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Abstract 

Background:  This paper compares a hybrid traffic flow model with benchmark macroscopic and microscopic 
models. The proposed hybrid traffic flow model may be applied considering a mixed traffic flow and is based on the 
combination of the macroscopic cell transmission model and the microscopic cellular automata.

Modelled variables:  The hybrid model is compared against three microscopic models, namely the Krauß model, the 
intelligent driver model and the cellular automata, and against two macroscopic models, the Cell Transmission Model 
and the Cell Transmission Model with dispersion, respectively. To this end, three main applications were considered: (i) 
a link with a signalised junction at the end, (ii) a signalised artery, and (iii) a grid network with signalised junctions.

Results:  The numerical simulations show that the model provides acceptable results. Especially in terms of travel 
times, it has similar behaviour to the microscopic model. By contrast, it produces lower values of queue propagation 
than microscopic models (intrinsically dominated by stochastic phenomena), which are closer to the values shown by 
the enhanced macroscopic cell transmission model and the cell transmission model with dispersion. The validation of 
the model regards the analysis of the wave propagation at the boundary region.
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1 � Background and motivation
Although three main groups of traffic flow models have 
been identified in the literature, namely macroscopic, 
mesoscopic and microscopic models [1], hybrid traffic 
flow models obtained by combining models from two of 
the above groups have more recently been explored. This 
paper aims to compare a proposed hybrid traffic flow 
model (H-CA&CTM [2], with some benchmark macro-
scopic and microscopic models.

More in general the macroscopic models are based 
on aggregate variables representing user behaviour as 
flows, density, and aggregate variables describing supply, 
such as speed. They can be classified in accordance with 
the literature depending on the continuous or discrete 

representation of space and time. The basic model, for-
mulated in the case of continuous space and time, was the 
first-order model developed by Lighthill and Whitham 
[3] and Richards [4] (the Lighthill–Whitham–Rich-
ards—LWR—model). Subsequently, Payne [5], Ross [6], 
and Kerner and Konhäuser [7] proposed second-order 
models to overcome limitations such as the instantane-
ous driver’s reaction and the impact of the inertial effect, 
as well as drivers’ reactions to the conditions of the traf-
fic context. Finally, within the same group of models, the 
third-order model was proposed by Helbing [8], based on 
three states: vehicle density, mean speed and mean speed 
dispersion.

To solve the first-order model, the cell transmission 
model (CTM; [9], a discrete space and time model was 
introduced. In the class of space-discrete and time-con-
tinuous models is the model introduced by Newell [10], 
based on a simplified theory of kinematic waves focusing 
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on the representation of inflow/outflow curves, and the 
state of flow at an extreme. Consistent with simplified 
first-order kinematic wave theory after Newell, Yper-
man [11] proposed the link transmission model (LTM) 
in which link volumes and link travel times are obtained 
starting from cumulative vehicle numbers.

Concerning the microscopic approach, this class of 
traffic flow models aim to reproduce single vehicle behav-
iour by considering the disaggregate representation of 
the position as well as the disaggregate representation 
of speeds. This class of models has been widely studied 
by researchers and four main groups may be identified: 
stimulus–response models, safety distance models, opti-
mal velocity models and physiology-psychology models.

In the case of stimulus–response models, the lead-
ing vehicle and follower are analysed as a pair and it is 
supposed that each vehicle reacts to the stimulus of the 
leading vehicle. Preliminary studies may be found in 
Chandler et  al. [12] and Gazis et  al. [13]. Although the 
latter model was better able to model the case of high 
density by considering the stimulus not only a function 
of the leader vehicle as in the former model but also as a 
function of the speed difference between the leader and 
the follower, this class of model is not reliable in the case 
of free flow conditions. This shortcoming has given rise 
to other approaches in the literature [14–16].

The second group of models was primarily introduced 
by Gipps [17] and focused on the safe distance to ensure 
collision avoidance. Further refinements of the model 
were subsequently proposed especially by Leutzbach [18] 
who took account of different steps in driver behaviour 
(i.e. perception, decision and braking). Other enhance-
ments of the Gipps model are proposed by the Krauß 
model [19] through the introduction of stochasticity.

The optimal velocity model [20] is based on the dis-
crepancy between desired speed and actual speed. The 
model has been further developed by several authors 
[21–25]. In particular, Treiber et  al. [26] proposed the 
intelligent driver model (IDM) which takes into account 
the desired space headway and desired speed.

Moreover, there are the action point models first 
introduced by Michaels [27], generally referred to as 
physiology-psychology models. Further developed by 
Wiedemann [28], the models are based on different 
regimes (i.e., free driving, closing in and emergency) 
depending different thresholds piloting the behaviour of 
the follower when approaching to the leading vehicle.

