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Abstract 

Weather has a substantial influence on people’s travel behavior. In this study we analyze if meteorological variables 
can improve predictions of hourly traffic counts at 1400 stations on federal roads and highways in Germany. Motor-
bikes, cars, vans and trucks are distinguished. It is evaluated in how far the mean squared error of Poisson regression 
models for hourly traffic counts is reduced by using precipitation, temperature, cloud cover and wind speed data. It 
is shown that in particular motorbike counts are strongly weather-dependent. On federal roads the mean squared 
error is reduced by up to 60% in models with meteorological predictor variables, when compared to models with-
out meteorological variables. A detailed analysis of the models for motorbike counts reveals non-linear relationships 
between the meteorological variables and motorbike counts. Car counts are shown to be specifically sensitive to 
weather in touristic regions like seaside resorts and nature parks. The findings allow for several potential applications 
like improvements of route planning in navigation systems, implementations in traffic management systems, day-
ahead planning of visitor numbers in touristic areas or the usage in road crash modelling.
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1  Introduction
There is strong evidence that weather has a substan-
tial influence on people’s travel behavior. However, 
both strength and direction of the relationship between 
weather parameters and travel behavior can vary 
between different locations, depending on characteris-
tics of the local climate or region-specific travel culture 
[1]. In particular in the mid-latitudes, temperatures can 
change from adverse to pleasant conditions within the 
year. Higher temperatures generally lead to an increase 
of outdoor activities [2–4] and an increasing use of bicy-
cles [1, 5, 6]. However, very high temperatures above 25 
to 30°C can be disadvantageous for outdoor activities [7] 
and cycling [8, 9]. Low temperatures can lead to reduced 
car traffic, however in case of trucks the impact is less 
pronounced [10].

Precipitation generally leads to reduced outdoor activi-
ties [11–13]. Also car traffic is reduced during rainfall 
[14, 15], which appears to be particularly the case at 
weekends [16]. It might play a role that in case of shop-
ping and leisure activities trips are canceled or the mode 
of transportation and the destination changes due to 
rainfall [17]. Considerable traffic reductions are reported 
with snowfall [14, 18–22]. In general, truck traffic is less 
affected than car traffic [18], because commercial vehi-
cles are less likely to divert trips due to adverse weather 
[23]. In urban areas precipitation can lead to switching 
from active (open-air) to motorized (sheltered) transport 
modes [24], leading to higher levels of transit ridership 
[25] and public transportation [26].

Compared to precipitation and temperature, wind 
speed is often overlooked in traffic studies [1]. Some 
studies document negative impacts of wind speed on 
cycling [27, 28]. In the case of motorized road traf-
fic, some studies show that wind speed decreases traffic 
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counts [17], other studies find mostly non-significant 
impacts of wind speed [29].

Boecker et  al. [1] find substantial differences between 
the outcomes of different studies adressing the impact 
of weather on travel behaviour. They conclude that the 
existing literature presents an “incomplete and frag-
mented picture”, identify gaps and suggest ideas for fur-
ther research. Based on their findings, we address the 
following points in an approach to model the impact of 
weather on hourly traffic counts:

•	 Traffic and meteorological data need to be matched 
accurately in time and space to study their relation-
ships. This can be difficult, if traditional weather sta-
tion data is used, because stations might be located 
far away from the location of the traffic measure-
ment. This is particularly relevant in case of precipi-
tation, which can vary strongly in time and space and 
might not be captured well by station data. There-
fore, we use reanalysis and radar-based precipitation 
products to derive meteorological parameters from 
high-resolution gridded data sets.

•	 Existing studies make use of a wide variety of multi-
variate modeling techniques. However, in many stud-
ies linear relationships are assumed between weather 
and different types of travel behavior, although not 
all effects seem to be linear in all situations [1]. By 
applying a stepwise predictor selection procedure, we 
explore non-linear relationships in a controlled set-
ting.

•	 While most studies focus on weather impacts on 
bicycles, cars, or trucks, little is known about weather 
impacts on motorbike usage. By analyzing a compre-
hensive database of long-term traffic measurements 
in Germany that includes motorbike counts, we can 
fill this gap.

This study aims to quantify to which extent meteorologi-
cal parameters can improve the predictive skill of models 
for hourly traffic counts of different vehicle types. This is 
particularly relevant for application purposes, where an 
accurate estimation of traffic flow is important. Fields of 
application are, for example, road crash models, where 
traffic flow is the dominant factor for crash risk [30, 31], 
travel-demand and mode-change modeling, traffic man-
agement, route planning in navigation systems, and air 
pollution management.

2 � Data
2.1 � Traffic data
The German Federal Highway Research Institute (Bunde-
sanstalt für Straßenwesen, BASt) operates a traffic meas-
urement network on federal highways (Autobahn) and 

federal roads (Bundesstraßen). Federal highways usually 
have two or three lanes per direction and driving speeds 
of 100 km/h and more, while federal roads usually have 
one lane per direction and driving speeds of 100  km/h 
and less. At the traffic counting stations the hourly num-
ber of passing vehicles is registered separately for the two 
directions of travel. Since it was shown that driving direc-
tion is not relevant regarding weather effects [17], the 
sum of the hourly counts of both directions is used for 
the analyses at each station. The data set provides counts 
for different vehicle types. The vehicle types and corre-
sponding abbreviations used in this study are motorbikes 
(mot), cars (car), vans (van), and trucks (trk).

