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Abstract 

Background:  Although people and smartphones have become almost inseparable, especially during travel, 
smartphones still represent a small fraction of a complex multi-sensor platform enabling the passive collection of 
users’ travel behavior. Smartphone-based travel survey data yields the richest perspective on the study of inter- and 
intrauser behavioral variations. Yet after over a decade of research and field experimentation on such surveys, and 
despite a consensus in transportation research as to their potential, smartphone-based travel surveys are seldom used 
on a large scale.

Purpose:  This literature review pinpoints and examines the problems limiting prior research, and exposes drivers to 
select and rank machine-learning algorithms used for data processing in smartphone-based surveys.

Conclusion:  Our findings show the main physical limitations from a device perspective; the methodological frame-
work deployed for the automatic generation of travel-diaries, from the application perspective; and the relationship 
among user interaction, methods, and data, from the ground truth perspective.

Keywords:  Smartphone-based travel surveys, Machine learning, User behavior, Transport, Map-matching, Mode 
detection, Activity inference, Data fusion
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1  Introduction
To support the planning, design, and policy-making pro-
cesses for improving transport systems  [44], travel sur-
veys capture essential aspects of user behaviors on which 
behavioral modeling relies [18]. For designing the repre-
sentativeness of a user sample under study, the statistical 
approach in traditional travel surveys is prominent. The 
process involves person-to-person (P2P) interactions for 
data collection, a process overlapping with ground truth 
collection: Trained travel surveyors directly validate data 
with users and manually reconstruct users’ travel-diaries 
for behavioral study.

In contrast, machine-learning plays a primary role 
in smartphone-based travel surveys (SBTS). The data 
collection process involves device-to-device interac-
tion, with machine-learning algorithms automatically 

reconstructing users’ travel-diaries directly from data 
that might contain various sources of errors  [50]. By 
submitting each travel-diary to the user for validation 
(i.e., to find out whether the user needs to change the 
travel-diary or not), the process can collect ground truth 
through a person-to-device (P2D) interaction between 
the user and an input/output interface, either via a web-
site or smartphone [59].

Since the introduction of the first generation of smart-
phones equipped with assisted global positioning systems 
(AGPS) in the early 2000s, researchers have described 
smartphone-based travel surveys as a promising platform 
to measure user transport behavior. They can track the 
same user with an extended time horizon  [91], collect 
data passively  [125], detect previously unreported short 
trips, and avoid stereotypes of daily activity  [104] (e.g., 
“I don’t remember what I did, but here’s what I usually 
do”). Given that SBTS would likely facilitate the discovery 
of inter- and intra-user behavior variations, the question 
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is why SBTS have not yet replaced traditional travel 
surveys [41].

For researchers and public authorities, standardized 
performance indexes based on standard datasets support 
optimal investment decision-making. This approach also 
applies to classification or regression methods under-
pinning the identification of user transport behavior 
variations. Nevertheless, standardization in this field is 
lacking. Instead, decision-making often relies on assump-
tions, such as (i) consistent performance indexes evalua-
tion across studies; (ii) comparable performance indexes 
across studies, even when based on different datasets; 
(iii) adequate representativeness of the few public data-
sets available; (iv) exact ground truth. By definition, each 
necessary assumption represents a knowledge gap.

We ask and answer the following questions: What are 
the main machine-learning methods that are used in the 
field? What is the relationship between ground truth and 
machine-learning methods? What are the primary data-
sets studied? What characteristics do these datasets have, 
and what features can we extract from them, and how? 
What are the challenges for machine-learning in the field 
of SBTS? What are the main implications for transport 
science?

To tackle these questions, we proceed by snowball-
ing first forward and then backward  [114]. We cover 
deterministic and machine-learning methods based 
on different datasets collected from across the world. 
We examine how models and algorithms exploit vari-
ous data sources such as AGPS, inertial navigation sys-
tems (INS), geographic information systems (GIS), and 
Internet-of-Things.

The paper analyzes technologies enabling SBTS data 
validation, such as data preparation and feature extrac-
tion, and focuses on machine-learning methods for 
mining user’s behavior from smartphone data. These 
methods target why people travel, where along the trans-
port network they travel, and which mode of transport 
they use. These technologies make an impact by reduc-
ing resources associated with running traditional travel 
surveys, while enhancing users’ transport behavior data-
resolution. Following this approach, we are able to review 
purpose imputation, map-matching, and mode detection 
methods.

Existing literature and reviews offer a clear picture of 
how algorithms and background technologies evolve to 
provide improved measures of users’ travel behavior vari-
ations. For example, we list several specialized methods 
with impressive performance scores. We also find uni-
lateral perspectives offering standardization pathways 
for both methods application and performance evalua-
tion. In practice, limitations such as data representative-
ness, ground truth quality, and performance evaluation 

procedures may often result in a biased perception of 
each method’s potential.

Decisions based on wrong assumptions and biased per-
ceptions represent a threat to the progress of this field. To 
bridge the gap, we provide the following contributions. 
We deliver a self-contained overview connecting the user 
transport behavior measures with the supporting smart-
phone-sensing-platform. We detail how available meth-
ods can be combined to extract behavioral information 
from various data streams. We show the convergence 
between research areas studying complementary aspects 
of transport behavior. We organize each reviewed work 
by task complexity, method requirements, and dataset 
representativeness. So we facilitate methods’ assessment 
and comparison across specific use cases, mitigating the 
limitations of dry and incomparable performance scores. 
The paper reveals opportunities offered by device-to-
device interactions for data validation instead of other 
interactions, and exposes gaps in deep learning strategic 
applications.

The first section below presents the dimensions 
describing transport behavior and the tools embodied in 
a smartphone device for data collection. The following 
section describes the methods used to identify transport 
behavior from data and an overview of the implications 
for transport science. The subsequent discussion pre-
sents a joint look on the results of the surveyed litera-
ture, which the conclusion summarizes from a big-data 
perspective. We include the Tables organizing the main 
features of the literature reviewed.

2 � Measures and tools
To support the reader through the following analysis and 
discussion, we start by providing context and present-
ing concepts on which the paper rests, i.e., definitions, 
employment, and technological framework of SBTS.

2.1 � Measures of transport behavior
The following terms are used to describe a user’s journey 
(throughout a single day, for example; see Fig. 1) and rep-
resent the different variables, or measures, that SBTS is 
used to collect for studies on transport behavior.

2.1.1 � Tour
Aggregation of trips, such that users’ travels start and end 
at the same place, e.g. at home  [28].

2.1.2 � Trip
Travel entity identified with a set of attributes such as: 
start-location, start-time, purpose, transport mode, 
arrival time, arrival location [28].
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2.1.3 � Leg
Also identified as a “trip segment,” this is the unimodal 
segment between two stops. Each trip segment has a 
start-time and -location, end-time and -location, and 
stop-purpose at the end of the leg (see Fig. 1B) [28, 96].

2.1.4 � Purpose
This represents what triggers the trip from origin to 
destination (see Fig. 1A, C, D), and identifies the “activ-
ity” performed at the end of a trip.

2.1.5 � Stop
This can be reduced to two categories: stops at the end 
of legs (see Fig.  1B), and stops at the end of trips (see 
Fig. 1A, C, D).

2.1.6 � Transport mode
This refers to a trip leg  [120] and identifies, e.g., walk-
ing, cycling, car, train, bus, light rail (see Fig. 1).

2.1.7 � Mode‑chain‑type
The literature provides no strict consensus on the 
definition of this term, and we define it as the list of 
transport modes one uses to get from the origin to the 
destination of a trip (see Fig. 1).

2.1.8 � Travel‑diary
This can focus on “one-day” (see Fig. 1) or on “multiple-
days” and it describes the user trips through: (i) legs, 
where each leg has a unique transport mode; (ii) pur-
pose; (iii) stops; and (iv) mode-chain-type. Generally, it is 
linked to a user, and his or her link-able personal infor-
mation, such as: (i) age; (ii) occupation; (iii) education 
level; (iv) home address; and (v) work address. [28] pre-
sents a detailed list of further personal attributes.

