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Abstract 

Purpose:  This study first presents a method to identify the parameters increasing road vulnerability on a macro-
scopic road network model. The second part exploresthe effect size difference of the analyzed attributes on network 
vulnerability through the implementation of different autonomous vehicles (AVs) penetrations and automation levels.

Methods:  The road traffic network of Budapest, Hungary on PTV VISUM is studied by adopting a passenger car unit 
factor procedure to simulate the effect of AVs on road saturation. Five link parameters were used: length, distance 
from the centre, speed, number of lanes, and number of connectors. Network vulnerability was studied by simulat-
ing a combination of road elimination process with different passenger car unit values for AVs.

Results:  The analysis found the number of road lanes is the most significant parameter, affecting the link criticality; 
followed by road length and distance from the centre. The analysis of four AV scenarios with different AV penetration 
and level of automation showed huge effect differences ranging from 3.50% for a simple AV automation level with 
low AV percentage to as large to 28.53% for a fully automated fleet.

Conclusions:  AV implementation has proved efficient in reducing the amount of travel delays in the case of road 
failure. Finally, it was found that the number of lanes remained the most significant influencing parameter on travel 
delay. The main question is to discover the effect size difference of the analyzed attributes on network vulnerability 
through the implementation of different AVs penetrations and automation levels.
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1  Introduction
Road networks are vulnerable to disasters, natural and 
human-made alike (earthquakes, floods, protests, ter-
ror attacks and catastrophic accidents). Damage caused 
by disasters on a given set of network element can affect 
the operability of the whole transportation system. How-
ever, not all network components equally jeopardise the 
system. Typically, some elements are more critical to 
the network functioning than others. Critical network 
components are those whose loss produces the greatest 
effects on the system [37]. Identifying the most critical 

system components is most vital for rescue operations in 
the case of a disaster,and it is also crucial to maintain the 
operability of the network to diminish substantial social 
and economic losses [22]. The identification of critical 
infrastructure components (links and nodes) is a crucial 
factor in vulnerability analysis,as it can help to reinforce 
these components, prioritising their maintenance or 
construct new alternative parallel paths [7, 23]. The dis-
order and interruption of links can change the shortest 
paths between node pairs and increase the travel distance 
between them, resulting in higher travel time and delay.

Nowadays, new technologies of autonomous vehi-
cles (AVs), cooperative intelligent transport systems 
(C-ITS), and intelligent driving can be the most sig-
nificant measures to reduce disaster impacts on road 
transportation operability. Communications between 
AVs and infrastructure (vehicle-to-vehicle and 
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vehicle-to-infrastructure) are valuable for identifying the 
traffic states of urban roads, providing more information 
for road conditions and intersection control [26, 41]. The 
exchanged information helps vehicles choose and per-
form the best available action to improve traffic opera-
tions [25]. However, little research has been conducted 
on the expected impact of connected AVs on road net-
work vulnerability and how the network operates if roads 
are eliminated.

The present article aims to identify critical roads on a 
macroscopic road network by the road characteristics 
and traffic parameters on the operability of the whole 
network; such as length, distance from the centre, speed, 
number of lanes, and number of connectors. This can 
provide a useful tool to have more understanding of 
which road characteristics have a higher impact on the 
network vulnerability. The second part of the article dis-
cusses a simulation of the predicted impact of AVs on 
the vulnerability of the network by analysing the effect 
of different AV scenarios on network operability in nor-
mal conditions and if roads are eliminated. In order to 
achieve these objectives, a case study area of Budapest, 
Hungary, was taken as the base model for the study.

This article is structured as follows: Sect.  2 describes 
the literature concerning road network vulnerability 
studies and the impact of AV technologies on traffic. Sec-
tion 3 explains in detail the methodology used. Section 4 
presents and discusses the results established from the 
case study. Finally, in the conclusion section, the authors 
describe the study findings, its limitations, and future 
research recommendations.