Count data from 2005 to 2018 is considered in this 
study. However, many of the available measurement sta-
tions have been installed after 2005 or show periods with 
missing data. Therefore, only stations for which at least 
five years of data are available are used. This ensures that 
enough data is available for the modeling procedure. 
Based on these criteria, 696 stations on highways and 704 
stations on federal roads are selected for the analyses.

2.2 � Reanalysis data
The fifth generation European Centre for Medium-Range 
Weather Forecasts (ECMWF) global atmospheric rea-
nalysis (ERA5) is a synthesis of various heterogeneous 
observational data and model simulations, which is pro-
duced using a physical model together with a data assimi-
lation scheme [32]. ERA5 contains different atmospheric 
and surface variables on a global grid with a spatial reso-
lution of 30 km and an hourly temporal resolution. The 
advantage of ERA5 over station-based observations is 
the spatial and temporal homogeneity. But it should be 
noted that local station measurements can deviate from 
the gridded ERA5 values.

For each traffic counting station the corresponding 
ERA5 grid cell is identified and the hourly time series of 
temperature at 2  m height, maximum wind gusts, and 
total cloud cover is extracted. Using the hourly weather 
parameters directly as a predictor variable is problem-
atic, in particular in case of temperature. Both tempera-
ture and traffic volume is high during the day and low at 
night, but not because of a causal relationship between 
the two variables, but because both variables depend on 
the elevation of the sun. To exclude this spurious rela-
tionship from the regression models, the daily maximum 
temperature, daily maximum wind gusts and daily aver-
age cloud cover is used for further analyses.

2.3 � Radar data
The RADOLAN data set [33] provided by the German 
Meteorological Service contains hourly precipitation 
sums on a grid with a spatial resolution of 1× 1 km for 
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the area of Germany. RADOLAN combines radar reflec-
tivities, measured by the 16 C-band Doppler radars of 
the German weather radar network, and ground-based 
precipitation gauge measurements. As from radar reflec-
tivity we cannot directly infer the precipitation amount 
at the ground, observations from rain gauges are used 
to calibrate the precipitation amounts estimated from 
the radar reflectivity in an online-procedure. The RAD-
OLAN data set thus combines the benefits of high spa-
tial resolution of the radar network and the accuracy of 
gauge-based measurements.

While the other meteorological predictor variables are 
aggregated in time, precipitation is included in the model 
in form of hourly values. All RADOLAN grid points 
within the radius of 10  km around a traffic station are 
selected and the spatial average of the hourly precipita-
tion sum is calculated. This results in a predictor variable, 
which is representative for a larger area around a traffic 
station. This is reasonable, since the travel behavior of 
drivers passing a traffic station does not depend solely on 
the precipitation directly at the station.

2.4 � Population data
To analyze wheter the impact of weather on traffic flow 
differs between urban and rural areas, population density 
data from the German census (Zensus 2011) is used [34]. 
The data set provides the number of inhabitants in Ger-
many on a grid with a resolution of 1× 1 km. The num-
ber of inhabitants per grid cell is provided as a discrete 
variable with seven classes. Each class corresponds to a 
certain range of inhabitant numbers (Table  1). For sim-
plicity, we assume that the actual inhabitant number in 
a grid cell corresponds to the average of the class range. 
Since class 7 has no upper bound, the lower bound is 
used. For each traffic station, all grid cells within a radius 
of 10 km around the station are selected and the average 
population density is computed.

3 � Methods
3.1 � Linear regression and breakpoint detection
The standard linear regression model

is a well known technique to relate a target vari-
able yi to a linear combination of l predictor variables 
Xi = (Xi1, . . .Xil) , where β = (β1, . . . ,βl) are the corre-
sponding model parameters, α is the intercept and n is 
the number of available observations. Predictor variables 
can be continuous or categorical. Interaction terms can 
be used when the effect of a predictor variable on the 
target variable changes, depending on the value of other 
predictor variables [35].

In Eq.  1 β is usually assumed to be constant with 
respect to i. However, in case of traffic count data, mod-
ifications of the road network in the vicinity of a traffic 
station can lead to abrupt changes of traffic characteris-
tics. Such breakpoints in the time series can be caused for 
example by construction sites, road closures or the open-
ing of new roads. In this case, the relationship between Xi 
and yi may change and the assumption of constant α and 
β is no longer valid.

The foundation for estimating single breakpoints in 
linear regression models was given by Bai [36] and was 
subsequently extended to multiple breaks [37–39]. To 
identify breakpoints in the traffic count time series, we 
use the R package strucchange [40, 41], which imple-
ments the algorithm described in Bai and Perron [42] for 
simultaneous estimation of multiple breakpoints. Eq. 1 is 
extended to

where j is the segment index, Jm,n = i1, . . . , im denotes 

the set of the m breakpoints, and by convention i0 = 0 
and im+1 = n . For a given a set of breakpoints i1, . . . , im 
the least-squares estimates for the βj can be obtained. 
The resulting minimal residual sum of squares is given by

rss(ij−1 + 1, ij) is the minimal residual sum of squares in 

the jth segment. The R package strucchange applies 
an efficient algorithm to find the breakpoints ı̂1, . . . , ı̂m 
that minimize the objective function