2.1.9 � Ground truth
This describes the true measurements of the tar-
get variables, for example the purpose of a trip, its 
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transport-mode-chain, and the route between origin 
and destination. In general, the literature refers to (i) 
travel-diary; (ii) prompted recall survey; (iii) user input 
in mobile phones  [12]; (iv) experiments (e.g. mode 
known)  [98]; (v) trips reported in-situ by the user par-
ticipating in an experiment [33]; and (vi) “traffic counts” 
extracted from video recordings  [53]. However, because 
ground truth is lacking in several studies  [26], authors 
have introduced alternative methods to close this gap, the 
results of which serve as a benchmark [54]. In case of syn-
thetic data, studies on map-matching refer to the random 
selection among a set of alternative shortest paths [71]; in 
case of real data, other studies refer to GPS receivers col-
lecting two independent measures, where ground truth is 
the measure with a higher sampling rate [51]. When algo-
rithms target public transportation, ground truth can be 
extracted as the combination of bus stops and intersec-
tions within the transport network [42]. In the best-case 
scenario, the information is reported by users. As ground 
truth always seems prone to errors, Prelipcean et al. [87] 
have introduced the concept of “acceptable truth,” which, 
while not truly absolute, may be considered sufficiently 
accurate relative to the application.

2.2 � Pioneering smartphone‑based travel surveys
Within the last 20 years, traditional travel survey meth-
ods have been subject to the pressure of disruptive tech-
nological evolution. The large penetration of smartphone 
devices equipped with low-cost sensors, the introduction 
of Web 2.0, and the emergence of other directly related 
phenomena, such as Big Data [5], could represent a tip-
ping point for this research method [125]. There are sev-
eral reasons to complement and/or substitute traditional 
travel surveys with smartphone-based technology, given 
the former’s shortcomings, as follows: 

1.	 Statistic representativeness, improvable or decreas-
ing in some population’s strata [80];

2.	 Trend of unreported short trips which the user tends 
to forget or does not want to mention [104];

3.	 Undetected behavior variations of the same user, 
due to the design of traditional travel surveys, which 
collects a cross-section sample of the population by 
focusing on one single day for each respondent [91];

4.	 Data collection cost per surveyed user [101].

The first large-scale SBTS deployments were the Future 
Mobility Sensing (FMS) in 2012, and the Sydney Travel 
and Health Survey in 2013. Most of the SBTS we know 
offer either web or app validation (seldom both), use 
machine learning, and are fully automated, as for 
example: (i) FMS/Mobile Market Monitor  [126]; (ii) 

TRAVELVU/Trivector  [38]; (iii) RMOVE/RSG  [23]; 
(iv) Itinerum [83, 84]; (v) MEILI [87]; (vi) Sydney Travel 
and Health Survey  [45]; (vii) Dutch Mobile Mobility 
Panel [104]; and (viii) MTL Traject [123].

These SBTS no longer collect ground truth via person-
to-person interaction. Instead, their interfaces provide 
users with options to validate travel-diaries accurately 
generated, and to correct errors of the inaccurate ones, 
collecting ground truth via person-to-device explicit 
interaction. Nonetheless, users seem unable to report 
inaccurate diaries that are too difficult for them to cor-
rect on their own  [102]. Consequently, the risk of 
encountering incorrect data within ground truth seems 
unavoidable for survey data. Regardless of whether avail-
able ground truth is acceptable or inaccurate, it is impor-
tant to assess each application on an individual basis in 
the context of field research.

Success depends also on users’ willingness to keep 
such an application installed on their smartphones. The 
main drivers determining the decision of a user to keep 
applications on his or her device are: (i) The information 
conveyed through the App; (ii) ease of use; (iii) perceived 
usefulness; (iv) perceived risks; and (v) general satisfac-
tion of the user experience [10].

In (v) we mention a broad and very relevant field of 
research in which there is consensus about the nega-
tive impact of smartphone battery consumption on the 
user experience, which affects applications’ penetration 
and drop-out rates. Because of the impact on quality of 
data collection, we observe the same consensus on bat-
tery concerns in the field of SBTS  [80]. Also, the need 
of high resolution data in SBTS clashes with the need 
for battery efficiency enforced by smartphone platform 
providers [7].

Due to the highly-accurate trajectories generated by 
smartphones (e.g., through AGPS) and used by SBTS 
researchers, users are concerned by the potential for 
privacy violation. These trajectories often expose very 
personal information of each surveyed user, thereby 
presenting new challenges [35] in terms of reconciling a 
need for high-resolution data and a need to ensure pri-
vacy for researchers and users, respectively [88, 95].

2.3 � Smartphone capabilities
In Fig.  2 we present the abstraction of an SBTS plat-
form. The main platform’s components are client and 
server. The client (see Fig.  2A) enables human interac-
tion, e.g., for user travel diary validation (see Fig. 2A.1), 
and orchestrates sensors, user-generated data (e.g., loca-
tion), and computer intelligence models. Processing 
data locally, the client prevents loss of information, and 
maximizes privacy (see Fig.  2A.3). A battery efficiency 
layer tunes and optimizes, e.g. data sampling or network 
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input/output operations among client, server, and exter-
nal data sources (e.g., GIS).

The sensory system of the platform is the smartphone, 
represented by:

•	 Principal hardware components (see Fig. 2OS.5);
•	 Services exposed by the Operation System (OS, see 

Fig. 2OS.1–OS.3); and
•	 Operations beyond users and developers influence, 

such as those focusing on device battery life exten-
sion (see Fig. 2OS.4).

The following list of components is ranked by highest 
battery consumption to lowest [85, 112]: 

1.	 Graphical processing unit (GPU) and screen, trig-
gered when users interact actively with SBTS (e.g., 
validating travel-diaries).

2.	 Central processing unit (CPU), engaged also by com-
puter intelligence models for online mode classifi-
cation, for example, and for detecting conditions to 
switch off unnecessary sensors. While computation 
offloading to a server is possible, it implies transmit-
ting data at its own energy cost.

3.	 AGPS. While GPS depends exclusively on satellites, 
in smartphones AGPS uses internet to look up the 
position of satellites and mitigate the cold-start prob-
lem. AGPS also uses cell-tower data. This feature is 
convenient when GPS signal is weak or disturbed, 
but it introduces challenges for position accuracy. To 
provide the location of a smartphone while reducing 
AGPS up-time, several effective strategies are avail-
able [82]. Finding the best trade-off between location 
accuracy, data resolution, and energy consumption 
is not trivial. Interestingly, we observe a conver-
gence between approaches developed for the OS to 
improve the energetic efficiency of smartphones, and 
for datamining to fill data gaps resulting from miss-
ing or highly uncertain GPS observations. Both pro-
vide location coordinates, reducing GPS sensor need, 
and leveraging data from INS, GIS, and telecom 
networks. Nevertheless, some of the current smart-
phone operation systems do not allow direct access 
to telecom network data from independent applica-
tions [6].

4.	 Network. An efficient tuning should consider net-
work selection (Cellular or WiFi), data transfer fre-
quency, battery status, and size of the data-transfer.

Fig. 2  Smartphone-based travel survey platform architecture
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5.	 Accelerometer, gyroscope, and magnetometer raw 
data is accessible on the main OS platforms. GPS up-
time is often optimized by leveraging these sensors 
to detect whether a user starts or ends a trip [82]. In 
general, accelerometer and gyroscope readings from 
smartphones should be collected with a resolution 
compatible with the motion frequency of human 
bodies in daily routines, which is above 20 Hz  [49]. 
The consumption of such high-frequency data 
streams within the device is not critical for the bat-
tery. However, in case of transfer for storage and data 
consumption offline, handling the number of sensors 
and the high frequency quickly become critical for 
the smartphone’s battery and for the user’s data plan.

Sensors up-time and data transfer to the back-end, as 
well as the Ground Truth collection on screen are very 
critical for smartphones battery life  [69]. For example, 
given a fixed data sampling rate, AGPS battery consump-
tion is relatively more sensitive to the up-time, while high 
frequency sensors consumption is relatively more sensi-
tive to data transfer. If not properly handled within the 
SBTS, battery drain could occur twice as fast, limiting the 
battery life to few hours instead of the whole day. Conse-
quently, the impact of service interruptions would result 
in increasing limitations on the data. Covering the entire 
day for certain users would no longer be possible, and 
such a negative user experience would even increase risk 
of drop-out [10].