Finally, mention must be made of hybrid traffic flow 
models which are based on a combination of two traf-
fic flow models [29–32]. Hybrid traffic flow models were 
introduced to obtain properties of different models at dif-
ferent levels of network layouts.

For instance, macroscopic modelling is more suitable 
than microscopic modelling for simple node representa-
tion whereas the latter may be better applied along links 
to appropriately reproduce vehicle interactions and driv-
ers’ mutual influences).

In accordance with the literature, the approach was 
also introduced in order to deal with the lane changing 
problem in which microscopic modelling is suitable for 
realistic acceleration reproduction but cannot be applied 
for lane changes [33] therefore further investigations may 
found in Daganzo [34] and Laval and Daganzo [35]. They 
proposed a model based on a Kinematic Wave (KW; [36] 
model for traffic stream simulation and a micro model 
for the slower vehicles’ representation. Further studies 
may be also found in which obtained the same results 
by replacing the KW model with the CA and consider-
ing the same macroscopic parameters [37], in particu-
lar, the CA model provides the same trajectories of the 
KW model with triangular FD, confirming that the 
theory is insensitive to the level of approximation (i.e., 
discrete—continuum).

Leclercq [38] presented a hybrid ‘‘Lighthill–Whitham–
Richards’’ (LWR) model combining both macroscopic 
and micro-scopic traffic descriptions. In particular, the 
main focus of the proposed model was to overcome 
the limitations of the models previously proposed [30, 
39–42] mainly related to the physical extension of the 
interfaces between the microscopic and the macroscopic 
models.

The proposed hybrid model is based on the combina-
tion of the macroscopic cell transmission model (CTM; 
[36] and the microscopic cellular automata model (CA, 
[43]. The hybrid model (H-CA&CTM, [2]) appropriately 
reproduces the queue propagation phenomena and driv-
ers’ behaviour in order to be applied in the presence not 
only of human-driven vehicles but also in the presence of 
connected and autonomous vehicles supporting the vehi-
cles to infrastructure communication at node networks 
particularly in the case of traffic control. In particular the 
model specified, calibrated and validated in [44] has been 
also applied to the case of a signalized arterial in order to 
develop an iterative bilevel optimisation framework com-
bining the traffic lights optimisation at the first level with 
the speed optimisation at the second (lower) level (i.e., 
the GLOSA; Green Light Optimized Speed Advisory).

It should be pointed out that the CA is a disaggregate 
model for basic microscopic traffic flow analysis, signifi-
cantly reducing computational effort. As for the CTM, 
although the model considered is the basic application, 
several enhancements may be found in the literature. For 
instance, the CTM with dispersion (PD&CTM; [45, 46]) 
could be an affordable extension to be considered.
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The rest of the paper is organised as follows: in Sect. 2 
the models in question are outlined; in Sect.  3 the 
numerical results with reference to three applications are 
discussed, and in Sect. 4 conclusions and future perspec-
tives are summarised.

2 � Description of models
In this section the mathematical details of each macro-
scopic and microscopic model are discussed. In the for-
mer class, the cell transmission model [36] and the cell 
transmission model with dispersion (PD&CTM [45], are 
discussed, whilst in terms of microscopic models our 
analysis covers the Krauß model [19], the IDM [47] and 
the cellular automata [43].

2.1 � Macroscopic models
2.1.1 � Cell transmission model (CTM)
The cell transmission model was introduced to support 
the solution of the continuous time—continuous space 
LWR model and is based on a finite difference method: 
the time is divided into constant time intervals, while the 
road segment is divided into cells of constant length, with 
an index i increasing in the downstream direction. At each 
time step, every cell has single values of density and speed 
(as a function of the speed-density relationship) while the 
flow between neighbouring cells is constant during the 
time interval. The most common integration method for 
LWR models is the Godunov scheme [1]. This method is 
based on an exact solution of the continuity equation for 
one time step, assuming stepwise initial conditions given 
by the actual densities of the cells. The road is divided into 
cells of length Δx equal to the distance that a vehicle would 
travel in a free flow condition during one time step. Hence 
it is equal to the free flow speed multiplied by the duration 
of the time step (also called clock tick), Vf�t = �x . The 
relation between the cell length and the time step complies 
with the Courant-Friedrichs-Lewy condition ( Vf�t ≤ �x ) 
for the stability of explicit solution methods.

Following the Godunov scheme, the densities are ini-
tially averaged for each cell (each cell has a constant den-
sity), and from one time step t, to a successive one, t + � 
t, the solution evolution is averaged again in order to 
obtain a piecewise constant solution. The main variables 
of the method are:

•	 ki density in cell i;
•	 kj jam density;
•	 Qi maximum flow rate in cell i;
•	 Vf  free flow speed;
•	 ω shock wave speed in congested traffic;
•	 �x cell length;
•	 �t time step;
•	 Yi flow exiting the boundary of cell i.

