top blue bar) and a preference for infra-
structure (second blue bar linking “Green-Smooth”
to “Infra”). A preference for main roads is mainly
linked to no additional preference (third green bar)
and preference for smooth surfaces (third purple
bar) while interrelations to any setting preferring
greenery are limited (red and blue bars). As obvious,
by far the largest interaction is shown by the default
queries with combine no stated routing preference
for both, road categories and other characteristics
(vast green bar). For a detailed list of all intersected
preferences including the exact quantification see
Table 3 in the appendix.
Comparing preference settings between city regions, it

is seen that green pathways and calm roads are re-
quested less in the inner city than in outer parts of the
city. More precisely, requests preferring green pathways
in the center account for nine percentage points less
than in outer parts. The difference with regard to calm
roads in the inner city is three percentage points. In con-
trast, requests searching for the shortest route occur
more often. Other preferences do not show noticeable
differences.
For a detailed overview of the length and overlap of

different routes for varying settings in different urban
contexts, see Table 4 in appendix and figures in the
appendix. These provide an impression of the sensi-
tivity of the routing algorithm and the different routes
provided for different routing preferences.

Fig. 10 Top ten most common preference settings (without default
queries): 1: Avoid cobblestones and bad surfaces. 2: Prefer residential
roads, prefer green pathways, avoid cobblestones and bad
surfaces. 3: Prefer green pathways. 4: Prefer residential roads,
avoid cobblestones and bad surfaces. 5: Prefer residential roads.
6: Prefer residential roads, prefer green pathways. 7: Avoid main
roads without cycle paths, avoid cobblestones and bad surfaces.
8: Avoid main roads without cycle paths, prefer green pathways,
avoid cobblestones and bad surfaces. 9: Avoid main roads
without cycle paths/bus lanes, avoid cobblestones and bad
surfaces. 10: Prefer green pathways, avoid cobblestones and
bad surfaces

Fig. 9 Share of default requests in all requests over the course of the year (left) and the course of the week (right)
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3.2 Results of the cluster analysis: preference types
The cluster analysis as described in 2.2 results in five
clusters. These clusters characterize the preferences ob-
served in the requests and may be described as content-
related. Figure 12 gives an overview about the distribu-
tion of routing preferences in each cluster and shows the
number of requests per cluster.
In the cluster Comfort, avoiding disturbances

caused by bad surface quality is determinant. All re-
quests wish to avoid bad surfaces with 81% aiming to
avoid cobblestones and bad surfaces and 19% wishing
to use only very good surfaces. In addition, 50% of
the requests wish to avoid main roads without cycle
path (or bus lanes). Green pathways are less relevant
than on average with 30% preferring and 10% strongly
preferring them.
The clusters Relax and Park show preferences for

combining calm side roads and green pathways. In the
cluster Relax, the request for side roads dominates.
Also, in Relax, a preference for smooth surfaces is given
in 80% of the requests, while in Park smooth surface is
not requested at all. In Park the preference for green
pathways is seen in all requests.

The cluster Bike Path shows a low preference for
green pathways, while all requests wish to avoid main
roads without cycle path (or bus lanes). Here, smooth
surface is not requested at all.
By far the smallest cluster Fast & Easy shows a prefer-

ence for cycling along main roads regardless of the exist-
ence of cycle infrastructure. The importance of green
pathways is the lowest of all clusters. The preference for
smooth surfaces is above average.
In addition to the results of the cluster analysis, the

Default queries represent the largest group. Here, the
users did not state any routing preference and did
confirm the default setting of the bike-routing engine.
According to BBBike, in these requests the shortest
bike route is provided. The detailed characteristics of
each cluster are shown in Fig. 12. The figure shows
the distribution of preference settings, which the
users of the bike-routing engine chose in each cluster
(see Table 1). This summarizes the main results of
the cluster analysis.
Three major results are particularly interesting: first, a

preference for green pathways is seen in all clusters to
some extent. Second, smooth surface plays a major role