2.4 � Physical limitations for data validation
In addition to the aforementioned battery consumption 
issues, further critical implications of moving to this new 
technology are presented below.

2.4.1 � Person‑to‑device validation
Design simplicity and intuitiveness should reduce any 
potential to distract the user while interacting with the 
survey application, as distractions could impact the qual-
ity of ground truth collected [80]. Furthermore, when the 
purpose of the interaction is directed to amend inaccu-
rate travel-diaries, the impact that the design has on the 
quality of the ground truth collected from the respond-
ents is even greater. A poor interaction between users 
and an SBTS interface could trigger a critical loop in 
which users validate wrong predictions instead of cor-
recting them [3, 30].

2.4.2 � Device‑to‑device validation
Arising from the convergence of Bluetooth and WiFi pro-
tocol in the Internet of Things context, and unlike the 
classic Bluetooth protocol, Bluetooth low-energy beacons 
communication is one-to-many (as traditional television 

or radio), involves few bits of data to be broadcast fre-
quently, and needs no pairing operations. These proper-
ties are suitable for proximity detection and interaction 
with smartphones, and for activity sensing  [34, 56]. A 
pioneering device-to-device ground truth collection 
on bus trips  [66] already experimented Bluetooth low-
energy interaction with SBTS, as an independent and 
redundant measurement of users’ bus trips. This system 
has the potential to release users’ resources that could 
the be exploited, for example, for filling in context-spe-
cific active surveys, and not for validating a travel diary. 
However, the authors highlight the challenge of finding 
a signal strength that allows for smartphones to detect 
beacons in conditions where signals may be attenuated 
or interfered with. A user’s body or location, for example, 
may attenuate a signal, while interference with other bea-
cons in range could result from passing by a bus stop or 
grouping with other buses.

3 � Measuring transport behavior
The primary objective of SBTS consists of accurate 
ground truth collection from surveyed users. The cor-
rect reconstruction of travel-diaries, which encompasses 
both the transport mode and the purpose of any trip, 
allows for this goal to be achieved. Research on transport 
behavior also studies trajectories generated by the same 
sensors mentioned earlier. Therefore, it applies the same 
methods described in the following sections. In contrast 
with SBTS, however, research on transport behavior has 
the main objective of analyzing behavior, and not of col-
lecting trip ground truth. This subtle difference may sup-
port the large community of researchers claiming that 
mode detection methods should be agnostic to personal 
and location context (see Tables 1, 2, 3). For example, the 
same method could generally serve different mode choice 
studies across the globe. In SBTS, this constraint does 
not seem to hold since travel-diaries also require pre-
dicting each trip’s purpose, relying on both sensors and 
geospatial information (see Table  6). Successful hybrid 
approaches in this field further expose the shortcom-
ings of such a purist approach. Data preparation is pro-
paedeutic for learning the mode, purpose, and route of 
any trip. Simultaneously, cross-field convergence proves 
to be effective; for example, mode detection improves 
map-matching  [26] and purpose imputation tasks  [76, 
120]. Inversely, map-matching GPS trajectories upfront 
improves the mode detection task [90]. When outputting 
a travel diary that allows ground truth collection on users’ 
journeys, we do not find advantages from self-imposing 
restrictions on what data we should use or what method 
we should combine. Therefore, we find it beneficial to 
review purpose imputation and map-matching methods 
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in this context. Tables 4, 5 and 6 present purpose imputa-
tion; Tables 7, 8 and 9 map-matching methods.

3.1 � Smartphone data mining
Due to the disparity of progress drivers, we see a trend 
of increasing fragmentation, inconsistencies, availabil-
ity, and volume of travel data. In response to this chal-
lenge, two main branches seem to arise as flip sides of the 
same coin [39, 58, 64, 98]. The first focuses towards data 
fusion, intended to compose and then mine high dimen-
sional datasets collected from multiple sources, including 
GIS, INS, and GPS. The second targets the development 
of, for example, very sophisticated computer intelligence 
models, feature extraction methodologies, and optimal 
hyper parameters selection. These are constantly improv-
ing and therefore complementing traditional statisti-
cal methodologies, often substituting them for specific 
purposes [59].

Literature has shown that smartphone data is affected 
by several errors. For example, map-matching obser-
vations based on positions generated by a Nokia N95 
would be much less reliable than those based on a dedi-
cated GPS logger [19]. With current smartphones, how-
ever, the situation has improved substantially. For mode 
detection, neural network classifiers have shown higher 
performance on data collected from smartphones than 
from GPS devices  [22]. Nevertheless, we should be 
aware that raw sensor measurements may vary between 
smartphones, as well as within the same model of 
smartphone [20]. Any measurement is affected by noise 
that is not necessarily random, since it may be corre-
lated with: weather conditions; building density, mate-
rials, and height; crowdedness; physical placement of 
the smartphone (e.g. in the pocket is different than on a 
table); smartphone model; and software “bugs.” There-
fore, achieving consistency of machine-learning meth-
ods across different smartphones requires a rigorous 

Table 1  Classification task ranked by difficulty and score, for mode detection

References No. Classes Score Metric Validation Area

Zhou et al. [131] 6 Walk, Bike, Bus, Car, Rail, 
Plain

86.5% Accuracy Hold-out Beijing

Bohte and Maat [21] 6 Car, Train, Bus-Tram-
Metro, Foot, Bicycle, 
Other

70.00% Accuracy n.p. Netherlands

Martin et al. [75] 5 Walk, Bike, Bus, Car, Rail 96.8% Accuracy Manifold-cross-validation Minnesota

Jahangiri and Rakha [55] 5 Walk, Bike, Bus, Car, Run 95.1% F-Score Manifold-cross-validation, 
Out-of-bag-estimate

Tennessee

Semanjski et al. [96] 5 Walk, Bike, Bus, Car, Rail 94.00% Accuracy Manifold-cross-validation Leuven

Zhou et al. [132] 5 Walk, Bike, Run, in-
Vehicle, Stationary

93.8% Accuracy Hold-out Georgia (USA)

Zhu et al. [134] 5 Walk, Bike, Bus, Car, Rail 93.45% F1-Score Manifold-cross-validation Beijing

Xiao et al. [119] 5 Walk, Bike, el-Bike, Car, 
Bus

92.74% Accuracy Manifold-cross-validation Shanghai

Rasmussen et al. [90] 5 Walk, Bike, Car, Bus, Rail 92.4% Accuracy n.p. Copenhagen

Yazdizadeh et al. [122] 5 Walk, Bike, Public transit, 
Car, Car and Public transit

88.00% F1-Score weighted 
average

Manifold-cross-validation Montreal

Dabiri and Heaslip [31] 5 Walk, Bike, Bus, Car, Rail 84.8% F-Score Manifold-cross-validation Beijing

Byon and Liang [22] 5 Auto, Bus, Streetcar, Bike, 
Walk

82.00% F1-Score weighted 
average

Hold-out Toronto

Thomas et al. [104] 5 Walk, Bike, Bus, Car, Rail 82.00% Accuracy n.p. Netherlands, [43]

Dabiri et al. [32] 5 Walk, Bike, Bus, Drive, 
Train

76.4% F1-Score weighted 
average

Manifold-cross-validation Beijing

Jiang et al. [57] 4 Walk, Bike, Bus, Car 98.00% Accuracy Hold-out Beijing

Assemi et al. [11] 4 Walk, Bike, Bus, Car 94.7% Accuracy Hold-out New-Zealand

Yazdizadeh et al. [123] 4 Walk, Bike, Transit, Car 91.8% Accuracy Manifold-cross-validation Montreal

Mäenpää et al. [72] 4 Walk, Bike, Bus, Car 90.7% F1-Score Manifold-cross-validation, 
Out-of-bag-estimate

Beijing. 1 week BUS tra-
jectories, 1000 trajectories 
from Open Street Map 
(OSM)

Yazdizadeh et al. [124] 4 Walk, Bike, Transit, Car 83.4% Accuracy Manifold-cross-validation Montreal
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process of data preparation, cleansing, and trajectory 
segmentation up front. We describe these processes in 
the next sections.