•	 The density is then obtained as a function of flows at 
the cell boundaries as in the following:

Finally, the key quantities of the method can be intro-
duced based on the (trapezoidal) fundamental diagram 
(Fig. 1).

The flow of vehicles moving through the boundary 
between upstream cell i and downstream cell i + 1 (see 
Fig. 1) is given by the result of a comparison between the 
maximum flow that can be sent (that is the demand) by 
cell i (upstream of the boundary):

and the maximum flow that can be received (that is the 
supply) by the downstream cell i + 1:

Since every cell has a maximum density ( kj ), the incom-
ing flow is not only constrained by the maximum value 
Qi+1 , but also by the difference between the maximum 
density and the current density 

(

kj − ki+1

)

 , which cap-
tures the spillback phenomena and is able to model the 
effects of horizontal queuing.

Therefore, in accordance with the Godunov scheme, 
the flow Yi(t) can be rewritten in accordance with the 
demand (sending)-supply (receiving) rule of the cell trans-
mission model as:

2.1.2 � CTM with dispersion (PD&CTM)
In the case of a signalised network, two main issues 
are to be addressed: (i) the modelling of the dispersion 
between inter-acting junctions, which is strictly related 
to the distance travelled on the connecting links and (ii) 

(1)ki(t + 1) = ki(t)+ [Yi−1(t)− Yi(t)] ·
�t

�x

(2)Di(t) = min
(

Qi,Vf · ki
)

(3)Si+1(t) = min
(

Qi+1,ω ·
(

kj − ki+1

))

(4)Yi(t) = min (Di(t), Si+1(t))

Density 

Fl
ow

Demand Supply

Fig. 1  Trapezoidal fundamental diagram—link representation
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the spillback (i.e., the link blockage) and the merging and 
diverging modelling (i.e., the lane blockage). In general, 
the Platoon Dispersion Model (PDM; Robertson [48, 
49]) which is adopted in several applications and bench-
mark tools TRANSYT [50] and SCOOT [51] is the most 
straightforward for modelling the dispersion of platoons. 
Moreover, this model shows a main weakness since it 
cannot describe the spillback phenomena and it does 
not model the effects of blocking back (i.e., horizontal 
queuing). Concerning the CTM, it may be adopted as an 
alternative to the PDM, for short distances whereas in 
the case of long distances the PDM is still preferred to 
the CTM. However, to overcome the limitations of PDM 
and CTM, the model proposed by Cantarella et al., [45] 
employing for each cell the well-known Drake speed-
density relationship, can be considered.

First of all, some details about the platoon dispersion 
phenomenon should be supplied then the PD&CTM is 
specified. Let:

•	 T be the mean link travel time;
•	 t be equal to 0.8 T;
•	 qd

(

j
)

 , the flow rate over a time step Δt arriving at the 
downstream signal at time interval j;

•	 q0(i) , the discharging flow over time step Δt observed 
at the upstream signal at time interval i;

•	 Δt, the time step duration, usually assumed as one 
second;

•	 F, the smoothing factor;
•	 and αandβ,the dimensionless model parameters.

Robertson’s model takes the following mathematical 
form:

where F, the smoothing factor, is given by:

Two main conditions may arise depending on the F val-
ues: (i) if the distance between two successive junctions 
is high, the travel time is high and F tends to zero; in this 
case uniform flow profiles are observed and the two suc-
cessive junctions are not interacting; (ii) otherwise, when 
the distance between them is low they are interacting; 
suppose that the travel time tends to zero, the smoothing 
factor tends to 1 and then qd

(

j
)

= qd
(

j − 1
)

.
The cell transmission model with dispersion was modi-

fied to include the Drake speed-density relationship, 
modelling the dispersion of the platoon formed upstream 
of a traffic light.

Let:

(5)qd
(

j
)

= Fq0
(

j − t
)

+ (1− F)qd
(

j − 1
)

(6)F = (1+ αβT )−1

•	 t be the time step
•	 �t , the duration of the time step
•	 �x , the length of the cells
•	 Qi , the maximum flow rate in cell i
•	 ki(t) , the density in cell i at time step t
•	 kj , the jam density
•	 km , the traffic density at maximum flow
•	 Vf  , the free flow speed and
•	 ω , the shock wave speed in congested traffic.

For each cell, at each time step, the demand flow is 
given by:

The supply flow from the immediate downstream cell 
is given by:

The speed of the outgoing flow at each cell is given by 
the Drake speed-density relationship as:

The flow from each cell derived from the Drake speed-
density relationship is given by:

The flow to the downstream cell is then calculated as:

To update the density at the next time step, for each cell 
i:

Since the flow to the downstream cell is limited by the 
supply and demand of each cell from the basic CTM, the 
resulting outcoming flow can be either equal to or lower 
than them, depending on the parameters of the Drake 
speed-density relationship.