(1)
yi = α + Xi β (i = 1, . . . , n),

(2)

yi = αj + Xi βj (i = ij−1 + 1, . . . , ij , j = 1, . . . ,m+ 1)

(3)

RSS(i1, . . . , im) =

m+1∑

j=1

rss(ij−1 + 1, ij)

(4)

(ı̂1, . . . , ı̂m) = argmin
(i1,...,im)

RSS(i1, . . . , im)

Table 1  Inhabitants classes of the German census

Inhabitants classes and class ranges as used in the German census Zensus 2011, 
the corresponding inhabitant numbers used for spatial aggregation in this 
study, and the number of grid points of a specific class

Class Inhabitants (class 
range)

Inhabitants 
(as used for 
aggregation)

Frequency

1 0–3 1.5 146,845

2 3–250 126.5 158,317

3 250–500 375 20,342

4 500–2000 1250 26,183

5 2000–4000 3000 6741

6 4000–8000 6000 2543

7 8000–∞ 8000 507
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over all partitions (i1, . . . , im) with ij − ij−1 ≥ nh , where 
nh is the minimum length of a segment, which is specified 
by the user.

3.2 � Poisson regression
If y is a count variable, the Poisson regression model

can be applied, which belongs to the family of general-
ized linear models and uses the exponential function as 
the inverse link function to assure that yi ≥ 0 [43]. β is 
estimated using the iteratively reweighted least squares 
method [44].

3.3 � Assessing model performance
The mean squared error

is a common metric to evaluate model performance by 

comparing the modeled values fi to the observed values 
oi . The squared difference leads to a strong penalization 
of predictions with larger errors.

A skill score is a relative measure of how a model 
performs compared to a reference model. The mean 
squared error skill score

where MSEf  is the score of the model under evaluation 
and MSEr is the score of the reference model. Positive 
values of the MSESS indicate an improvement compared 
to the reference model.

Cross-validation is applied by estimating model coef-
ficients using a training data set and computing scores 
on an independent testing data set. Here, we split the 
data randomly into 10 sets. Parameters are estimated 
on 9 sets and the score is calculated on the remaining 
set. This is repeated 10 times such that for each set the 
resulting score is computed. These are then averaged 
and used for model comparison.

3.4 � Model selection procedure
It is infeasible to manually inspect the functional rela-
tionships between traffic counts and various meteoro-
logical and non-meteorological predictor variables at all 
1400 traffic stations. Therefore we apply an automatic 

(5)
yi = exp (α + Xi β) (i = 1, . . . , n),

(6)

MSE =
1

n

n∑

i=1

(fi − oi)
2 ,

(7)

MSESS = 1−
MSEf

MSEr
,

procedure that selects relevant predictor variables based 
on objective criteria and allows the evaluation of the ben-
efit of including meteorological variables compared to a 
model without meteorological variables. The following 
three steps are applied successively for each traffic station 
and for each of the four vehicle types.

3.4.1 � Step 1: Breakpoint detection
Breakpoints are detected in the traffic count time series 
as described above to identify systematic changes of traf-
fic characteristics, e. g. due to modifications of the road 
network in the vicinity of a station. Although an efficient 
algorithm is used for estimating the locations of break-
points, a considerable computational effort is required 
for long time series like the hourly traffic counts used in 
this study. Furthermore, since the breakpoint detection 
is based on linear regression, the method assumes that 
residual errors are normally distributed. However, this 
is not the case due to the nature of the count data. Both 
issues are solved by applying the breakpoint detection 
to daily instead of hourly sums of traffic counts. Firstly, 
the amount of data is reduced significantly. Secondly, 
by aggregating the data the distribution of the residual 
errors becomes approximately normal, which we tested 
using the Shapiro-Wilk test and the Anderson-Darling 
test [45]. The month of the year and the day of the week 
are included as categorical predictor variables in Eq. 2 to 
account for an annual and weekly cycle of traffic counts. 
The minimum length of a segment nh is set to 300 days to 
avoid too many and too short segmentations. The num-
ber of breakpoints m is selected by iteratively increasing 
it from 0 to 4. If an increase of m does not improve the 
RSS by more than 1%, the iteration is stopped and m is 
selected. Finally, a categorical variable with hourly reso-
lution is generated, in which each segment corresponds 
to one category, based on the identified breakpoints. 
This variable is included in the model selection pro-
cess described below. Note that the daily traffic data is 
only used to determine the dates of the breakpoints and 
that  the following modeling steps are carried out with 
hourly data.

3.4.2 � Step 2: Model without meteorological variables
After the identification of breakpoints based on daily 
aggregated traffic counts, Poisson regression models 
for hourly traffic counts are estimated. The BASt uses 
daily, weekly and annual cycles to classify the charac-
teristics of individual traffic stations and distinguishes 
between periods with and without holidays [46]. We 
adopt this approach to develop a model NO_MET using 
only non-meteorological predictor variables and rel-
evant interaction terms (see Table 2). NO_MET is used 
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as a benchmark to quantify the improvement achieved by 
including meteorological variables later. Predictor vari-
ables are added to NO_MET in a step-wise procedure. 
Starting with an intercept-only model, all remaining non-
meteorological variables and interactions are added to 
the model individually and the MSESS is computed using 
10-fold cross-validation with random samples. The vari-
able that leads to the largest improvement with respect to 
the MSESS is added to the model, if the MSESS is larger 
than 0.01, indicating the reduction of the MSE of more 
than 1% . The iteration is repeated with all remaining vari-
ables. If the MSESS is smaller than or equal to 0.01 the 
iteration is stopped.