For each classifier, such as for mode detection and 
purpose imputation, the underlying features can be (i) 
location-agnostic versus location-specific; and (i) user-
agnostic versus user-specific. For example, methods 

Table 2  Dataset ranked by number of users, for mode detection

a Journeys API, retrieved from web 01/01/2019, http://​wiki.​itsfa​ctory.​fi/​index.​php/​Journ​eys_​API
b Open-source Trajectories , retrieved from web 01/01/2019, https://​www.​opens​treet​map.​org/​traces

References Person-day Users Ground truth Observations Time Area Smartphone App

Semanjski et al. [96] 24,900 8303 Validated-by-
respondents

30,000 trips 
3,960,243 GPS 
points 340,000 km

n.p. Leuven Routecoach

Yazdizadeh et al. 
[124]

88,630 6846 Validated-by-
respondents 
(102,904 trips)

623,718 trips 2 months collec-
tion period

Montreal MTL Traject App

Yazdizadeh et al. 
[123]

88,630 6846 Validated-by-
respondents (P2D)

102,904 trips 2 months collec-
tion period

Montreal MTL Traject App

Yazdizadeh et al. 
[122]

88,630 6846 Validated-by-
respondents (P2D)

131,777 trips 33 
mln GPS points

2 months collec-
tion period

Montreal MTL Traject App

Bohte and Maat 
[21]

40,208 1104 Validated-by-
respondents (P2D)

n.p. 7395 days Netherlands GPS logger and Web 
based validation

Thomas et al. [104] n.p. 600 Validated-by-
respondents

60,000 trips 3 batches per 1 
month each

Netherlands, [43] Move smarter

Xiao et al. [119] 1248 202 Validated-by-
respondents

4685 Trip-legs n.p. Shanghai Shangai City—
Smartphone based 
travel survey

Dabiri et al. [32] 4000 189 Partially validated-
by-respondents (69 
respondents)

17,621 trajectories 
1,292,951 km 
50,176 h

3 years collection 
period

Beijing Geolife [129]

Rasmussen et al. 
[90]

644 101 Validated-by-
respondents (P2P)

6,419,441 GPS 
points 1783 h of 
travel

3–5 days per 
respondent

Copenhagen GPS logger

Assemi et al. [11] 372 76 Validated-by-
respondents

760,000 GPS 
observations, 530 h 
trajectories

2 months per 
respondent

New-Zealand Advanced Travel 
Logging Application 
for Smartphones II 
(ATLAS II)

Mäenpää et al. [72] 4000 > 69 Validated-by-
respondents

n.p. n.p. Beijing. 1 week BUS 
trajectories, 1000 
trajectories from 
Open Street Map 
(OSM)

Geolife [129], 
Journeys APIa, 
OpenStreetMapb

Dabiri and Heaslip 
[31]

4000 69 Validated-by-
respondents

n.p. 3 years collection 
period

Beijing Geolife [129]

Jiang et al. [57] 4000 69 Validated-by-
respondents

n.p. 3 years collection 
period

Beijing Geolife [129]

Zhou et al. [131] 4000 69 Validated-by-
respondents

n.p. 3 years collection 
period

Beijing Geolife [129]

Zhu et al. [134] 4000 69 Validated-by-
respondents

n.p. 3 years collection 
period

Beijing Geolife [129]

Zhou et al. [132] n.p. 12 Validated-by-
respondents

n.p. 6 days per 
respondent

Georgia (USA) Self Developed App

Martin et al. [75] n.p. 6 Validated-by-
respondents

347,719 GPS points 
in 96.59 h (1 Hz) 1.7 
mln points Accel-
eration in 98.62 h 
(5 Hz)

n.p. Minnesota Self Developed App

Byon and Liang [22] n.p. n.p. n.p. n.p. 50 h Toronto Self Developed App

Jahangiri and Rakha 
[55]

n.p. n.p. Validated-by-
respondents

n.p. n.p. Tennessee Self Developed App

http://wiki.itsfactory.fi/index.php/Journeys_API
https://www.openstreetmap.org/traces
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relying on user- or location-agnostic features can be 
trained on any geographic area, and then either deployed 
on a different area to classify the activities of another 
population or reused to solve similar problems. The for-
mer depends on the generalization power of the model, 
while the latter is identified as transfer learning. Transfer 
learning is the discipline dedicated to using the knowl-
edge gained by solving a problem in one domain (e.g. 
stop detection) to solve a different problem in another 
domain (e.g. mode and purpose classification). From our 
standpoint, these approaches could contribute in miti-
gating the cold-start problem  [100], for example in the 
process of switching from a traditional to a smartphone-
based travel survey.

The literature reviewed often works with location and 
user-agnostic features. In contrast, user-  [60, 126] and 
location-specific [96] data seem to enable more accurate 
classifications. Although results presented in the relevant 
literature are hardly comparable across studies, within 
each relevant study we find evidence about the positive 
contribution of user- and location-specific data on the 
performance of the classifiers  [104]. The cost is the vol-
ume of information to be handled, poor transferability 
and poor generalization power. From this angle, we chal-
lenge the conclusions of [62]: Transferability and gen-
eralization power may also be related to the supporting 
dataset, and not only to the machine-learning method.

3.2 � Data cleansing
While performing data cleansing, data analysts should 
check whether basic features such as speed and accelera-
tion are consistent with the context. The data cleansing 
purpose is to find and remove outliers, fill observation 
gaps, and possibly smooth the trajectories  [1]. This cru-
cial step should begin performing a sanity check on the 

observations’ timestamps. Common issues are multiple 
observations with the same timestamp, or discrepancies 
due to implicit time localization that keeps no trace, e.g., 
of periodical solar and legal time shifts. The first case can 
be mitigated using fine grained timestamps during data 
collection, such as milliseconds or microseconds; the 
second, using standard date representations such as the 
ISO 8601. Further, sensors trajectories are often stored 
inconsistently on database, e.g., due to smartphones 
temporary lack of internet connection. Therefore, to 
find “correct outliers”, any basic feature—such as speed, 
space, and time variation between consecutive pairs of 
observations—should be computed after sorting these 
trajectories by timestamp. Once the basic features are 
available, to handle outliers there are different degrees of 
sophistication between rule-based, statistical, and model-
based filters, such as threshold-, median-, and Kalman-
filter. The measurements’ sampling rate is a critical factor 
determining the filter choice. In general, the trade-off is 
between scalability and accuracy, with rule-based filters 
on the one hand, and more sophisticated tools like the 
Kalman-filters on the other. If the number of outliers is 
very high, such that removing these outliers we create 
unacceptable gaps in the trajectories, data analysts can 
resort to one of the several data imputation techniques 
available [108], such as an exponential weighted moving 
average.

To reduce the risk of noisy labels that could bias 
supervised classifiers already in the training phase, 
data cleansing should focus on labels too. Often labels 
come as a separate trajectory, which should have a 
common timeline with the sensors’ observations. We 
are aware that during the validation users may overlook 
errors present on travel diaries. We cannot exclude 
human-computer interaction problems facilitating 

Table 4  Classification task ranked by difficulty and score, for purpose imputation

References No. Classes Score Metric Validation

Kim et al. [60] 15 Work, Study, Shopping, Social Visit, Recreation, Home, Business 
Meeting, Change mode/Transfer, Pick-up, Drop-off, Meal/Eating 
break, Personal Errand/Task, Medical/Dental, Entertainment, 
Sport/Exercise

98.68% F1-Score Out-of-bag-estimate

Feng and Timmermans [40] 10 Study, Social Visit, Recreation, Home, Service, Paid Work, Daily 
Shopping, Non-daily Shopping, Help parents/cildren, Voluntary 
work

96.8% Accuracy Out-of-bag-estimate

Montini et al. [76] 9 Work, Shop, Service, Recreation, Home, Pick-up, Drop-off, Busi-
ness Meeting, Other

79.8% Accuracy Out-of-bag-estimate

Xiao et al. [120] 8 Work, Study, Shop, Social Visit, Home, Eeating Out, Pick-up, 
Drop-off

96.53% Accuracy Hold-out

Bohte and Maat [21] 7 Work, Study, Shop, Social Visit, Recreation, Home, Other 43% Accuracy n.p.