As an example, given the next set of parameters, the 
following fundamental diagrams (see Figs. 2, 3 and 4) are 
obtained:

•	 �x = 15 m
•	 Qi = 1800 veh/h
•	 kj = 200 veh/km

(7)Di(t) = min
(

Qi,Vf · ki(t)
)

(8)Si+1(t) = min
(

Qi+1,ω ·
(

kj − ki(t)
))

(9)vi(t) = Vf · e
−0.5

(

ki(t)+ki+1(t)

2km

)2

(10)Xi(t) = ki(t) · vi(t)

(11)Yi(t) = min (Di(t), Si+1(t),Xi(t))

(12)ki(t + 1) = ki(t)+ [Yi−1(t)− Yi(t)]×
�t

�x

(13)�t = 1s
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•	 km = 55 veh/km
•	 Vf  = 15 m/s
•	 ω = 5 m/s

2.2 � Microscopic models
2.2.1 � Krauss’s model
Several classes of models may be identified at the micro-
scopic level, amongst which are safety distance models. 
The definition of this distance is crucial in order to avoid 
collisions between vehicles, and these models are based 
on the idea that following vehicles try to respect the 
safety distance from the leading vehicles. The main con-
tributions in the literature concern works by Kometani 
and Sasaki [52], Gipps [17] and Krauß [19]. The model 
proposed by Gipps is a multiregime model able to repro-
duce the free flow driving condition and the car follow-
ing regime. The two main limitations of the Gipps model 
concern its unsuitability in the case of unstable traffic 
flow conditions and the possibility that the model has no 
solutions due to its analytical formulation. Therefore, the 
Krauß model, which can overcome such limitations, may 
be considered an alternative approach to that of Gipps. In 
accordance with the Krauß model, the safe speed is given 
by the following expression:

where, vl(t) is the speed of the leading vehicle at time t, 
g(t) is the gap between leader and follower at time t, tr 
is the drivers’ reaction time and, b is the max value of 
deceleration.

Finally, the desired speed is given as the minimum 
between the maximum speed, the speed that can be 
achieved by the vehicle according to its acceleration, and 
the safe speed as defined above. That is:

2.2.2 � Intelligent driver model
Next are the continuous time models, based on first-
order differential equations. The two main contribu-
tions in the literature concern the optimal velocity model 
(OVM) [20] and the intelligent driver model (IDM) [26].

In the above class of models, it is supposed that each 
vehicle has a desired speed depending on the distance 
between vehicles or the difference between the speed of 
a pair of vehicles, namely the leader and follower. The 
OVM refers to the former case, whereas the IDM to the 
latter.

With regard to the OVM, it must be highlighted that 
the acceleration of the vehicle depends on the desired 
speed and can be formulated as

(14)vsafe = vl(t)+
g(t)− vl(t)tr
vl(t)+vf (t)

2b
+ tr

(15)vdes = min
[

vmax, v + at, vsafe
]

(16)an(t) =
V [�xn(t)]− vn(t)

τ

Fig. 2  fundamental diagram: flow–density relationship

Fig. 3  fundamental diagram: speed–density relationship

Fig. 4  fundamental diagram: speed—flow relationship
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where,

•	 n is the following vehicle;
•	 �xn(t) is the spacing between the leading and the fol-

lowing vehicle;
•	 vn(t) is the speed of the vehicle;
•	 τ is driver sensitivity.

However, one of the main limitations of the model con-
cerns the unrealistic (high) values of maximum accelera-
tion when the drivers’ sensitivity is of the same order as 
the drivers’ reaction time, which depends on the differ-
ence between the vehicles’ speeds [26] that is not con-
sidered. In general, in the IDM formulation, acceleration 
is a continuous function of speed, distance and speed 
difference.

In particular, let:

•	 a0 be the maximum acceleration;
•	 v0, the drivers’ desired speed;
•	 δ, a parameter to be calibrated and
•	 Δx0, the desired distance, a function of the follower’s 

speed and the speed difference.

The final formulation of acceleration is composed by 
two terms, the free flow term and the interaction term as 
detailed in the following:

2.2.3 � CA—Nagel–Schreckenberg model
The approach adopted was proposed by Nagel and 
Schreckenberg [43] who developed a model which was 
discrete in time and space, considering a single lane road 
and dividing it into cells that can have two states (occu-
pied or empty), and a length equal to the length of a vehi-
cle. Every vehicle occupies a cell, which has an “occupied” 
state. At the next time step, if a vehicle moves to another 
downstream cell, its speed has integer value (ranging 
from zero to a maximum value) which represents the 
number of cells that the vehicle moves downstream, from 
position xi(t) to xi(t + 1) . Because of this, the behaviour 
of an upstream vehicle i is influenced by a downstream 
one i + 1 , if the gap gi between them is smaller than the 
speed vi of the upstream vehicle. The speed can be con-
verted to a dimensional value through multiplying it by 
both the ratio of the cell length and the time step. The 
acceleration is equal to 1 or 0, thus increasing, or other-
wise, the integer value of the speed at each time step.