3.4.3 � Step 3: Model with meteorological variables
The iterative model selection procedure is repeated as 
described in step 2, but this time starting with the model 
NO_MET and iteratively adding meteorological pre-
dictor variables (Table  2). This model (MET) is used to 
quantify the improvement of traffic count predictions 
by including meteorological variables compared to NO_
MET using the MSESS. To allow non-linear functional 
relationships between meteorological predictors and 

traffic counts, the meteorological variables are consid-
ered in the selection procedure with different exponents. 
Temperature, cloud cover and wind are considered with 
exponents k and precipitation with the exponents 1/k, 
with k = {1, 2, 3, 4} . In case of precipitation, the fraction 
allows for a sudden increase or decrease of crash counts 
with onsetting precipitation. This has already been suc-
cessfully applied in a previous study for modeling the 
relationship between precipitation and road crash prob-
abilities [47]. Additionally, each meteorological variables 
is included in the selection procedure as an interaction 
term with the categorical variable weekend, which has the 
three categories working day (Monday to Friday), Satur-
day and Sunday. This allows, for example, that precipi-
tation can have a different effect on traffic on a Sunday, 
compared to a working day.

4 � Results
4.1 � Statistics of meteorological variables
Before studying the effect of meteorological parameters 
on traffic volume, the occurrence frequencies and cor-
relations of the meteorological parameters is analyzed. 
For each traffic station the probability density function 

Table 2  Description of predictor variables  and interaction terms included in models without (NO_MET) and with (MET) 
meteorological variables

For categorical variables the number of categories is shown in brackets. Meteorological variables are introduced to the model selection process with different 
exponents k = {1,2,3,4} to allow non-linear functional relationships

Variable name Variable type Variable description

Potential predictor variables for NO_MET

hour Categorical (24) Hour of the day

dow Categorical (7) Day of the week (public holidays are treated as Sundays)

mon Categorical (12) Month of the year

holiday Categorical (2) School holiday in the federal state of the traffic station

trend Continuous Linear trend in time

hour:dow Interaction Different diurnal cycles on different days of the week

break Categorical (n) n = 2, 3, 4 segments determined by breakpoint detection (if n = 1 this term and its interac-
tions are excluded)

break:trend Interaction Different trends in different segments

break:hour Interaction Different diurnal cycle in different segments

Potential predictor variables for MET

tempk Continuous Daily maximum temperature at 2 m height at the ERA5 grid cell closest to the traffic station

cloudk Continuous Daily mean total cloud cover at the ERA5 grid cell closest to the traffic station

windk Continuous Daily maximum wind gust at 10 m height at the ERA5 grid cell closest to the traffic station

precip1/k Continuous Average hourly precipitation sum of all RADOLAN grid cells within a radius of 10 km around 
traffic station

weekend Categorical (3) Distinguish between working day, Saturday, and Sunday (only included in interaction terms 
below, but not as single variable)

weekend:tempk Interaction Different relationships between temperature and traffic

weekend:precip1/k Interaction Different relationships between precipitation and traffic

weekend:cltk Interaction Different relationships between cloud cover and traffic

weekend:windk Interaction Different relationships between wind speed and traffic
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of each meteorological variables is computed. The prob-
ability density function of daily maximum temperature, 
averaged over all stations, shows that temperature var-
ies mainly between 0 and 30°C (Fig.  1a). In case hourly 
precipitation the distribution is strongly skewed towards 
low values (Fig.  1b). On average 71% of all hourly time 
steps show a precipitation of 0  mm, 19% show a pre-
cipitation between 0 and 0.1 mm and the remaining 10% 
correspond to precipitation amounts above 0.1 mm. The 
probability density for mean daily cloud cover is highest 
at cloud covers of 100%. Days with lower cloud covers are 
less frequent (Fig. 1c). Daily maximum wind gusts occur 
most frequently within the range between 5 and 20 m/s. 
The probability density function of temperature and wind 
gusts vary considerably between the different stations, 
while in case of precipitation and cloud cover the vari-
ability between the stations is much smaller.

To determine the strength and direction of potentially 
non-linear and monotonous relationships between the 
different meteorological variables, Spearman’s rank-order 

correlations [48] are computed for each combination of 
the four variables at each traffic station (Table  3). This 
step is important to be aware of potential multicollin-
earity when estimating regression models. The strongest 
correlation of −0.37 is found between daily maximum 
temperature and daily mean cloud cover, indicating that 
low cloud cover correlates with high temperatures. Fur-
thermore, positive correlations around 0.2 are found 
between cloud cover and precipitation, as well as between 
daily maximum wind gusts and precipitation and cloud 
cover. These correlations are reasonable and physically 
meaningful, however, they are small enough to justify the 
use of all three variables in the model selection process.