Smooth

No preference

Green−Smooth

Green

No Preference

Main

Infra

Calm

0

100000

200000

300000

400000

Other Characteristics Road Categories

F
re

qu
en

cy

Other_Characteristics

Green

Green−Smooth

No preference

Smooth

Fig. 11 Interrelations between preferences for other characteristics (left column) and road categories (right column). Other characteristics: prefer
green pathways (Green), avoid bad surfaces (Smooth), prefer green pathways and avoid bad surfaces (Green-Smooth); Road preferences: prefer
calm residential roads (Calm), avoid main roads without cycle infrastructure (Infra), prefer main roads (Main); simple and strong preference
summed up
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in three clusters. Third, two clusters combine prefer-
ences for greenery and calm side roads.

4 Discussion
This study analyzes the detailed requests of a bike-
routing engine. In contrast to conventional method-
ologies like SP or RP studies, a non-personalized big
data basis has been clustered in order to generate
routing preference types that make it possible to
infer the importance of road characteristics to cy-
clists from a user’s perspective. The outcomes show
stable clustering results and clear preferences to-
wards certain infrastructural facilities (see section 3).
Earlier research found that analyzing recorded data
on search behavior may generally be used to esti-
mate consumer preferences [38]. The present ap-
proach has several advantages. Due to the efficient
way that data is collected, it is possible to gather a
very large dataset of almost half a million cases over
a long observation period of 1 year. It therefore be-
comes possible to use a full sample of the requests
in the bike-routing engine without being potentially
distorted by a survey situation. This eliminates sev-
eral disturbing influence factors like the social

desirability bias, the observer bias or the non-
response bias. In addition, we do not rely on a con-
ceptual choice experiment or the normative gener-
ation of alternatives. As shown in the literature
section, previous research does not always come up
with clear and consistent results. Against this back-
ground, this approach provides findings from a dif-
ferent point of view, which help to assess the
integrated overall view of route choice behavior in
the context of validating earlier results. These main
issues are presented below.
At around one third, a very large proportion of re-

quests were executed in default mode. To some ex-
tent the large number of default requests might be
explained by users who do not read the explanation
and do not change the default setting due to a lack
of attention. The settings used for the request are dis-
played in drop-down menus after typing origin and
destination and have to be confirmed before the route
is calculated. When used on purpose, these requests
represent a preference for the shortest route. Search-
ing for the shortest route is more important in the
winter months than in summer and on weekdays
compared with weekends. As described, it is assumed
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Fig. 12 Percentages of preferences in resulting clusters
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that the requests pertain largely to leisure and spor-
adic trips. Earlier research found that on repeated
and especially on non-leisure trips, cyclists tended to
choose the shortest route more often than on routes
for other purposes [7]. Accordingly, disutility of the
absence of bike infrastructure appears lower on com-
muting trips [8]. This suggests that the preference for
the shortest route may even be stronger than the
sample reveals. It should be clarified that this is espe-
cially true for male frequent cyclists [7]. In this mat-
ter, researching route preferences mainly on leisure
trips may reveal more information on desired route
characteristics, as time constraints are less important
and influence route choices to a lesser extent. It is as-
sumed that when differentiating route choice behavior
between trips with different purposes, the pivotal fac-
tor is time pressure rather than differences in desired
route characteristics.
If any routing preference is specified, the most import-

ant setting (more than half of all requests) is to avoid
bad surfaces. Avoiding bad surfaces is the most fre-
quently used individual setting and accompanies all pre-
ferred road categories. A slightly lower preference on
main roads might be explained by the fact that there are
few main roads with bad surface quality in Berlin. The
results therefore clearly demonstrate the dominant sig-
nificance of smooth surfaces. This has to be seen within
the context of the investigation area in Berlin. As ex-
plained, a number of residential streets, are paved with
cobblestones and have bad surfaces. Consequentially, the
fact that participants in Berlin are highly aware of sur-
face quality and the existence of methodological differ-
ences may explain the discrepancy in respect of earlier
stated preference studies which concluded that surface
quality had limited importance compared with other fac-
tors [13, 16].
Compared to earlier results, in this study more re-