Yazdizadeh et al. [122] 6 Education, Health, Leisure, Shopping/Errands, Home, Work 72% F1-Score 
weighted 
average

Manifold-cross-validation
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human errors during the travel diary validation step. 
Human errors may also occur while extracting data 
from the database. Rather than outliers, in these cases 
we should be concerned of flipping-labels [92]. Given 
a set of labels that a travel survey collects, outlying-
labels indicate one or more trajectories labeled with a 

class not included in this set; flipping-labels indicate 
one or more trajectories belonging to one class and 
labeled with another class, both being present in the 
set. However, while the impact of both outlying- and 
flipping-labels on supervised classifiers is extensively 
studied for independent and identical distributed 
data  [15, 16, 73, 74, 77]—for example on the popular 

Table 5  Dataset ranked by number of users, for purpose imputation

References Person-day Users Ground truth Observations Time Area Smart-phone App

Yazdizadeh et al. 
[122]

88,629 6845 Validated-by-
respondents (P2D)

131,777 trips, 33 
mln GPS points

1 month collection 
period

Montreal MTL Traject App

Bohte and Maat 
[21]

40,208 1104 Validated-by-
respondents

n.p. 7395 days Netherlands GPS logger and Web 
based validation

Kim et al. [60] 7856 793 Validated-by-
respondents (P2D)

22,170 days, 130 
mln GPS points

5–14 days per 
respondent

Singapore Future Mobility 
Survey

Feng and Timmer-
mans [40]

n.p. 329 Validated-by-
respondents (P2D)

10,545 activities 3 month per 
respondent

Netherlands (Rot-
terdam)

GPS logger and Web 
based validation

Xiao et al. [120] 2409 321 Validated-by-
respondents (P2P)

7039 trips 7–12 days per 
respondent

Shanghai Shangai City - Smart-
phone Based Travel 
Survey

Montini et al. [76] n.p. 156 Validated-by-
respondents

6938 activities 7 days Zurich Self Developed App

Table 6  Methodlogy and features, for purpose imputation

a Open Trip Planner (OTP) retrieved from web 01/01/2019, https://​github.​com/​opent​rippl​anner/​OpenT​ripPl​anner

References Method Main features AGPS INS GIS

Bohte and Maat [21] Rule-based Distance GPS → Points-of-interest , Distance 
GPS → LandUse

GPS No Yes

Feng and Timmermans [40] Random forest Activity duration, activity start time, 
travel time to activity, distance 
GPS → Points-of-interest

GPS No Yes

Kim et al. [60] Bagging decision tree, random forest Activity probability, distance-based empiri-
cal probability, activity transition probability, 
activity duration

Yes Accelerometer Yes

Montini et al. [76] Clustering, random forest start time, end time, GPS points density, 
age, education, income, mobility ownership, 
activity duration, walk percentage

Yes Accelerometer Yes

Xiao et al. [120] Multi layer perceptron, particle swarm opti-
misation, multinomial logit, support vector 
machines, Bayesian network

Age, gender, education, working hours, 
income, time of week, activity duration, 
time of day, transportation mode, distance 
GPS → Points-of-interest , distance 
GPS → LandUse

Yes No Yes

Yazdizadeh et al. [122] Random forest Features returned by Open Trip Plannera 
itinerary: GPS tracks average speed, time 
interval between the first and last GPS track 
of a trip, average distance between con-
secutive GPS point, attributes from, itinerary 
length, total transit time of each returned, 
total walking time of each itinerary, total 
waiting time of each itinerary, total travel 
time, number of transfers, walking distance, 
itinerary average speed attributes from GPS 
tracks, difference between GPS tracks length 
and itinerary length, overlapping percent-
age of itinerary and GPS tracks

Yes No Yes

https://github.com/opentripplanner/OpenTripPlanner
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handwritten digits dataset from the Modified National 
Institute of Standards and Technology database—
we found no literature focusing on time series, as for 
example GPS.

3.3 � Trajectory stop detection
The analysis of human trajectories can be reduced to two 
fundamental classes: motion, and stop. Tables  1 and 4 
present how each class branches out. Tables 3 and 6 spec-
ify both features and methods enabling accurate classifi-
cations. Tables 2 and 5 present the dataset that enabled 
each study we reviewed. To perform any specialized 
inference on trip legs we need to identify homogeneous 
segments and relevant discontinuities from heterogene-
ous and complex mode-chain-types.

A GPS segment is considered a stop candidate if it 
lays within a topologically closed polygon for a certain 

time  [4, 128, 133]. The presence of GPS points nearby 
may be indicative of a stop—the absence of motion [107]. 
Rules to acquire a local density of points, for example, 
include a moving window linking 30 preceding and 30 
succeeding points within a 15  m range  [94]. Although 
compatible with the error amplitude of GPS devices 
declared in a survey by [37], this range seems too small 
compared to smartphone AGPS expected error  [109]. 
Smartphones location output does not rely exclusively on 
GPS, but also on less accurate methods that fill GPS gaps. 
Zhao et al. [126], for example, extend the range to 45 m.

Based on the assumption that noise detected in transi-
tion points is temporary while the changes in speed are 
permanent, affinity propagation clustering methods can 
be effective in stop detection [133]. By building a network 
that links stationary events, identified as nodes within a 
critical space-time range, and clustering this network 

Table 7  Map-matching task ranked by difficulty and score

References Mode Category Score Metric Validation

Chen and Bierlaire [26] Walk, Bike, Car, 
Metro

Multimodal, global, 
shortest-path

[80%, 99%] Path similarity indicator n.p.

Torre et al. [106] Bicycle Match when possible, 
build when needed

n.p. n.p. n.p.

Quddus et al. [89] Car Unimodal, incremental, 
point-based

99.2% A =
#(correctly matched GPS points)

#(Total GPS points)
n.p.

Li et al. [68] Car Unimodal, incremental, 
point-based

99.8% (sub-urban), 
97.8% (urban)

A =
#(correctly matched GPS points)

#(Total GPS points)
n.p.

Wei et al. [115] Car Unimodal, incremental, 
shortest-path

98% Accuracy n.p.

Bierlaire et al. [19] n.p. Unimodal, global, 
shortest-path

[80%, 99%] Path similarity indicator n.p.

Wu et al. [116] Taxi Unimodal, incremental, 
point-based

93.58% Prediction accuracy of next road 
by the road having the maximum 
probability

Hold-out

Hunter et al. [52] Taxi Unimodal, incremental, 
shortest-path, supervised, 
unsupervised

100% (1 s resolution), 
> 90% (30 s resolution)

Accuracy Manifold-
cross-
validation

Li and Wu [67] Taxi Unimodal, incremental, 
point-based

87.18% A =
#(correctly matched GPS points)

#(Total GPS points)
Hold-out

Jagadeesh and Srikan-
than [54]

Dataset 1: Taxi. 
Dataset 2: n.p.

Unimodal, global, 
shortest-path

91.3% Average F-Score with: 

Precision =
Lengthcorrect
Lengthmatched

 , 

Recall = Lengthcorrect
Lengthtruth

 , Input-to-output 
latency (Timelines)

Hold-out

Newson and Krumm [78] Car Unimodal, incremental, 
point-based

100% (1 s resolution), 
> 90% (30 s resolution)

Accuracy = 1− EL , where 

EL =
(d−+d+)

(d0)
 , d− = erroneous 

subtracted length, d+ = erroneous 
added length, d0 = length of correct 
route

Hold-out

Lou et al. [71] n.p. Unimodal, global, 
shortest-path

AN > 81% , AL > 87% AN =
#(correctly matched road segments)
#(all road segments of the trajectory) , 

AL =
(� length of matched road segments)

(length of the trajectory)

Hold-out
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using two-level Infomap [93], a swift algorithm, available 
as python package [9], outputs a label for each stop event 
detected in a raw GPS trajectory.