4.2 � Selection of predictor variables
The model selection procedure described above is exe-
cuted to develop models for hourly counts of different 
vehicle types at each traffic station by identifying those 
variables and interaction terms that improve the predic-
tive skill of the model. Table 4 shows how frequently the 

Fig. 1  Probability density functions of meteorological variables used in the models selection process. The thick black line indicates the average 
probability density at all traffic stations. The grey shaded area covers the range between the 0.1 and 0.9 quantile of probability densities at all traffic 
stations and indicates the variability between the different stations
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variables defined in Table  2 are selected at the different 
stations. In case of all vehicle types, hour, dow (day of 
the week) and month are selected at 100% of the stations. 
hour and dow are always selected as an interaction term, 
indicating that the diurnal cycle of traffic counts changes 
on different days of the week. The variable break, which 
indicates breakpoints, is selected as an interaction with a 
linear trend or hour in most cases.

In case of motorbikes and cars, temperature is selected 
at almost all stations, both on highways and federal roads. 
In case of vans, temperature is selected twice as often on 
highways than on federals roads. In most cases, tem-
perature is selected as an interaction term with weekend, 
indicating that the effect of temperature on traffic counts 
is different on working days, Saturdays and Sundays. 
Mostly temperature is selected as a linear term without 
an exponent. However, in case of motorbikes also higher 
order terms are selected, indicating a more complex 
functional relationship.

Cloud cover seems to have an important effect on 
motorbike counts, in particular on federal roads. But also 
in case of cars on federal roads, cloud cover is selected 
at 45% of all stations. Wind speed and precipitation are 
selected at the majority of federal road station in case 
of motorbikes, but not in case of cars. In case of trucks, 
meteorological variables are rarely selected.

4.3 � Skill scores
For each vehicle type at each traffic station the cross-
validated MSESS of MET is computed, with NO_MET as 
the reference. The MSESS quantifies the improvement of 
the model predictions that results from including mete-
orological predictor variables in the regression models. It 
should be noted that due to the setup of the model selec-
tion procedure no negative MSESS values occur, because 
predictors are only added to the model, if they improve 
the MSESS. The largest improvements due to meteoro-
logical variables occur in models for motorbike counts on 
federal roads with a median MSESS of 0.35, which cor-
responds to a reduction of the MSE by 35% compared 
to a model without meteorological variables (Fig.  2). At 
25% of all federal road stations the MSESS for motorbike 
counts is larger than 0.42, which constitutes a consider-
able reduction of the model error due to the inclusion of 
meteorological information in the model. The median 
MSESS, and thus the improvement against the model 
without meteorological variables, is about 3 times larger 
on federal roads than on highways. The median MSESS 
of car counts is 0.04, which is considerably smaller than 
the MSESS of motorbikes. However, at individual sta-
tions MSESS of cars values reach more than 0.3. For vans 
on federal highways the MSESS are almost as large as for 
cars. For vans on federal roads and for truck in general 

the improvements due to weather predictors is zero or 
negligibly small, which is consistent with the previous 
observation that in most cases no meteorological predic-
tor variables were added to these models.

The spatial distribution of the MSESS values of motor-
bike counts shows that in case of stations on federal 
highways the largest MSESS occur in areas with high 
population density, like Berlin, Munich or the Ruhr area, 
Cologne and Bonn (Fig. 3a). On federal roads the spatial 
distribution is more homogeneous (Fig.  3b). In case of 
cars most stations show a relatively low MSESS, but some 
stations with considerably larger MSESS values stand out, 
which are closely linked to touristic regions. For exam-
ple, MSESS values of more than 0.2 are found on routes 
from cities like Hamburg and Bremen towards seaside 
resorts at the North Sea and Baltic Sea (Fig. 3c, d). The 
largest MSESS for cars of about 0.3 is found on the high-
way from Munich towards touristic areas in the Bavarian 
Alps (Fig.  3c). In case of cars on federal roads, stations 
with large MSESS values are located at roads leading to 
recreation areas and nature parks like Sauerland, Eifel, 
Swabian Alb and Franconian Switzerland (Fig. 3d).

The visual inspection of the spatial distribution of 
MSESS values of models for motorbike counts indi-
cated a larger relevance of weather in densely populated 
areas. To quantify this relationship, the Spearman cor-
relations between the MSESS values and the popula-
tion density within a radius of 10 km around the specific 

Fig. 2  Distributions of mean squared error skill scores (MSESS). The 
MSESS compares models with (MET) to models without (NO_MET) 
meteorological predictor variables, separated by vehicle and road 
type. Box and whisker plots indicate the variability of the MSESS 
between different traffic stations with the median (horizontal lines), 
interquartile range (thick vertical lines) and minimum and maximum 
values (thin vertical lines) of the distribution
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traffic stations is computed (Table 5). The largest correla-
tion of 0.53 is found in case of motorbikes on highways, 
indicating that in regions with high population densities 
meteorological predictor variables lead to the largest 
improvement of models for motorbike counts. In case 
of cars the correlations are smaller in magnitude and 
negative, indicating that in regions with low population 
densities meteorological predictor variables improve the 
prediction of car counts.