quests show a preference for cycling in mixed traffic
on calm roads over separated facilities [8, 11, 12,
14–16]. With a difference of five percentage points,
prioritizing calm roads is more common than accept-
ing routes which include segments on main roads
with cycle infrastructure. The latter are classified in
the cluster Bike Path and partly in Comfort. This dis-
crepancy may be partially explained by well-designed
images of cycle infrastructures in stated preference
studies compared with a rather more moderate de-
sign and condition of such infrastructures in Berlin
since large parts of the bike infrastructure originate
from the 80th when different design standards were
applicable.
In terms of the relevance of off-street cycling facilities,

i.e. green pathways, the results are in line with several
earlier studies revealing their strong effect [8, 14, 16, 39].

On the whole, the cluster analysis shows that specific
combinations of different preference settings are more
common than others. For example, calm roads are often
used together with a preference for green and/or smooth
routes as seen in the clusters Relax and Park, while
main roads are combined with smooth surfaces but
very rarely with green routes. The cluster solution
identifies the interrelation by condensing 63 possible
settings into five preference types plus the default
cluster which probably presents a preference for the
shortest route. The clustering shows a stable solution
and represents combinations of preferences with clear
priorities in each cluster. Accordingly, characteristic
desires can be condensed into just a few combina-
tions of settings. These individual preference types
are reflected by the clusters Relax and Park combin-
ing calm roads with green pathways, Comfort and
Bike Path looking for smooth surfaces and (partly)
avoiding main roads without cycle infrastructure, Fast
& Easy desiring main roads regardless of cycle infra-
structure and Short with the search for the shortest
route using the default settings. These clusters show
preference settings which differ strongly from each
other, illustrating that there is no ideal route and no
‘one-size-fits-all-approach’, but rather distinct individ-
ual and trip-related preferences that determine route
choices.
As described, Berlin is seen as a suitable case study.

Given the nearly half a million observations recorded
and the long history of the bike-routing engine in
Berlin, it may capture a sufficient picture of bicycle
transport in Berlin considering the limitations de-
scribed below. More recently, the bike-routing engine
has become available in many other cities which will
make it possible to verify to what extent resulting
clusters can be generalized.
The limitations of the present study are discussed

below. Individual users are unknown due to the
methodological approach and the way the data is re-
corded. So, unlike previous studies, we cannot evalu-
ate the routing preferences in groups based, for
example, on sociodemographic features or level of
cycle confidence [8, 11, 16, 40]. The participants of
this study, and accordingly the results, cannot be
regarded as representative of the municipal population
but should reflect cyclists in the investigation area
with an affinity to ICT. Most importantly, we are
researching the people who already cycle and the
conclusions drawn can only be based on them. Given
the methodological approach, we can only research
the users of the bike-routing engine. In addition,
other than modelling approaches (RP or SP) we can-
not quantify trade-off e.g. between travel times and
route characteristics.
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As we do not know the individuals behind the re-
quests, the resulting preference types pertain to trips
rather than to individuals. Accordingly, it is possible
that an individual user shows different routing prefer-
ences for different occasions. Also, as the bike-routing
engine provides routes but does not track cyclists, it
is not known to what extent using the tool actually
results in traveling the proposed route. Most pre-
cisely, the data reflects route searching or planning
behavior rather than route choice behavior. Neverthe-
less, earlier research justifies the main idea of the ap-
proach [38]. As described, in a limited amount of
cases users even try different settings for the same
origin-destination relation. With regard to the tem-
poral aspect, we cannot prove for certain whether re-
quests for a specific trip are made immediately before
this trip. However, the distribution of the requests
over the course of the day, week and year appears
plausible. If we assume a close time connection be-
tween request and planned starting time of the trip,
these distributions indicate primary but not sole use
for leisure and sporadic trips. In addition, the tool’s
purpose for navigation beyond known routes or a
well-known neighborhood narrows the representative
nature of the data. It is obvious that no repeated
navigation is needed for commuting trips or short
trips in the neighborhood. Thus, the navigation is
used for much longer trips than the mean distance
for cycling trips according to the municipal data
(SrV). As a result, there is less information on jour-
neys cycled on a regular basis as well as short trips
which do, however, account for large proportions of
the road traffic.
Finally, the analysis carried out in this paper can only