(17)

an(t) = a0 ·

{

1−

[

vn(t)

v0

]δ

−

[

�x0(vn(t), (vn(t))

�xn(t)

]2
}

The model also contains a stochastic component called 
the dawdling probability in which, with probability p, a 
vehicle can remain at the same speed (if it was acceler-
ating) or decelerate. This allows us to model stop-and-go 
waves in congested traffic, varying the flow-density rela-
tion as well.

The model is applied by following four rules. At each 
time step, and for each vehicle i on the road, their speed 
vi(t) and position xi(t) are updated as:

•	 Slowing down. Obtain the gap at time t. If 
speed > gap, then slow down.

•	 Acceleration. If speed < gap and speed < max speed, 
then accelerate by one.

•	 Randomization (Dawdling rule). If speed > 0, then 
with probability p (dawdling probability, that is the 
random term) reduce it by one.

•	 Car motion. Update the position 

The Nagel-Schreckenberg Model is not the only type 
of cellular automata. There are also other types, such as 
the Barlovic model [53] which adds a “slow to start” rule, 
the Kerner Klenov and Wolf model [54] which considers 
the cell length equal to 0.50 m (thus considering an accel-
eration of 0.5 m/s2) and adds other parameters to model 
synchronized traffic in accordance with the three-phase 
traffic theory proposed by Kerner, and the same model 
but changing the safe speed rule by using a discretized 
version of the safe speed of the Gipps model (considering 
a braking deceleration parameter). In this study, the basic 
model remains that of Nagel-Schreckenberg, but given 
that each cell has a length of 2.50 m, the randomization 
rule is applied only if the speed exceeds a minimum value 
greater than 0.

2.3 � Hybrid traffic flow models
2.3.1 � CA—CTM hybrid
The general architecture of the proposed hybrid model 
consists of the combination of a macroscopic CTM with 
a microscopic CA for each link (see Fig.  5). The CA is 
used to model the traffic flow at disaggregate level at the 
junction, whereas the CTM models the traffic flow at 
aggregate level along the link. The transitions from CA 
to CTM and vice versa are based on the introduction of 

(18)v∗i (t + 1) = min
(

vi(t)+ 1, v0, gi
)

(19)

vi(t + 1) =

{

max
(

v∗i (t + 1)− 1
)

with probability p
v∗i (t + 1) otherwise

(20)xi(t + 1) = xi(t)+ vi(t + 1)
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a transition zone. Both models have the same simulation 
time step of 1 s to obtain a consistent queuing formation 
and backend propagation of the congestion.

3 � Numerical results
In this section the proposed hybrid traffic flow model and 
the benchmark macroscopic and microscopic models are 
compared. To this end, three main layouts were consid-
ered with reference to an urban context:

•	 a link with a traffic signal (see Sect. 3.1);
•	 an arterial consisting of three signalised junctions 

(see Sect. 3.2);
•	 a nine-node grid layout with signalised junctions (see 

Sect. 3.4).

Before these analyses, the evaluation of the wave prop-
agation is provided.

The details of the considered traffic flow models are 
displayed in the following Table  1. Furthermore, all 
results were analysed in terms of travel time spent, max 
and mean queues. In general, a simulation horizon equal 
to one hour has been considered and the first 900 s were 
considered as a “warm—up period” to stabilize the flow 

and speed of all vehicles. The proposed traffic flow model 
was implemented in a code provided by the authors and 
developed in MATLAB (the Release 2020 was adopted) 
whereas the microscopic and macroscopic traffic flow 
analyses were run respectively in SUMO [55] and 
TRANSYT16®TRL; all simulations were run on machine 
which has an Intel(R) Core(TM) i7-4510U CPU with a 
base speed of 2.6 GHz, and 8 GB of RAM.