Fig. 3  Maps with mean squared error skill score (MSESS). Models for hourly motorbike and car counts with (MET) are compared to models without 
(NO_MET) meteorological predictor variables at highway and federal road stations. Positive MSESS values indicate an improvement of the model by 
including meteorological parameters

Table 3  Spearman correlations between different 
meteorological parameters

The Spearman correlations between different meteorological parameters are 
calculated for each traffic station. The table shows the average correlations of all 
traffic stations

Temp Precip Cloud Wind

Temp 1.00

Precip − 0.03 1.00

Cloud − 0.37 0.22 1.00

Wind − 0.07 0.21 0.19 1.00
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Table 4  Fraction of traffic stations (in percent) for which a predictor variable or interaction term is selected by the model selection 
procedure

Highway Federal road

Predictor variable Mot Car Van Trk Mot Car Van Trk

hour 0 0 0 0 0 0 0 0

dow 0 0 0 0 0 0 0 0

mon 100 100 100 100 100 100 100 100

hour:dow 100 100 100 100 100 100 100 100

holiday 6 54 74 99 1 78 79 91

trend 13 38 12 58 19 23 9 27

break 2 4 11 11 1 6 8 4

break:trend 36 32 79 27 10 44 70 38

break:hour 52 33 70 23 14 46 74 48

temp 95 89 76 8 93 86 38 16

temp 33 0 0 0 55 0 0 1

temp2 3 4 1 0 7 0 0 0

temp3 7 0 0 0 17 0 0 0

temp4 15 0 0 0 14 1 0 0

weekend:temp 59 82 54 5 39 82 29 13

weekend:temp2 10 18 30 2 18 11 9 3

weekend:temp3 7 3 1 1 23 8 1 0

weekend:temp4 23 4 1 0 17 18 1 0

cloud 68 10 1 0 99 45 4 0

cloud 3 0 0 0 3 0 0 0

cloud2 9 1 0 0 25 0 0 0

cloud3 1 0 0 0 3 0 0 0

cloud4 0 0 0 0 1 0 0 0

weekend:cloud 18 5 1 0 9 13 2 0

weekend:cloud2 31 3 0 0 50 15 1 0

weekend:cloud3 5 1 0 0 10 10 1 0

weekend:cloud4 1 0 0 0 2 7 0 0

wind 52 7 4 4 89 15 3 1

wind 1 0 0 0 2 0 0 0

wind2 3 0 0 0 10 0 0 0

wind3 1 0 0 0 6 0 0 0

wind4 0 0 0 0 0 0 0 0

weekend:wind 24 6 4 4 7 9 3 0

weekend:wind2 14 1 1 0 27 4 0 0

weekend:wind3 9 0 0 0 30 2 0 0

weekend:wind4 1 0 0 0 7 0 0 0

precip 40 5 25 0 90 1 2 0

precip 0 0 0 0 0 0 0 0

precip(1/2) 1 0 0 0 1 0 0 0

precip(1/3) 5 0 1 0 3 0 0 0

precip(1/4) 3 0 0 0 9 0 0 0

weekend:precip 0 0 0 0 0 0 0 0

weekend:precip(1/2) 8 0 8 0 11 0 1 0

weekend:precip(1/3) 11 1 14 0 23 0 1 0

weekend:precip(1/4) 9 3 1 0 43 1 0 0
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For a more detailed analysis of weather impacts on 
model performance, the cross-validated MSESS is com-
puted separately for the hours of the day, the days of the 
week and the months of the year. In case of motorbike 
counts on federal roads the largest MSESS values occur 
during daytime, in particular in the afternoon hours, 
where median MSESS values of almost 0.4 are reached 
(Fig.  4). Between 0 and 5  AM the MSESS show almost 
no improvement, at some stations even negative MSESS. 
Furthermore, on Saturdays and Sundays the MSESS val-
ues are generally higher than on workdays. The largest 
improvements in the course of the year is found dur-
ing the transitional seasons, in particular in March and 
October, where the median MSESS reach almost 0.5. In 
contrast, in the winter months December and January 
the median MSESS values are almost zero. This is likely 
due to the effect, that in winter the conditions for motor-
biking are generally bad due to low temperatures and 
therefore the addition of weather predictors to the model 
brings no benefit compared to simply providing the 
the information of climatological low temperatures by 
using the month of the year. However, in the transitional 
months the weather can change frequently between fair 
and adverse conditions and climatology given by the 
month of the year is not a good predictor. Thus, the avail-
ability of weather predictors in the models is beneficial to 
differentiate between these situations. In case of motor-
bike counts on federal highways the patterns are similar, 
but the MSESS values are smaller compared to federal 
roads.

In case of models for car counts, the MSESS values 
are again smaller than for motorbikes. However, at some 
stations a considerable improvement is evident during 
weekends and in the afternoon, with maximum MSESS 
values of more than 0.4 (Fig. 5). An interesting difference 
compared to motorbikes are the relatively high MSESS 
values in January and low values in April. It could play 

a role here that a car, as a sheltered mode of transport, 
can be easily used at low temperatures and otherwise 
fair weather conditions. Motorbike rides at low tempera-
tures, however, might be unpleasant, or seasonal licenses, 
which are common in Germany, might prohibit the use of 
motorbikes in winter.