research preferences based on choosing alternatives from
the predefined options the tool provides. Any further
preferences remain hidden. For example, all types of in-
frastructure along main roads like bike lane, bike path or
protected bike lane create one category. The type of bi-
cycle infrastructure is not differentiated in the data. In
that context, the interpretation of the default settings
matters. According to BBBike, in the default setting the
shortest bike-routing is computed. From a user’s per-
spective, this is understandable since every additional
preference specified potentially leads to longer trips. The
observation of significantly less default queries both in
summer and on weekends compared to winter and
weekdays suggests the interpretation of using default for
the shortest path since the share of these queries de-
clines when time constraints and weather conditions are
likely to allow for longer bike trips or more precisely, de-
tours are more acceptable. Hence, it is likely that the
majority of the default queries pertain to a preference
for the shortest route. The importance of short trips is

plausible as travel time is major impacting variable in
transport research [41, 42]. Nevertheless, it is also pos-
sible that parts of the users do not pay attention to the
possible routing settings and confirm the default setting
displayed be the tool for no specific reason. This has to
be kept in mind when interpreting the concluded desire
for shortest trips.

5 Conclusion
The present study provides insights into cyclists’
route preferences by analyzing an extensive dataset of
requests with according routing preference settings
collected in the bike-routing engine BBBike. Com-
pared with previous studies, this study uses a different
type of data and a different approach. The findings
gathered under different circumstances show several
relevant findings. It is seen that diverse routing pref-
erences can be condensed into six trip-related prefer-
ence types which differ strongly from each other.
Thereby, the largest of these routing preference types
is defined by the default settings of the routing en-
gine and therefore searches for the shortest route
without limitations on route specifics. Compared to
prior findings, in the present study with the according
setting, surface quality and using side roads appear to
be more important than separate cycle infrastructure
along main roads. Apart from that, for a small pro-
portion of trips, cyclists prefer main roads irrespective
of cycle infrastructure.
When providing recommendations for designing a

bike-friendly city, the following key messages become
apparent: First, given the dominant preference for
the shortest route as indicated by the default queries,
there is a strong need for short cycle connections
through the city. On one hand, this strengthens the
potential for cycle super-highways or express routes
for cyclists as these enable fast transit. On the other
hand, it shows a need for a dense network ensuring
direct cycle connections through the city. Second,
providing a well signposted coherent network of
cycle connections on calm side roads combined with
well-maintained surface quality appears to be a key
point. A strategy such as this satisfies a greater de-
mand than providing a network of separated cycle fa-
cilities along main roads. Given the opposing
preferences, an integrated strategy should take both
into account. Third, when planning cycle routes, spe-
cific preference types need to be considered to con-
sistently meet the demand. For example, combining
segments on calm side roads with segments through
parks fulfills connected preferences, while combining
cycle facilities on main roads with green segments
does not.
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6 Appendix

Table 2 Overview of cited studies

Author Year Variables used in the model Type of
analysis

Country Investigation
area

Local cycle
mode
share

Bernardi, La Paix Puello, Geurs 2018 Link type [type of road or bike infrastructure], Link
quality, Link beauty, Link traffic nuisance

Revealed
preference

Nether-
lands

Countrywide Not stated

Ghanayim, Bekhor 2018 Total route length, Route length on streets with
bike paths, Route length on urban arterials and
highways, Average street length, Dwelling units /
m, Route length “near sea”, Route length “near
park”