2 � Literature review
2.1 � Vulnerability
Vulnerability studies perform two tasks: some evaluate 
the reduction of transportation network performance 
under discomposure, and identify critical components 
of the transportation network [19, 27]. The latter task is 
accomplished by assessing the decrease in network per-
formance indices when a given component is eliminated 
in [15]. Expert assessment is applied by [10, 28]. García 
Palomares and his colleagues’ study in Spain developed 
a methodological framework to evaluate the critical road 
sections in terms of travel time. Their analysis concluded 
that radial highways are the most critical links [12]. 
Akbarzadeh’s team also studied road network vulner-
ability by analysing travel time change, showing that links 
connecting neighbouring clusters are the most critical 
ones compared to links with the highest congestion [1].

Gecchele et  al.’s vulnerability study used an activity-
based model to evaluate travel demand changes due to 
link closure, and identified link criticality utilising a set of 
vulnerability indicators [14]. Cui and Levinson compared 

the cumulative opportunity accessibility before and after 
removing freeway segments in an urban zone in their 
model. They found that critical links are near freeways 
or at a freeway segment [9]. Calvert and Snelder pre-
sented a Link Performance Index for Resilience (LPIR) 
indicator, which evaluates the resilience level of specific 
road sections in a more comprehensive road network [6]. 
Gauthier and his colleagues chose the increase in overall 
travel cost as a parameter to measure road network per-
formance in the presence of disruptions [13].

Another key issue involved in critical road identifica-
tion is predicting the traveller’s behavioural responses to 
road failure. Road failure causes changes in travel time 
uncertainty and travel behaviour regarding the trans-
port mode choice, travel route or cancelling the whole 
trip [34]. Drivers under travel time uncertainty tend to 
choose a dependable shortest path with more travel time 
saving and reduction of travel time variability, which may 
have the inverse effect in the case of a road failure, show-
ing that shortest routes aren’t always the best choice in 
travel time saving in case of road failure [7]. AVs con-
nected with each other and with the infrastructure can 
help find better routes to reduce uncertainty in the case 
of road failure [26].

2.2 � Connected autonomous vehicles
Many studies have been conducted focusing on the future 
impact of AVs on a road network. The studies examine 
the six different automation levels, exploring the effect 
of basic automation levels to fully automated vehicles 
[17, 33]. Another factor influencing the effect of AVs on 
a network is the percentage of AVs in the total traffic flow 
(AV penetration) [8]. Human driving factors in a traffic 
network are expected to be partially eliminated using 
innovative AV technologies, such as 360-degree cameras 
and sensors [38]. AV platooning showed a 60% reduc-
tion in gap time between vehicles, showing a significant 
improvement in road capacity and congestion reduction 
[24, 31]. Several other studies investigated the impact of 
AVs on a network using different parameters, including 
reaction, acceleration and deceleration, and traffic flow 
[16, 35, 36, 39].

Research on connecting AVs and the use of communi-
cation between the vehicle and other network elements 
(V2X: other vehicles, infrastructure and central traffic 
system) showed improvement on traffic flow stability, 
significantly smoothened the shock waves of traffic flow, 
reduced delay and road traffic emitted pollutants [5, 20, 
25, 32]. Studies on intersections showed a significant 
drop in vehicle travel time and travel delay in a connected 
vehicle environment [3, 11]

The above studies focused on either studying the vul-
nerability of a network or estimating the impact of future 
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AVs on the road transportation network. In this research, 
a framework will be developed to find the critical com-
ponents by the different traffic parameters of roads in a 
macroscopic road network, and predict how AVs will 
impact the vulnerability of the network.

3 � Methodology
This section first describes the macroscopic model used; 
then the assumptions for AV parameter identification 
inside the model are discussed. Finally, the framework 
used to study the sensitivity of different roads and the 
effect of AVs on the network are described.

3.1 � Model description
The Hungarian EFM (Egységes Forgalmi Modell, Uni-
form Traffic Model) implemented in the PTV Visum soft-
ware was used to construct the model in this study. The 
origin-demand matrices in the EFM represent real-life 
traffic data for Budapest and external zones connected to 
the city. The model also contains private transport data 
matrices and public transport data matrices. Private traf-
fic matrices include four different vehicle categories: cars, 
taxis, bicycles, and cargo vehicles divided into four other 
cargo subcategories. The model consists of more than 
30,000 roads corresponding to the whole road network 
of Budapest, including main roads, collector roads, and 
residential streets. Figure 1 below shows the EFM model.