4.4 � Functional relationships
The iterative predictor selection procedure chooses 
from a set of relevant meteorological parameters with 
different exponents. This allows non-linear functional 
relationships between the meteorological predictor 
variables and traffic flow. To study these functional 
relationships, one specific meteorological predictor 
variable is varied, while all other variables are held con-
stant (see Table 6 for details). The variables are chosen 
to represent weather situations typical for the summer 
season. This is done separately for Mondays, Saturdays 
and Sundays to assess the differences between the func-
tional relationships on working days and weekends. 
Tuesday to Friday are comparable to Mondays and are 
therefore not shown here. To compare the model pre-
dictions of traffic counts at the different stations, the 
traffic counts are rescaled, so that 0 and 1 correspond 
to the average daily minimum and maximum hourly 
traffic flow at the specific station. For visualization of 
the functional relationships the modeled rescaled traf-
fic counts of all stations are averaged (thick colored 
lines in Fig.  6). Additionally the 0.1 and 0.9 quantiles 
are computed to show the variability between the dif-
ferent stations (shaded areas in Fig. 6).

In case of motorbike counts on federal roads, the 
station-average traffic counts are highest on Sundays, 

Table 4  (continued)
Note that for one station a meteorological variable can be selected multiple times, e.g. with different exponents. Rows with italic font show the fraction of stations for 
which a specific meteorological variable was selected at least once with any exponent or in an interaction term

Table 5  Spearman correlation between MSESS values of models 
with meteorological predictor variables and the population 
density within a radius of 10 km around the specific traffic 
stations

Vehicle type Highways Federal roads

Mot 0.53 0.37

Pkw − 0.12 − 0.17

Lfw − 0.05 − 0.16

Lkw − 0.10 0.02

Table 6  Setting of predictor variables used for predictions of 
hourly vehicle counts displayed in Fig. 6

Variable Value

Hour 12 PM

Month June

Holiday no

Trend First day of time series

Breakpoint First segment

Precip 0 mm/h

Temp 25°C

Cloud 50%

Wind 10 m/s
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followed by Saturdays and Mondays (Fig.  6a–d). 
This indicates that motorbikes are often used for lei-
sure activities. The traffic flow as a function of daily 
maximum temperature shows that motorbike counts 
decrease strongly at lower temperatures (Fig.  6a). The 
maximum is reached at about 25°C. Higher tempera-
tures lead to a reduction of motorbike counts.

Motorbike counts as a function of hourly precipita-
tion show highest values when there is no precipitation 

(Fig. 6b). During hours without precipitation motorbike 
counts are almost 5 times larger on Sundays compared to 
Mondays. An increase of hourly precipitation leads to a 
sudden drop in motorbike counts and an almost asymp-
totic flattening of the curve where precipitation exceeds 
2  mm/h. Precipitation of 2  mm/h leads to reduction of 
motorbike counts by 50% compared to hours without 
precipitation. This reasonable non-linear functional rela-
tionship between precipitation and motorbike counts is 

Fig. 4  Distributions of mean squared error skill scores (MSESS). The MSESS compares models for motorbike counts with (MET) to models without 
(NO_MET) meteorological predictor variables, computed for different hours of the day, days of the week and months of the year. Box and whisker 
plots indicate the variability of the MSESS between different traffic stations with the median (horizontal lines), interquartile range (thick vertical 
lines) and minimum and maximum values (thin vertical lines) of the distribution
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established by using 1/k as an exponent for precipitation, 
with k = {1, 2, 3, 4} (see Table 2). One could argue that a 
sharp break between “no precipitation” and “precipita-
tion”, which could be introduced by using a binary vari-
able, would be more appropriate. However, the smooth 
transition better reflects the uncertainties related to 
the precipitation data and the model formulation. For 
example, due to the lack of an unambiguous relationship 

between radar echo and the actual precipitation amount, 
RADLOAN data may show precipitation, although there 
was no precipitation on the ground. Also a potential 
time-lagged effect of onsetting precipitation on motor-
bike counts is not included in the model.

The relationship between motorbike counts and daily 
average cloud cover reveals particularly large motor-
bike counts in cloud-free situations and a reduction of 
motorbike counts with increasing cloudiness (Fig.  6c). 

Fig. 5  Distributions of mean squared error skill scores (MSESS). The MSESS compares models for car counts with (MET) to models without (NO_
MET) meteorological predictor variables, computed for different hours of the day, days of the week and months of the year. Box and whisker plots 
indicate the variability of the MSESS between different traffic stations with the median (horizontal lines), interquartile range (thick vertical lines) and 
minimum and maximum values (thin vertical lines) of the distribution
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On cloud-free Sundays the motorbike counts are 
almost twice as large as on cloudy Sundays. However, 
one should be aware of the correlation between cloud 
cover and precipitation and between cloud cover and 
temperature, which could affect the results. Further-
more, the variability between the different traffic sta-
tions is relatively large at low cloud covers.

Motorbikes are especially vulnerable to strong wind 
speeds and one can expect that motorcyclists avoid trips 
under windy conditions. This is also reflected by the 
models. Increasing daily maximum wind gusts lead to a 
strong reduction of motorbike counts (Fig. 6d). Extreme 
wind gusts of more than 25 m/s lead to the lowest motor-
bike counts, also when compared to the effects of the 
other meteorological parameters. Such wind speeds 
occur, for example, in summer during thunder storms or 
in winter in conjunction with extratropical cyclones.