3.1 � Wave propagation analysis
In this section an in-depth validation of how shockwaves 
propagation along a signalised link is provided and the 
consistency of the proposed model with the wave theory 
is carried out. Four applications are considered [38]:

a.	 at the transition from microscopic [m] to macro-
scopic model [M]

1.	 a capacity reduction is applied [from 2000 veh/h 
to 600 veh/h] at the macroscopic transition cell

2.	 a shockwave is induced downstream, in the mac-
roscopic model

Fig. 5  Example of the hybrid link representation

Table 1  Input of the traffic flow models

CA CTM CTM Dispersion DRAKE IDM KRAUSS

Cell length [m] 2.5 15.0 15.0

Vehicle length [m] 5 5 5

Time step [s] 1 1 1

Desired speed [m/s] 15 15 15

Jam density [veh/km] 200 200 200

Wave speed [m] 5 5

Outflow capacity [veh/h] 2000 2000

Dawdling probability 0.266

Min speed to apply dawdling [m/s] 5

Length [m] 4.5 4.5

MinGap [m] 0.5 0.5

Max Speed [m/s] 15.0 15.0

Acceleration [m/s2] 2.9 2.9

Deceleration [m/s2] 7.5 7.5

Sigma 0.5

Tau 1
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b.	 at the transition from the macroscopic [M] to the 
microscopic model [m]

3.	 a demand variation upstream is applied
4.	 a shockwave is induced downstream, in the 

microscopic model

Results are shown in Fig. 6. With reference to case a: 
the exit flow fits the supply variations as well as in the 
case c where the entry flow fits the demand variations. 

Furthermore, the shock waves propagations through 
the interface are uniform and the interface does not 
affect the wave in terms of interruptions, delay or any 
other kinds of modifications. 

3.2 � Link
This numerical application was run considering a link 
300  m long with a signalised junction at the end. In 
terms of demand, to test the impact of the undersatura-
tion and oversaturation conditions, three different entry 

Fig. 6  Wave propagation analysis
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flows were tested: the first was 400 veh/h, the second, 800 
veh/h, and the third, 1200 veh/h. In Fig. 7 the layout in 
terms of the hybrid model is displayed, and the details of 
the cellular automata model and cell transmission model 
are shown.

Comparison among models highlights that in the case 
of low demand (undersaturation) all models provide very 
similar results. In particular, the proposed hybrid model 
CA&CTM is very similar to the other benchmark mod-
els with respect to both indicators of travel times and 
queues. However, in the case of higher demand (over-
saturation), microscopic models show lower values travel 
times whilst the estimated values of the queues are higher 
than the values achieved with the other models. In par-
ticular, the proposed hybrid model behaves very similarly 
to the CTM and CA models. Further details regarding 
the numerical results are shown in Table 2 below.

3.3 � Artery
In this section the results concerning the artery with 
three successive signalised junctions (see Fig. 8) are con-
sidered. The entry flows in each node are displayed in the 
figure below. In particular, the distance between succes-
sive junctions is equal to 810  m, while the sources and 
sink arcs have 90  m. The parameters of the models are: 
free flow speed = 15  m/s, wave speed = 5  m/s, outflow 
capacity = 2000 veh/h, jam density = 200 veh/km, CTM 
cell length = 15  m, CA cell length = 2.50  m, dawdling 
probability = 0.266, min CA speed to apply dawdling = 2 
cells/s = 5 m/s.

The results are summarised in Table  3. It may be 
observed that, unlike the previous case, the travel times 
of microscopic models are higher than those of other 

models, and the hybrid model provides very similar 
results to those of microscopic models, especially to the 
CA model in which travel times fall between those of the 
Krauß (travel time is 213,984.21 veh h) and IDM (travel 
time is 154,512.18 veh h).

Fig. 7  Urban link layout with signalised junction

Table 2  Numerical results of the link application

Travel time [veh s] Max queue 
[veh]

Mean 
queue 
[veh]

Scenario Flow 1 [400 veh/h]

KRAUSSSUMO 493 6.1 1.7

IDMSUMO 481 5.9 1.5

CA 453 5.9 1.7

CTM 449 5.9 1.7

PD&CTM 456 5.1 1.5

CA&CTM 450 5.9 1.7

Scenario Flow 1 [800 veh/h]

KRAUSSSUMO 1104 14.5 4.9

IDMSUMO 1073 14.3 4.3

CA 1024 11.9 4.1

CTM 1014 12.0 3.4

PD&CTM 1064 11.0 3.4

CA&CTM 1022.4 12.0 4.3

Scenario Flow 1 [1200 veh/h]

KRAUSSSUMO 4490 75.9 58.3

IDMSUMO 5077 75.2 61.3

CA 15,586 44.5 38.3

CTM 15,033 32.2 13.1

PD&CTM 17,907 6.2 2.4

CA&CTM 16,357 34.5 26.1
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However, as in the previous case, the estimated queues 
in case of microscopic models are lower with respect to 
them estimated with the other models, especially by the 
Krauß model and the IDM, whereas very similar values 
are shown by the other models (including the micro-
scopic CA model).