Literature shows many developments in this direc-
tion, employing clustering techniques [46, 105, 117, 130], 
which can learn in an unsupervised fashion and find stops 
within GPS trajectories. In multiple-step approaches, 
personal-  [46], and geographical-context  [130] can aug-
ment trajectories’ information and improve the clas-
sification of stop candidates. Density-based spatial 
clustering of applications with noise (DBSCAN) is at 
the base of most frameworks; some of these frameworks 
can even find stop candidates directly on raster image 
representations  [111]. Many other effective probabilis-
tic unsupervised methods are available, as for example 
kernel-based [48, 103]; generative [81, 118]; and discrimi-
native  [70], such as kernel-density algorithms, Hidden 
Markov Models, and conditional random fields.

Assuming that travelers walk to change mode, a rule-
based algorithm can identify transition points by apply-
ing thresholds on speed, acceleration, range and time, as 
well as by checking GPS on-off status  [90]. In fact, the 
most common rule-based stop detection techniques rely 
on range, time, speed or acceleration thresholds [98].

These rule-based algorithms can be further improved 
by statistical tests. For example, a Kolmogorov–Smirnov 
test on a random sample can be used to check for out-
liers  [131], as the normal distribution is sometimes 
accepted as a suitable approximation for GPS. Assuming 
normal distribution of GPS error, though, GPS follows a 
bi-variate Raleigh distribution [19].

Rule-based algorithms are both effective and appropri-
ate, and are independent of the subsequent classification 
task, as for example mode detection, or purpose impu-
tation. However, thresholds inflexibility (for example, in 
handling GPS signal loss and signal noise) leads to poor 
performance in detecting short stops (such as alight-
ing from a bus) and long permanence in the same posi-
tion (such as sitting on the bus during and intermediate 
stop) [98].

3.4 � Trajectory segmentation
Another approach specialized in “mode detection” is a 
GPS trajectory preparation through segmentation, which 
goes through four steps [31]. The first step splits the tra-
jectory in fixed segments having the same size of the 
median number of points on all the available trips. The 
second step concatenates together consecutive segments 
with the same label. Let us note that the first two steps 
depend strictly on the availability of the ground truth, 
while the segment size depends on the data collection 
context. The third step discards segments with less than 

10 GPS points. The fourth step smooths the trajectory 
through a Savitzky–Golay filter.

Segmentation methods can be distance-, time-, bear-
ing- and window-based. While the last three are sta-
tistically equivalent, the first leads to varying sample 
sizes within each segment due to the different speeds 
in complex mode-chain-types. Discontinuities in the 
mode-chain-type, detected on these segments, represent 
stops [57].

The impact of stop-detection or trip segmentation on 
the quality of the travel diary generation process, and 
therefore on the quality of the ground truth collected 
from users that validate their trips, can be considerable 
[102]. Therefore, more advanced hybrid methods have 
been studied, as have multiple rules and machine-learn-
ing specializing in both trajectories and contexts. One 
hybrid method consists of the following six steps  [126]: 
The first step is trajectory cleansing, based on the accu-
racy provided by the AGPS; the second step is rule-based 
detection of stop candidates, where stops are points 
within a 50-m range and a 1-min time window. The 
third step checks for stop candidates against users’ fre-
quent stop locations. The fourth step merges the result-
ing stops, with a rule-based algorithm configured with 
various range and time thresholds. The fifth step detects 
“still” mode, with a learned classifier based on accelera-
tion. The sixth step removes, after mode detection, any 
orphan stop left.

3.5 � Towards a standardized measurement of performance
All of the aforementioned methods are very critical for 
the classification steps downstream in the process, and 
they all lack of flexibility in adapting to different thresh-
olds, which might depend on some users, context, or 
both. However, the choice of trip segmentation method 
determines the object to be classified in the next step of 
the process, which can be a single observation, such as 
a GPS point, or a set of observations, such as a GPS seg-
ment. Consequently, two methods presenting the same 
classification score might be very different, depending 
on whether these methods target points or segments. It 
is very unlikely that the same number of points and seg-
ments will identify two analogous trips in terms of space 
and time. Therefore, comparing the performance score 
between point- and segment-based methods is mislead-
ing. The scores presented in Tables  1, 4 and 7 are not 
comparable, nor harmonized. Since scores and respective 
results reflect the case of correct classifications related, 
e.g., to a stage, a trip, an excursion or the whole day, har-
monization attempts should take these cases explicitly 
into account.

Prelipcean et  al. [86] introduce penalty systems and 
metrics that look at where these methods lead to errors, 
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and provide meaning to the comparison among differ-
ent segmentation techniques. In particular, with respect 
to the ground truth, if precision and recall identify “hits” 
and “misses” of a classifier (the broadly used F1-Score is 
the harmonic mean of precision and recall) from such 
measurements, we do not understand how the error 
depends on over- or under-segmentation, e.g., of the tra-
jectory that this method classified. Since errors in trajec-
tory segmentation propagate to the classification of the 
trajectories, and classification performance depends on 
how the segmentation inference aligns with the ground 
truth, these penalties are proportional to time and space 
of segments misaligned with the ground truth. This is in 
opposition to previous studies where a count of the edit-
ing operations was proposed  [2]. Interestingly, with this 
metric, point-based trajectory segmentation techniques 
seem to outperform segment-based techniques  [86]. 
Since both segment- and point-based classifiers discard 
any segment below a certain threshold of (e.g.) GPS 
observations—which in the first case can be two magni-
tudes higher than in the second case—an intuitive expla-
nation is that segment-based classifiers are incapable of 
classifying a larger fraction of a dataset.

3.6 � Human activity recognition in mobility
To support the modeling of activity and travel choices at 
the heart, for example, of activity-based models   [110], 
human activity recognition in mobility must include 
both stop, mode and purpose of any trip. The combi-
nation of feature extraction techniques and computer 
intelligence algorithms allows for a capturing of the cor-
relation between features and the user’s strategic choices. 
As technology evolves, the inference of users’ strategic 
choices in the form of a travel-diary and user validation 
by means of such a diary (see Fig.  3), enable continu-
ous improvement of the acceptable truth asymptotically 
approaching the theoretical ground truth. Computer 
intelligence algorithms are tightly coupled with the data 
necessary to allow and refine the inferences. Given an ini-
tial validated dataset, their performance can be measured 
only by comparing inferences with the ground truth (see 
Fig. 3). Errors propagate from trajectory segmentation, to 
trajectory classification, and then to the travel-diary gen-
eration  [86]. Therefore, it is likely that errors propagate 
to the ground truth. From this standpoint, the output of 
this process might lead to systematically biased predic-
tions. In SBTS, machine-learning is just a tool used to 
capture the information represented by data. The qual-
ity of models has a strong influence on the quality of the 

Mode Choice
Trip Purpose
Route Choice
Other Behaviours

USER
STRATEGIC 
BEHAVIOUR

COMPUTER 
INTELLIGENCE 
METHODS

Stop Detection
Purpose Imputation
Mode Detection
Map Matching

Trip Segment
Features Extraction

DATA FUSION

GIS and 
other data 
sources

Battery Capacity
Sensors Accuracy

DEVICE
CONSTRAINTS

Fig. 3  Validation loop in smartphone-based user activity monitoring
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ground truth we can collect through travel-diaries, and 
vice-versa.

There is consensus in the field about the lack of 
standardization for validating and comparing compet-
ing classifiers. There are several studies where, even 
though classifications are performed on the same 
dataset, differences in number and quality of classes 
predicted and in validation setup are enough to make 
F1-Score comparisons meaningless. For example, 
F1-Scores obtained as average on a 5-label transport 
mode classification task and a fivefold cross-valida-
tion  [31], cannot be compared with F1-Scores from a 
4-label transport modes classification task, computed 
on a random test-set only (hold-out method) [57].