5 � Discussion
While previous studies have addressed weather impacts 
bicycle, car or truck traffic, there was little research on 
the direct effect of weather on motorcycle traffic. This 
study presents evidence that motorcycles, as a non-
sheltered mode of transport, is strongly depending on 
weather conditions. The findings that motorcycle flow 
increases with temperature and decreases with precipita-
tion is in line with a number of studies addressing bicycle 
travel behavior [5, 6] and outdoor activities in general [2, 
3]. Cloudiness and wind speed are mostly not consid-
ered in studies of traffic and outdoor activity. We showed 
that low cloud cover and low wind speeds coincide with 
a higher motorbike traffic flow, which is in line with the 
general findings that fair weather increases open-air 
activity [1]. We could also show that high temperatures 
above 25°C lead to a decline in motorbike counts, which 
is similar to bicycle usage [8, 9] and outdoor activities in 
general [7].

Fig. 6  Modeled rescaled motorbike counts on federal roads. Modeled motorbike counts are shown as a function of different meteorological 
parameters and different days of the week. While one predictor variable is varied, all other variables are held constant (see Table 6). Thick lines 
represent the mean value of all traffic stations. The shaded area indicates the 0.1 and 0.9 quantile of the values of all traffic stations. The gray dashed 
lines at 0 and 1 indicate the average daily minimum and maximum of motorbike counts, which is used for the rescaling procedure
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Results of previous studies, which have analyzed 
individual traffic stations, suggested that traffic flow in 
recreational areas is more dependent on weather com-
pared to urban areas [17]. By analyzing a large number 
of stations and specific vehicle types, we can confirm 
that this is particularly true for car traffic. At the major-
ity of traffic stations we found that the improvement of 
prediction of hourly car counts by including meteoro-
logical variables is small. However, traffic stations along 
routes towards seaside resorts and nature parks showed 
a substantial improvement and thus a pronounced 
dependence on meteorological variables.

As suggested by previous research [1], we established 
non-linear relationships between meteorological pre-
dictor variables and traffic flow by choosing from mete-
orological predictor variables with different exponents 
in an automatic selection procedure. Another meth-
odology specifically designed to describe non-linear 
relationships are generalized additive models (GAMs), 
which have been applied for example to predict crash 
frequencies [49, 50]. GAMs use smooth function like 
cubic splines to find the optimum functional relation-
ships between predictor and target variable. As a test 
we have also applied GAMs to our data and found that 
it leads to unrealistic behavior at the extreme ends 
of the distributions. Also the strong drop of traffic 
flow with onsetting precipitation lead to considerable 
overshooting behavior of the splines. It appears to be 
unsuitable to apply GAMs in an automatic procedure 
to a large number of stations, where a detailed evalu-
ation of each individual model is infeasible. However, 
it may be suitable to apply GAMs to individual traffic 
stations in a detailed study, where fine-tuning of the 
model is possible.

Böcker et  al. [1] suggested to consider interactions 
between different meteorological variables. For exam-
ple, the impact of wind speed on motorbike counts 
may be different on days with precipitation compared 
to days without. Under rainy conditions motorcyclist 
already refrain from making trips, so that additional 
strong wind speeds make no difference. We have 
included the interaction of precipitation as a categori-
cal variable with the other meteorological predictor 
variables. However, in general no major improvement 
of the model was found. The changes of the MSE less 
than 1% in most cases. Therefore the results were not 
included in this paper. Due to the increasing complexity 
of the models when using interactions, future research 
in this direction could focus more on individual sta-
tions, which have been shown do be strongly affected 
by weather.

The Poisson regression model assumes an equality of 
mean and variance of the count data. In our case this 

assumption does not hold due to an overdispersion of 
the data. We have tested if the use of a negative binomial 
regression model would lead to an improvement of the 
predictive skill, but that was not the case. Instead, the 
predictive skill decreased, in particular at hours with high 
traffic volume. Therefore, we decided to use the Poisson 
model, which is acceptable, because the overdispersion 
mainly the estimation of standard errors, which were not 
the focus of this study.

6 � Conclusions
We have shown that the use of meteorological predic-
tor variables can substantially increase the predictive 
skill of models for hourly traffic flow, although the 
magnitude of the improvement depends strongly on 
vehicle type and location of the traffic station. A par-
ticular result was that motorbike counts are strongly 
weather-dependent and showed a highly non-linear 
relationship to the meteorological variables. Mean 
squared errors of motorbike counts could be reduced 
by up to 60% by including meteorological variables 
in the models. This is reasonable, since motorbikes 
are a non-sheltered transportation mode, frequently 
used for leisure activities and less frequently for com-
mercial purposes. In case of cars the analysis showed 
mixed results. As a sheltered mode of transportation, 
which is used for commuting, leisure activities as well 
as commercial purposes, car counts showed the ten-
dency to be less sensitive to weather in urban areas, 
but strongly weather dependent in touristic regions 
like seaside resorts and nature parks. Lastly, counts 
of delivery vans and trucks, which are mainly used 
for commercial purposes, showed only low weather 
dependence.

These findings open up several potential appli-
cations of such models. First, analyses of weather 
impacts on crash probabilities can be improved by 
including weather-related variation of traffic flow 
as a predictor variable. Second, taking into account 
weather effects in traffic flow predictions could 
improve route planning in navigation systems and 
could assist in traffic management systems to com-
pensate or redistribute high traffic volumes, in par-
ticular in touristic regions. Furthermore, prediction of 
traffic volumes taking into account weather forecasts 
would allow day-ahead planning of visitor numbers in 
touristic areas.
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