3.4 � Network
The third application concerns a network layout (see 
Fig. 9) in which all links have one lane in each direction 
and the saturation flow of each lane is assumed equal 
to 2000 PCU/h. Regarding link length, links connecting 
node 5 with other nodes (2–5, 4–5, 5–6, 5–8) are 405 m 
long (equal to 27 cells, each 15 m long in the CTM), the 
other links on the network are 810  m long (equal to 54 

Fig. 8  Artery with three successive signalised junctions

Table 3  Numerical results of the artery application

Travel time [veh s]
*in the bracket 
results in veh h

Max queue [veh] Mean 
queue 
[veh]

KRAUSSSUMO 213,984
[59]

84.8 63.9

IDMSUMO 154,512
[49]

113.8 89.2

CA 199,872
[56]

10.6 1.7

CTM 154,981
[43]

7.0 0.9

PD&CTM 155,520
[43]

9.4 2.0

CA&CTM 197,136
[55]

9.4 1.2

Fig. 9  representation of the nine-node grid network layout modelled with the CA & CTM model
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cells, each 15 m long in the CTM), and finally the links 
connecting the entry/exit nodes with the network (the 
connectors) are 90  m long. A scheme of the network 
layout is shown in Fig. 8 and the details of the entry-exit 
matrix are displayed in Table 4.

The network has signalised junctions at each node, 
while the solution for the optimisation control problem 
is based on the criterion of minimising total delay, con-
sidering green times and offsets as network decision vari-
ables. For this application, path choice modelling has an 
explicit (enumeration) approach (see [56].

Results are displayed in Table  5 below. It may be 
observed that, as in the previous case of the artery, the 
travel times are very similar to the case of microscopic 
models and generally to the CA model.

With regard to the number of vehicles in the queue, this 
value is still higher in the case of microscopic models with 
respect to the other models. However, the hybrid model 
provides very similar results to the case of the CA model 
(slightly lower due to the smoothing effect of the CTM).

3.5 � Refinements’ overview
A final comparison of the models has been carried out in 
terms of computational effort with respect to the artery 
and the more complex layout of the network; results (see 
Table 6) point out that the even though CA&CTM model 
provides higher similar elapsed times than the CTM and 
the PD&CTM, the values are very similar to them of the 
CA.

A further microscopic analysis has been carried out 
with reference to gaps evaluated for the artery and the 
network.

First of all, it may be observed that in the case of all 
vehicles analyses (see Fig.  10a and 11a) the frequency 
distributions of gaps are concentrate on the lower values 
whereas in the case of moving vehicles (see Fig. 10b and 
11b) the frequency distributions of gaps are more dis-
persed over all higher values.

Furthermore, in the case of the artery the gap is distrib-
uted with a mean equal to 17 m and a standard deviation 
equal to 77.5 m whereas in the case of the network layout 
the gap mean is around 7.5 m and the standard deviation 
is around 65  m; this result may be justified considering 
the impact of the interaction between successive junc-
tions within network. Finally, these analyses highlight a 
different behaviour of two the considered microscopic 
model, and in particular the deterministic IDM and the 
stochastic Krauss; the proposed hybrid model shows an 
intermediate behaviour.

4 � Conclusions and future perspectives
This paper compared a proposed hybrid traffic flow model 
with the three main approaches generally used to describe 
traffic flow, namely macroscopic, microscopic and meso-
scopic models. Macroscopic models are usually adopted 
for wide-area analysis whereas microscopic models are 
adopted for sub-area analysis, especially in the case of 
critical junctions; mesoscopic models may be indifferently 
adopted for both wide-area and sub-network analysis.

However, hybrid models based on combining two mod-
els at different scales are being increasingly used. For 
instance, wide areas may be directly analysed by com-
bining macroscopic models with microscopic models or 
mesoscopic models with microscopic models. Further-
more, hybrid traffic flow modelling may also be suitable 
when the researcher is interested in representing links 
and nodes at different scales; in other words, microscopic 
link representation allows for consideration of driver 
behaviour, and macroscopic node representation avoids 
single manoeuvre analysis at junctions. Alternatively, 
specific analyses may require macroscopic link repre-
sentation, in the case in which driver behaviour may be 
neglected, but microscopically represented nodes, when 
information about vehicles approaching signalised junc-
tions is required. This may well be the case of mixed traf-
fic flow analysis in which flow composition is based on 

Table 4  Entry-exit matrix of the OD pairs for the network layout

Exit
[PCU/h]

Total

2 4 6 8

Entry [PCU/h] 1 – 480 382 336 1198

3 433 – 288 382 1103

5 480 624 – 422 1526

7 336 575 433 – 1344

Total 1249 1679 1103 1140 5171
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human-driven vehicles and connected and autonomous 
vehicles, and the latter need to be sketched1 in order to 
collect all information required for traffic signal decision 
variables optimisation.