The assignment was performed using the PTV 
Visum equilibrium assignment process, in which 

the assignment distributes the trips in several steps 
according to Wardrop’s first principle [40]. The equi-
librium assignment analyses the vehicle volumes on 
each road by dividing the demand constantly over sev-
eral iterations. The system then searches for alterna-
tive routes with lower impedance, where vehicles will 
be moved to new roads to improve network operabil-
ity. The procedure terminates when a balanced state 
is reached, meaning no more vehicles are to be moved 
between routes [29].

From the EFM model, 1000 zones inside Budapest 
and smaller clustered zones around the city were stud-
ied, focusing on private transport only Since most of 
the chosen roads only operates for private vehicles and 
the ones that don’t have their private public transport 
lanes (bus lanes). The sensitivity of the road network 
was measured by the change in the total delay time 
parameter of the network. The improvement caused 
by AVs is also shown by the travelled kilometres and 

Fig. 1  EFM model

Table 1  EFM model base scenario traffic parameters

Parameter Unit Total value

Total travel time by cars vehicle × hour/day 582,739

Total travel distance by cars vehicle × km/day 30,750,166

Daily total volume of cars vehicle/day 81,686,075

Total network delay vehicle × hour/day 136,911
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hours by car vehicle category. The base scenario model 
parameters are shown in Table 1 below. Since the study 
focuses on finding the change from a macroscopic 
point of view, the total delay of the whole network has 
been chosen as the key parameter to study the change 
in the whole network performance.

3.2 � AV parameter identification
As mentioned in the literature review, the implementa-
tion of AVs in traffic fleet is expected to affect the capac-
ity and saturation of the network due to different factors: 
the SAE (Society of Automotive Engineers) level of Auto-
mation, V2V and V2I communications, a smaller follow-
ing distances (Space headways), a smaller required gaps 
for lane changing, lower driving reaction times, walk-
ing, and parking times. Communication between vehi-
cles is maybe one of the strongest countermeasures in 
losing accessibility to part of the network. V2V and V2I 
communication provide AVs with a different alterna-
tive, replacing the eliminated roads due to emergencies, 
reducing jams resulting from vehicles being stuck in/
near eliminated roads. These types of communications 
are currently provided by several navigation software and 
apps such as Waze and google maps.

The passenger car unit (PCU) parameter in the PTV 
Visum model was used to reflect the expected changes 
in network saturation and travel time reduction. PCU 
reflects how much impact a specific transport mode 
such as heavy trucks or buses has compared to a one 
small passenger car has on traffic network variables [4]. 

Modifying PCU values for the AV class is based on the 
expected positive effect of connected AVs on road capac-
ity and saturation characteristics. The methodology cre-
ated by Török and his colleagues was adopted for five 
different scenarios, including the base scenario with no 
fully automated vehicles [2]. The methodology focuses 
on changing PCU value depending on the SAE level and 
AV penetration value. Simple polynomial regression was 
used to define the PCU value associated with each SAE 
level, as shown in Table  2. We expect a positive impact 
in the case of the different key performance indicators, 
however the main question is to discover the effect size 
difference of the analysed attributes on network vulner-
ability through the implementation of different AV pen-
etrations and automation levels.

The scenarios mix the different AV PCU factors with 
the five SAE penetration values. Table 3 below shows the 
chosen scenarios, with the corresponding SAE propor-
tion, and PCU values.

3.3 � Network sensitivity analysis framework
To study the sensitivity of different roads on a transport 
network, 30 roads with different characteristics were 
selected, shown in Fig.  2. The figure focuses mostly on 
showing the distribution of the selected roads since some 
of the roads are really close which can be identified as one 
The first characteristic of the chosen roads is the number 
of driving lanes in each direction. The 30 selected roads 
were divided into three groups of one, two, and three 
lanes in each direction with ten roads in each group. The 
second characteristic is the distance from the mid-point 
of the road to the model centre. Another characteristic is 
the number of connectors. These are the points in which 
vehicles can enter/exit the selected road from/to other 
roads. The last two characteristics are the maximum 
allowed speed and the length of the roads. Table 4 sum-
marises the selected road characteristics.