Revealed
preference

Israel Tel Aviv
metropolitan
area

1,6%

Prato, Halldórsdóttir, Nielsen 2018 Distance, Wrong way, Left turns, Right turns, Bicycle
infrastructure type, Bicycle facility type, Cumulative
elevation gain, Surface type, Number of
intersections, Motorized road type, Motorized free
speed, Number of motorized traffic lanes, Land-use
designations

Revealed
preference

Denmark Copenhagen 37%
commuting
trips

Vedel, Jacobsen, Skov-Petersen 2017 Road environment, Cycle track, Green surroundings,
Crowding (other cyclists on the route), Stops (on
the route), Route length

Stated
preference

Denmark Copenhagen 35% of all
trips

Aldred, Elliott, Woodcock,
Goodman

2016 Varying Review on
stated
preference
surveys

Varying Varying Varying

Buehler, Dill 2016 Varying Review World Varying Varying

Mertens, Van Dyck, Ghekiere, De
Bourdeaudhuij, Deforche, Van
de Weghe, Van Cauwenberg

2016 Type of cycle path, speed limit, speed bump,
vegetation, evenness of the cycle path surface,
general upkeep, traffic density

Stated
preference

Belgium Flanders 14% of trips
shorter than
5 km

Winters, Teschke, Brauer, Fuller 2016 Bike Score (10-unit change), Destinations/
Connectivity Score, (10-unit change), Bike Lane
Score (10-unit change), Hill Score (10-unit change),
Bike Score (categorical), City

Cross-
sectional

US/
Canada

24 cities 1,9% (mean)
commuting
trips

Nielsen, Olafsson, Carstensen,
Skov-Petersen

2013 Distance to retail concentration, Train station within
1 km, Population density within 1.5 km, Public
transport departures within 500 m, Retail jobs/
resident within 500 m, Topology as elevation range
within 1.5 km, Intersection pr. Network dist. Within
1.5 km, Intersection pr. Network dist. Within 500 m
(Ln), Residence is a flat, Copenhagen or
Frederiksberg (Place dummy), City of Odense (Place
dummy), Respondent has driver’s license,
Occupation: student, Occupation: full time
employment, Education: medium, Education: long
(academic), Family type: single, Household income/
adult, Personal income, Gender

Cross-
sectional

Denmark Denmark 23%
Individuals
who cycle

Broach, Dill, Gliebe, 2012 Bridge with on-street bike lane, Proportion of route
along links with [varying] upslope, Distance of
route, Path size, Left turn without traffic signal and
parallel [varying] traffic volume, Proportion of route
on designated bicycle boulevard, Proportion of
route on off-street, regional bike path, Proportion of
route on streets with [varying] traffic volume with-
out a bike lane, Left turns and straight movements
through traffic signals per mile, Turns or straight
movements through stop signs per mile, Left and
right turns per mile, Right turns at unsignalized in-
tersections with cross traffic volume 10,000+ per
day, Left turns and through movements at unsigna-
lized intersections with [varying] cross traffic
volume

Revealed
preference

USA Portland Not stated

Caulfield, Brick, McCarthy 2012 Adjacent traffic speed (km/h), Type of infrastructure, Stated Ireland Dublin Not stated
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Table 2 Overview of cited studies (Continued)

Author Year Variables used in the model Type of
analysis

Country Investigation
area

Local cycle
mode
share

Travel time (min), Number of junctions on route,
Cycle traffic on route

preference

Buehler, Pucher 2011 Bike share of commuters, Bike commuters per
capita, Bike lane supply, Bike path supply, Cycling
safety, College students, Car access, Sprawl index,
Public transport supply, Gasoline price, Hot weather,
Cold weather, Annual precipitation

Cross-
sectional

USA 90 cities 0,8% (mean)
Commuting
trips

Winters, Teschke 2010 Major streets, residential streets, rural roads and
highways, off-street paths, cycle paths next to major
roads but physically separated from traffic, road
markings, bicycle lanes, traffic calming, route sur-
faces, car parking