Fig. 10  Gap frequency distribution in the artery a all vehicles b only moving vehicles

Table 5  Numerical results of the nine-node application

Travel time [veh s]
*in the bracket 
results in veh h

Max queue [veh] Mean 
queue 
[veh]

KRAUSSSUMO 213,984
[59]

174.8 125.1

IDMSUMO 154,512
[49]

115.4 77.1

CA 199,872
[56]

48.0 5.9

CTM 154,981
[43]

28.3 3.1

PD&CTM 155,520
[43]

25.9 2.9

CA&CTM 197,136
[55]

33.1 4.6

1  Connected and automated vehicles must be further analysed. Concerning 
the connectivity two main types of communications have been incorporated 
into the vehicles technology: the vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications; the first one collect information about 
single vehicle in terms of position, speed etc. whilst the V2I communication 
it is able to provide information about the traffic conditions (see [57]. Con-
cerning the automation this may be defined in accordance with the U.S. 
Department of Transportation Releases and the last level of automation, full 
self-driving automation, refers to fully autonomous vehicles. A vehicle with 
this level of automation controls entire driving functions in any weather, road, 
and traffic condition and the V2V communication may be adopted to improve 
the autonomous vehicle (AV).
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The main focus of the paper was on comparing the 
proposed hybrid traffic flow model (CA&CTM), based 
on combining a macroscopic cell transmission model 
(CTM; [9] for link representation and a microscopic cel-
lular automaton (CA [43], node representation and some 
benchmark macroscopic and microscopic models. While 
the reliability of the CTM is amply studied in the litera-
ture mainly with reference to queue propagation, CA reli-
ability requires further investigation.

In terms of the macroscopic approach, the model was 
compared with both the CTM and the CTM with dis-
persion (PD&CTM; [45]. Indeed, dispersion may not be 
directly observed in macroscopic modelling and a spe-
cific analytical representation must be included in the 

CTM. However, as dispersion is endogenously present 
in microscopic models, consistent traffic flow represen-
tation is expected with respect to the CA and especially 
the CA&CTM. With regard to the microscopic approach, 
the proposed model was compared with both the Krauß 
model [19] which is considered the stochastic enhance-
ment of the Gipps model [17], the reference model in the 
context of the collision avoidance class of approaches, 
and with the intelligent driver model (IDM, Treiber and 
Helbing [47]) which is based on the idea of combining 
the ability to reach the desired speed limit in a traffic-free 
situation with the ability to identify how much braking is 
necessary to steer clear of any collision situations.

Fig. 11  Gap frequency distribution in the network a all vehicles b only moving vehicles
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To this end three main applications were considered: 
(i) a link with a signalised junction required to introduce 
capacity constraints to traffic signal stages and suitable 
for the preliminary interpretation of queuing phenom-
ena; (ii) an artery comprising three successive signalised 
junctions suitable for queuing and dispersion analysis; 
(iii) a more complex grid network with signalised junc-
tions required to capture the impact of the interacting 
junctions. All signalised junctions were optimised with a 
pre-timed approach and according to the total delay min-
imisation criterion. All results were analysed in terms of 
travel time, max and mean queue.

In the first application, numerical results were analysed 
with reference to three different entry flow values to 
observe the different model behaviour in undersaturation 
and oversaturation conditions. Comparison shows that in 
the case of low demand all models provide very similar 
results. However, in the case of higher demand, micro-
scopic models provide lower values of the travel times 
whereas the values of the queues are higher with respect 
to the other models. In general, the hybrid CA&CTM 
behaves very similarly to the CTM and CA models, with 
higher values of travel times and lower values of queues.

In the signalised artery, our results show that, unlike 
the link layout case, the travel times of the CA model lie 
between the values provided by the Krauß model and the 
IDM, while the Krauß model clearly show higher values 
of travel times. Queues of the microsocpic models, as in 
the previous case, are higher, whereas very similar val-
ues are shown by the other models (including the micro-
scopic CA model).

Finally, the results of the network layout were analysed. 
In terms of travel times, the proposed CA&CTM model 
provided very similar results to those of microscopic 
models, especially to the CA which has an intermediate 
value between the Krauß model and the IDM. By con-
trast, in terms of queue modelling, it was again observed 
that the queues in microscopic models are clearly higher, 
while the proposed model behaved very similarly to the 
CA model.

More in general, it must be highlighted that it is well 
known that in the car-following approaches the inter 
driver heterogeneity may directly affect the models’ reli-
ability in the reproduction of macroscopic characteristics 
[58].

Three main research fields are considered worthy of 
further exploration: the first task would be to investigate 
application of the proposed model to the context of con-
nected and autonomous vehicles, also in the presence of 
human-driven vehicles; secondly, the proposed model 
could be profitably applied to a real case study; finally, the 
model will be further developed also in terms of multi—
lanes simulation in order to properly apply some of the 
traffic management strategies.2
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