The adopted methodology to study network sensitivity 
eliminates one road each time by reducing the capacity 
of the eliminated road to zero so no vehicles can use it. 
And runs the five chosen AV scenarios by modifying the 
PCU, and executes the equilibrium assignment for each 
scenario. Changes in traffic parameters are analysed for 

Table 2  Assumed passenger car units associated with each SAE 
category [2]

SAE category SAE PCU

SAE0 1.00

SAE1 0.98

SAE2 0.95

SAE3 0.90

SAE4 0.80

SAE5 0.65

Table 3  SAE level proportion in each scenario [2]

SAE Category SAE0 SAE1 SAE2 SAE3 SAE4 SAE5 Scenario PCU

AV0 1 0 0 0 0 0 1.000

AV30 0.70 0.18 0.07 0.03 0.02 0 0.986

AV50 0.50 0.19 0.12 0.11 0.06 0.02 0.960

AV80 0.20 0.08 0.13 0.13 0.26 0.20 0.856

AV100 0 0 0 0 0 1 0.650
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each scenario. Then another road is selected and elimi-
nated until all 30 roads are eliminated. Figure 3 shows the 
framework of the used methodology.

3.4 � Regression model and model validation
Multiple linear regression was applied to estimate the 
most significant parameter affecting road criticality. 
Normality, collinearity, and heteroscedasticity condi-
tions were checked to make sure that linear regression 
is applicable. The data were put into a correlation coeffi-
cient matrix to check for collinearity between the param-
eters. The matrix showed no high colinearity between 
the parameters, with the highest value of 0.63 between 
speed and road length, which is lower than the accepted 
maximum value of 0.80. The normal P–P plot was used 
to check normality, and a scatterplot of the residuals was 
used to check heteroscedasticity [21]. Due to the frequent 
appearance of tie values in the sample and due to our goal 
to apply transparent and explicit methods we decided to 
use Shapiro Wilk test and Jarque–Bera tests [18]

Due to the frequent appearance of tie values in the 
sample and due to our goal to apply transparent and 
explicit methods we decided to use the Jarque–Bera test 
[18]. On the other hand, as far as tests for normal distri-
butions are concerned, Shapiro–Wilk is one of the most 
popular and widely used tests for small sample sizes, 

accordingly, we also investigated the sample with the Sha-
piro–Wilk test [30]. At the same time, we considered the 
results of the Jarque–Bera test more relevant in this case, 
since the Jarque–Bera test is one of the most transparent 
and explicit since it captures a combination of Skewness 
and Kurtosis which are the two dimensions that cap-
ture divergence from a Normal distribution. p value for 
Jarque–Bera tests and Shapiro–Wilk is shown in Table 5 
below. Jarque–Bera test shows p value higher than 0.05 
showing that the data are consistent with having skew-
ness and excess kurtosis zero, while Shapiro–Wilk gives 
mostly lower p value than 0.05 giving some doubts about 
the normality of the residuals.

An 80/20 percent for model developing/validation has 
been chosen, where 24 roads have been chosen for the 
development of the model. Roads 2, 8, 13, 16, 28, and 30 
have been selected randomly to validate each developed 
model. Root Mean Square Error (RMSE) value was calcu-
lated to give the average distance between the predicted 
total delay from the developed models and the total delay 
values from the simulation in the dataset for the valida-
tion process.

Fig. 2  Roads selected for elimination
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4 � Results and discussion
The first part of the analysis focused on finding the 
increase in total delay by eliminating each road to find 
the most important road characteristics affecting the 
network for AV0 scenarios. The total daily delay (hours) 
for the whole network was calculated. Thus, the baseline 
value of the total daily delay is 136 911 h. Each scenario 
was compared to this value. Figure  4 below shows the 
impact of the elimination of 30 roads on network delay, 
presented in percentage.