Stated
preference

Canada Vancouver
metropolitan
area

~ 2%

Winters, Teschke, Grant, Setton,
Brauer

2010 Gross population density, % of land area with green
cover, average air pollution (ppb NO2), variation in
elevation, % of road segments > 10% slope, traffic
calming features, stencils, bike route signs, traffic
crossings with bike activated signals, ratio of 4 way
intersections: all intersections, % of land area with
use: (agriculture, commercial, education,
entertainment, industrial, office, park, single family
residence, multifamily residence, land use mix)

Revealed
preference
(shortest)

Canada Vancouver
metropolitan
area

1,7% for
work trips

Garrard, Rose, Lo 2008 Type of bicycle facilities (path, lane, no) Observing Australia Melbourne 1,2%

Hunt, Abraham 2007 Availability of showers at destination, Availability of
secure parking at destination, Minutes riding on
roadways in mixed traffic, Minutes riding on
designated bike lanes on roadways, Minutes riding
on bike paths shared with pedestrians

Stated
preference

Canada Edmonton Not stated

Moudon, Lee, Cheadle, Collier,
Johnson, Schmid, Weather

2005 Age in years, Gender, Race, Marital status, General
health, Income, Own a bicycle?, Number of cars in
household, Vehicle miles traveled per month,
Exercise at home?, Use transit?, Work hours per
week, Vigorous activity, Number of facilitators of
cycling mentioned, Total household location factors
-Proximity to recreational destinations, Perceived
presence of, Benefits of physical activity, Presence
of amenities for cycling and jogging in the
neighborhood, High social support for walking and
cycling in the neighborhood, High visual quality of
the neighborhood, Presence of destinations in
neighborhood, Presence of auto-oriented facilities
in the neighborhood, Problems related to automo-
biles in neighborhood, Percentage of streets lined
with bicycle lanes, Distance to the closest trail,
Number of parks within the 3 km buffer, Number of
destinations within the closest NC6 (sports facility
and school), Size of the closest NC3 (grocery and
restaurant), Area of convenience stores within the 3
km buffer, Number of parcels within the closest
NC10 (office, fast food, and clinic/hospital)

Cross-
sectional

USA King County,
Washington

< 1%

Stinson, Bhat 2003 Roadway class, Parallel parking permitted, Bicycle
facility type, Bridge type, Hilliness, Riding surface,
Travel time, Facility continuity, Number of stop
signs per mile, Number of red lights, Number of
major cross-streets

Stated
preference

USA /
Canada

Countrywide varying

Abraham, McMillan, Brownlee,
Hunt

2002 Total cycling time including stops at red lights and
stop signs, time on arterial roads, time on arterial
roads with wide curb lane, time on arterial roads
with bicycle lane, time on residential roads, time on
bike route consisting of residential roads, time on
bicycle pathways alongside arterial road, time on
bicycle pathways in park area, Parking facility
available at destination, Cost for parking facility,

Stated
preference

Canada Calgary Not stated
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Table 2 Overview of cited studies (Continued)

Author Year Variables used in the model Type of
analysis

Country Investigation
area

Local cycle
mode
share

Other facilities available at destination, Cost for
other facilities

Aultmann-Hall 1996 Turns, Turns per km, Signals, Signals per km, Major
signals, Proportion of movements between a major
and minor road with a signal, Proportion of
movements from a minor/path to a minor/path
with a signal, Proportion of route on arterial roads,
Proportion of route on collector roads, Proportion
of route on local roads, Proportion of route off-
road, Road bridges, Travel on grade (km), Level rail-
way crossings

Revealed
preference
(shortest)

Canada Guelph,
Toronto,
Ottawa

Not stated

Table 3 Distribution of preferences for road categories (x-axis) intersected with preferences for other characteristics (y-axis)