We have identified three approaches that allow for 
a comparison to be made between different methods 
and datasets. The first is the same aforementioned 
penalization solution to ease the comparison between 
point- and segment-based classifiers  [86]. The sec-
ond approach could provide a standardized baseline 
by combining a public dataset and a cross-validation 
workflow  [112]. The dataset includes the observa-
tions of 18 sensors on three users made over a period 
of 2812 h’ worth of labeled data. Labels include the 
position of the phone as: in the hand, at the torso, 
at the hip, and in a bag. The workflow for cross-val-
idation covers three tasks: user-independent, phone 
position-independent, and time-invariant. At the end 
of the three tasks, each one accomplished with mani-
fold cross-validation, the paper suggests the standard 
deviation of F1-Scores computed across users, phone 
positions, and time periods as the benchmark of the 
predictive power of a model. This workflow cannot be 
applied in most of the datasets available, which are not 
as rich; for example, the widely used Geolife [129] pro-
vides GPS trajectories and transport mode labels only 
(see Table  1). The third approach leverages the Weka 
software  [47], where several machine-learning algo-
rithms are available off-the-shelf. Based on Weka soft-
ware, Ectors et  al. [36] compare a few rule-based and 
probabilistic machine-learning algorithms for purpose 
imputation on the same dataset.

However, we found no attempts at combining these 
three approaches, which are complementary to com-
paring different methods, but not self-sufficient. 
Another step should consider the feature extraction 
process. Indeed, this process is also subject to attempts 
of standardization. One candidate method is “mini-
mum redundancy maximum relevance” [112] (MRMR, 
see Table  3). For classifiers relying on deep learning 
though, this feature extraction method is not effec-
tive, as the neural network extracts the features auton-
omously. In this case, the new challenge is finding 

optimal hyper parameters for the neural network. 
Such hyper parameters may include, for example, 
architecture configuration, activation functions, batch 
size, regularization factor, and optimization step. Bal-
aprakash et  al. [14] propose an approach to selecting 
these hyper parameters automatically, moving towards 
standardized deep learning method optimization. Still, 
we did not find applications in this field; instead, opti-
mal hyper parameters are still a craftsman product [31, 
57, 121].

3.7 � Implications for transport science
The choice of complementary sensors, such as the gyro-
scope, could mitigate the challenges that most of the 
algorithms encounter in discriminating between, for 
example, bike and walk or bike and bus in congested 
urban contexts. Similarly, the magnetometer could help 
distinguish between rails and cars, and the accelerometer 
between bike and e-bike. However, these high-frequency 
sensors require online rather than offline classifiers. 
Offline classifiers would suffer from the large footprint of 
the data, which would in turn have a negative impact on 
smartphone users’ data plan and battery. This would ulti-
mately lead users to dropout from travel surveys.

Several studies exhibit how useful GIS information can 
be on mode detection. However, when classifying the 
complement of the same trajectory, studies on purpose 
imputation expose the challenges associated with the 
proximity of heterogeneous points of interest, as various 
trips can start for different purposes and end in the same 
spatial range. In such a case generally helpful, personal 
patterns and a limited amount of personal information 
proved to support more accurate predictions (see Table 3 
against Table 1, and Table 6 against Table 4).

Nevertheless, among the studies identified for map-
matching, we find no examples of personal information 
use (see Table 9). Even in the assumption of unavailabil-
ity of any personal information, map-matching and con-
sequent route-choice records would amplify the impact 
of transport mode and trip purpose classification (see 
Table  7). Expressing a trajectory as a sequence of links 
and nodes on the transport network, instead of longi-
tude and latitude, pinpoints specific micropatterns. Fur-
thermore, it potentially reduces the confusion that users 
often face while validating their travel-diaries in the pres-
ence of GPS outliers.

For map-matching, we identify two problems. First, 
most of the methods specialize in cars and road network 
for cars, and few or none refer to emerging modes such as 
e-bikes and e-scooters (see Table 8). Second, in the litera-
ture, we did not find a good representation of adequate 
datasets and ground truth quality levels (see Table  9). 
In the first case, the assumption that GPS points should 
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belong to the road network does not hold. Map-match-
ing for modes different from cars requires degrees of 
freedom to allow transit on, for example, sidewalks and 
bicycle lanes, often not mapped—few studies pinpoint 
this problem. In contrast, emerging shared modes such 
as e-bikes and e-scooters imply behaviors not strictly 
coherent with the mapped network. Furthermore, these 
emerging modes are introducing new public transport 
mode-chain-types with irregular patterns, alternating 
traditional public transport and emerging shared modes. 
The former offers reliable timetables, while the latter is 
volatile, as it depends on vehicle availability. Still, Sicotte 
et al. [99] show that looking at meaningful mode-chain-
types also represent a tool to improve trip classification.

From the direct experience testing Mobile Market 
Monitor and TRAVELVU on a small user base, we realize 
that the sample of literature reviewed in this work does 
not express the differences between a raw trajectory, such 
as the one that SBTS use to generate travel-diaries, and a 
processed trajectory, such as the one that SBTS may out-
put as ground truth. The first trajectory presents a level 
of noise that could even ease trip segmentation process 
and subsequent classification on uni-modal segments. 
The lack of noise of in the second trajectory, in contrast, 
might prevent accurate travel-diary generation. These 
obvious differences have an impact on the choice of 
method and performance of any transport-related analy-
sis, such as for mode detection. For example, we expect 
better generalization of Bayesian temporal models or 
artificial neural network methods in the first case, and 
machine-learning techniques such as random forest or 
support vector machines in the second case.

Further, Tables  3, 6, and 9 clearly show that while 
artificial neural networks and temporal models do not 
require particular feature extraction methods, machine-
learning approaches such as random forest or support 
vector machines must rely on time-series feature extrac-
tion. Hence, to find the best classification method, e.g. 
for transport mode, any attempt at ranking should be 
considered in light of whether the trajectories of interest 
embody any pre-processing, and possibly which one. A 
possible indicator is the proportion of point loss on the 
dataset after the application of simple filters, e.g. on point 
speed and time gaps between points.

For travel-diary generation in presence of multiple 
sensors and large datasets, artificial neural networks 
seem very promising. Artificial neural networks are flex-
ible in learning with and without labels. They also act as 
powerful dimensionality-reduction, information-com-
pression, and feature-extraction tools for simultaneous 
signal processing of multiple sensors monitoring the 
same event, and signaling at different and irregular fre-
quencies. Let us consider, for example: (i) smartwatches 

and other bio-metric devices complementary to smart-
phones [29]; (ii) ongoing software integration between 
cars and smartphones, which include navigation and INS 
sensors [8]; and (iii) development of edge-computing to 
augment the processing power of smartphones when 
consuming cloud services [113], where users’ mobil-
ity patterns are studied to reduce service-latency in the 
information-technology-network.

A holistic approach could amplify the impact of stud-
ies sharing the scope of those identified in this review. 
Smartphones’ onboard sensors represent only a frac-
tion of the collectible signals, and the surveyed literature 
seem not fully aware the quickly-evolving context sur-
rounding smartphone devices. To release new potential 
towards the disambiguation of transport patterns that 
in congested urban areas look exactly the same for the 
surveyed methods, while contrasting the curse of dimen-
sionailty [17], this field requires a new perspective. Com-
pared to the advances in other fields, such as computer 
vision or social networks, transport science seems only at 
the beginning of the exploration of artificial neural net-
works .

4 � Discussion
SBTS depends on a sophisticated multi-sided platform 
which is subject to often conflicting interests over the 
resources available, beginning with the battery. In current 
versions, the OS orchestrates the applications’ use of sen-
sors and battery, and some OS preclude direct access to 
AGPS. Therefore, developers have limited configuration 
possibilities. Furthermore, the data collected through 
these platforms is affected by large standard deviation, 
severe errors, and noise due to exogenous elements.

4.1 � Sensors
When a smartphone outputs a location signal, whether 
the location comes from the onboard AGPS, from the tri-
angulation with GSM antennas, the car GPS, or another 
external GPS connected to the smartphone, developers 
are not allowed to know. If not properly handled, this 
uncertainty may negatively affect datasets, method clas-
sification performance, user validation and finally ground 
truth.

Smartphone onboard sensors represent only a frac-
tion of the bio-metric and ambient sensors that could be 
connected with these devices. Cornacchia et al. [29] pre-
sent a survey of activity classification from wearable sen-
sors. Differing effective frequencies of each sensor, e.g., 
1–10 Hz for GPS, or > 20 Hz for accelerometer, require 
flexible frameworks as for joint features extraction, com-
pression, and analysis. From this standpoint, artificial 
neural networks seem to have potential.
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4.2 � Data sources
From the perspective of smartphone-related trajecto-
ries, a better understanding of travel behavior requires 
the standardization of measures relevant for travel pat-
terns, which should also rely on standard datasets. The 
options available are a good starting point, but still seem 
insufficient. For example, let us consider the following 
datasets. (i) Shankari et  al. [97] deliver real GPS trajec-
tories collected in the USA from real smartphones, in 
which ground truth, available on trip mode and not trip 
purpose, is generated synthetically to protect privacy 
exposure (users follow instructions provided by a cus-
tom App). (ii) Wang et  al. [112] offer trajectories col-
lected in the UK from multiple smartphone sensors at 
relevant frequencies, and from smartphones of the same 
model positioned on various part of the body, providing 
ground truth for trip mode only. (iii) Zheng and Fu [129] 
include GPS trajectories from China, with ground truth 
on trip mode for 69 users out of 189. (iv) Kubicka et al. 
[63] supply GPS trajectories collected in various parts of 
the world for map-matching, but not multi-modal. (v) 
Carpineti et  al. [24] propose onboard high-frequency 
sensors with ground truth on transport mode, collected 
in Italy from multiple smartphones and users, but where 
GPS is unavailable. (vi) Chavarriaga et  al. [25] provide 
data from over 72 wearable sensors, collected indoors 
with ground truth on performed activities, and no GPS. 
(vii) Laurila et al. [65] offer data collected in Switzerland 
over 18 months from 185 users of the Nokia N95 device 
with multiple sensors, including, for example, AGPS, 
accelerometer, Bluetooth, trip purpose labels, and no 
transport modes.

4.3 � Methods
The collection of any acceptable ground truth depends on 
the reliability and accuracy of underlying measurement 
methods. The vast choice of alternatives requires a stand-
ardized way of comparing competing methods. Existing 
literature offers effective penalization systems for clas-
sic performance scores [87]. Invitations on standardized 
mode detection are available in form of feature extraction 
and cross-validation workflows  [112]. However, these 
attempts do not seem sufficient to cover mode detection, 
purpose imputation, and map-matching at the same time 
across existing and emerging methodologies.

We identified excellent alternatives. Some perform 
best on low-resolution trajectories. Other classifiers are 
tight (e.g.) to the location where GPS trajectories are 
fused with data from GIS, users’ personal information, 
or both. Among the best performers in terms of accu-
racy measurement, in general, we find: support vector 
machines, fuzzy logic, random forests, and probabilistic 
models (e.g., hidden Markov models). Classic rule-based 

algorithms might not perform at the same accuracy level. 
However, they are still competitive when the application 
scenario is stable, and if execution speed and scalability 
are a priority over accuracy.

Methods based on artificial neural networks are rising 
quickly and are applicable across mode detection, pur-
pose imputation, and map-matching, as probabilistic and 
Bayesian methods unlike other machine-learning tech-
niques. For map-matching and purpose imputation, for 
example, we find applications combining GPS and GIS, 
while for stop and mode detection, we find applications 
with GPS only. Particular configurations of these meth-
ods, such as variational auto encoders and deep kalman 
filters, which represent the convergence with Bayesian 
methods, could offer a background facilitating method-
ological convergence that might also allow for a break-
through in this mature field of research.

4.4 � Ground truth
Whether a study targets, for instance, the whole day, 
week, month, season or year, modelers need a correct 
dataset ideally of a whole period. If this is not the case, 
the value of the whole dataset is limited. Since a “per-
son to device” validation might introduce further errors; 
their magnitude and their impact on machine-learning 
methods performance should be investigated. We find no 
attempt of self-learning on multi-sensor datasets, which 
would raise expectations on a “device-to-device” ground 
truth evolution. We could achieve full automation of both 
travel-diary generation and validation by using independ-
ent measurements of the same event to substitute tra-
ditional labels with pseudo-labels. For example, instead 
of learning from labels, artificial neural networks could 
learn GPS patters to reconstruct accelerometer patterns, 
and vice-versa. Meanwhile, where machine-learning 
algorithms do not provide correct travel-diaries to the 
user, “person to device” interaction could be enhanced 
by introducing the possibility for the user: (i) to trigger 
a specialized automatic evaluation of such segments; and 
(ii) to flag whether he or she was unable to correct the 
mistakes (see Fig. 3).

5 � Conclusion
In transport science, the process of methodological per-
fection between paper-and-pencil personal interviews, 
and computer assisted personal interviews [13], towards 
computer assisted telephone interviews  [79], and com-
puter assisted web interviews  [135] is still evolving 
towards SBTS  [101, 127]. The leap between paper and 
computer determined a structural impact on the sur-
veying costs, requiring software, IT-infrastructure, and 
personnel-training. According to [27], the shift to com-
puter assisted web interviews requires to fall back to 
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telephone interviews in cases where the web interviews 
are incomplete.

From computer to smartphones, the impact seems neg-
ligible both on software and IT-infrastructure costs. In 
contrast, the impact on human resources seems to deter-
mine a significant reduction of personnel, and a shift 
towards highly specialized and more expensive skills of 
data scientists required to deploy a SBTS. Consequently, 
under a certain volume-threshold of, e.g., surveyed users 
in time, traditional surveys could be still competitive in 
terms of cost. However, to push transport science bound-
aries under the constraint of Big Data—which traditional 
travel surveys are unable to satisfy—SBTS bring a huge 
scalability potential and support higher resolution data-
sets, handling users during time horizons longer than just 
one day.

To expose SBTS potential, this paper selects and sum-
marizes information on SBTS relevant for a qualitative 
comparison of the methods focusing on mode detection, 
purpose imputation, and map-matching. To ease such a 
comparison, since the standardization process in the field 
is still ongoing, we organized the literature into tables, 
which include information about classification objec-
tives, datasets employed in the experiments, and valida-
tion approach of both data and experiments. Besides, 
by listing sensors, features, and dataset that each of the 
related works depends on, we identify the main methods 
underlying the process of ground truth generation.

Comparison based only on scores reflecting different 
variables, such as accuracy and F-Score, is misleading. 
As we find, scores depend on the underlying dataset, tra-
jectory segmentation, classification method and experi-
ment design. Evaluation of larger segment units leads 
to discarding significant portions of a dataset. The clas-
sification task is relatively more difficult with a larger 
number of classes. The accuracy bias is relatively lower 
when performing cross-validation, and when processing 
more representative datasets. For example, Tables 1 and 
2 for mode detection, Tables 4 and 5 for purpose imputa-
tion, as well as Tables 7 and 8 for map-matching expose, 
from another perspective than Prelipcean et al. [86], that 
methods performance is beyond dry scores. When com-
paring methods, newcomers in this field would certainly 
benefit from considering task complexity, representative-
ness of the supporting dataset, and validation method. 
For example, task and method complexity, features col-
lection and extraction cost (see Tables 3, 6, 9).

A converging thrust in the field seems represented by 
simultaneous methods focusing on, e.g., mode detec-
tion to improve map-matching or purpose imputation, 
and vice-versa. To support the disambiguation of travel 
patterns that are still challenging to detect in congested 
urban areas, for the future, emerging applications of 

artificial neural networks seem to support further fruitful 
convergence. The study of smartphones onboard sensors 
in addition to other streams collectible through smart-
phones—from GIS, wearable sensors, or edge-comput-
ing—would benefit from the artificial neural networks 
flexible framework. This technology can be exploited 
on the one hand to learn from large and heterogeneous 
data streams, and on the other hand to compress and 
store such BIG bulk of information through relatively few 
trained parameters. To support the standardization of 
relevant measures for transport behavior, efforts should 
also be directed towards the solution of privacy concerns 
that represent an obstacle, in this field, for the generation 
of open-access datasets.
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