Calm Infra Main No Preference Overall

Green n 24,887 12,260 876 30,075 68,098

% in column 22.8% 14.3% 7.2% 11.9% 14.8%

% in row 36.5% 18.0% 1.3% 44.2% 100.0%

% in total 5.4% 2.7% 0.2% 6.5% 14.8%

Smooth n 25,161 27,993 5317 39,951 98,422

% in column 23.0% 32.6% 43.5% 15.7% 21.3%

% in row 25.6% 28.4% 5.4% 40.6% 100.0%

% in total 5.5% 6.1% 1.2% 8.7% 21.3%

Green- Smooth n 42,164 29,347 1547 17,385 90,443

% in column 38.6% 34.1% 12.7% 6.9% 19.6%

% in row 46.6% 32.4% 1.7% 19.2% 100.0%

% in total 9.1% 6.4% 0.3% 3.8% 19.6%

No preference n 17,017 16,370 4479 166,341 204,207

% in column 15.6% 19.0% 36.7% 65.6% 44.3%

% in row 8.3% 8.0% 2.2% 81.5% 100.0%

% in total 3.7% 3.5% 1.0% 36.1% 44.3%

Overall n 109,229 85,970 12,219 253,752 461,170

% in column 100.0% 100.0% 100.0% 100.0% 100.0%

% in row 23.7% 18.6% 2.6% 55.0% 100.0%

% in total 23.7% 18.6% 2.6% 55.0% 100.0%

Road preferences: prefer calm residential roads (Calm), avoid main roads without cycle infrastructure (Infra), prefer main roads (Main); other characteristics: prefer
green pathways (Green), avoid bad surfaces (Smooth), prefer green pathways and avoid bad surfaces (Green-Smooth); simple and strong preference summed up.
Reading example: the first cell shows that 24,887 requests combine a preference for calm roads (column) with that for green pathways (row). The percentage
values show that 22.8% of requests which give a preference for calm roads (column) also prefer green pathways (row). At the same time, in 36.5% of requests
preferring green pathways, there is also a preference for calm roads. In total, the combination preferring calm roads and green pathways makes up 5.4% of
all requests
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Table 4 Comparison of length and overlap for exemplary routes

Relation Inner city routes
[City center east/
Alexanderplatz –City center
west/ Breitscheidplatz]

Edge of town routes
[Freie Universität Lankwitz/
Malteserstr –Freie Universität
Dahlem/ Thielplatz.]

Edge of town to city center
routes
[Humboldt Universität
Adlershof/ Rudower Chaussee
–Humboldt Universität Mitte/
Unter den Linden]

[km] Length Length identical with
default

Length Length identical with
default

Length Length identical with
default

Default 6.25 6.25 6.57 6.57 14.31 14.31

Prefer residential roads [calm] 6.63 2.38 6.75 2.37 15.83 7.50

Use only residential roads [calm*] 7.39 0.83 6.92 2.82 16.91 0.94

Prefer main roads [main] 6.39 4.19 7.11 1.82 14.93 4.07

Use only main roads [main*] 6.39 4.19 7.44 1.33 15.19 3.09

Avoid main roads without cycle paths/bus
lanes [infra]

6.46 4.14 6.83 2.53 14.53 11.35

Avoid main roads without cycle paths
[infra*]

6.34 3.60 6.83 2.53 14.55 11.52

Avoid cobblestones and bad surfaces
[smooth]

6.25 6.25 6.75 2.75 14.31 14.31

Use only very good surfaces [smooth*] 6.25 6.25 6.75 2.75 14.32 13.98

Prefer green pathways [green] 7.47 0.00 6.57 6.57 17.27 6.20

Strongly prefer green pathways [green*] 7.54 0.00 6.76 4.98 18.93 2.11

For a clearer overview, only strong preferences are displayed on the maps
Strong preferences are indicated with *

0 1 20.5Km

Fig. 13 Inner city routes

0 1 20.5 Km

Default

Only residential roads

Only main roads

Avoid main roads without cycle paths

Only very good surfaces

Strongly prefer green pathways

Fig. 14 Edge of town routes
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