The developed vulnerability function, using multi-lin-
ear regression, is shown below with the R squared value 
of 89.1%. The normal P–P plot of the dependent vari-
able is given in Fig. 5, and Table 6 presents the estimated 
p value of each parameter, showing the residuals are 
approximately linear, which supports the condition that 

the error is normally distributed.Table 6 also shows VIF 
value which all are between 1 and 5 indicating moderate 
correlation between the given variables in the mode. The 
result indicates that the road length, number of lanes, 
speed, and number of connectors have a positive impact 
on delay. In contrast, the distance from the centre has a 
negative impact on the total delay increase. The regres-
sion also indicated that the number of lanes has the high-
est impact on the network delay, seconded by length and 
distance, which almost have similar effects, which were 
all expected results.

where
L: Length of the eliminated road [km].

Increase in Total Delay =352.49L+ 1017.3N + 55.69S

− 319d + 127.6Co− 4109.5

Table 4  Selected roads characteristics

Number Length Nr. lanes Speed Distance Capacity Nr. of 
connectors

1 1.80 1 40 2.18 900 5

2 4.39 1 45 6.01 1000 7

3 3.87 1 50 7.97 1200 15

4 1.54 1 40 1.11 900 9

5 22.41 1 65 24.51 1000 8

6 19.73 1 90 31.65 1500 6

7 4.34 1 45 8.84 1000 14

8 4.57 1 50 0.82 1200 8

9 12.84 1 50 10.29 1400 7

10 15.44 1 80 16.41 1400 7

11 1.60 2 50 0.22 2400 12

12 8.80 2 60 6.69 2800 15

13 12.19 2 115 21.25 4000 3

14 1.87 2 50 1.64 2400 16

15 7.89 2 100 15.31 3200 4

16 2.97 2 55 5.38 2400 9

17 14.45 2 115 21.39 4000 6

18 5.04 2 60 9.35 2800 11

19 13.55 2 115 18.06 4000 6

20 1.05 2 50 0.56 2600 5

21 6.26 3 100 7.82 5100 7

22 4.57 3 60 6.29 4200 10

23 6.90 3 60 4.21 4200 14

24 3.63 3 60 3.92 4200 16

25 24.93 3 100 13.27 4800 9

26 5.07 3 50 3.41 3900 19

27 1.26 3 50 2.66 3900 6

28 5.63 3 60 4.72 4200 31

29 2.62 3 60 6.95 4200 5

30 3.88 3 60 7.45 4200 11
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N: Number of lanes of the eliminated road.
S: Maximum speed allowed on the eliminated road in 

[km/h].
d: Distance of the middle of the road from the centre of 

the model [km].
Co: Number of connectors along the eliminated road.
The second part of the analysis focuses on finding 

the impact of implementing AVs into the model. The 
four AV scenarios were compared with the base sce-
nario described in Table  1 in the methodology sec-
tion (AV0). The travelled daily kilometres showed a 
reduction ranging from 0.19 to 1.29%, also, travelled 
hours reduction ranged from 0.73 to 5.78% of the total 
daily travelled hours. The most significant improve-
ment induced by AVs is witnessed in total daily delay. 
AV30 scenario showed that even with only introduc-
ing 30% AVs of the entire traffic fleet with zero SAE5 
automation level, a 3.5% reduction was achieved. AV50 
and AV80 lowered the delay by 6.89% and 14.81%, 
respectively, which also introduced a low percent-
age of SAE5 AVs. The most significant decrease in the 
delay is achieved by introducing a whole fleet of SA5 
AVs, reducing total daily delay by 28.52%. The result is 
shown in Fig. 6 below.

The analysis of introducing AVs into the traffic 
fleet also reduced the rise in delay in the case of road 
obstructions and elimination. For each of the presented 
AV scenarios, the total daily delay was estimated for the 
whole network and also calculated for the 30 road elim-
ination process and compared. The results are shown in 
Fig. 7 below. For example, the highest increase in delay 
is for road number 25, with a rise of 8.26% in the case 
of zero AVs (AV0). This increase is reduced to 7.68%, 
7.14%, 5.95%, and 4.26% for AV30, AV50, AV80 and 
AV100 scenarios, respectively, showing a 50% decrease 
in the rise of delay. An improvement as big as 60% is 
reached with fully SA5 AVs for road number 5. The 
average reductions in delay are 7.78%, 15.43%, 24.96% 
and 43.08% for AV30, AV50, AV80 and AV100, respec-
tively. Figure 8 shows the results for each AV scenario 
and road.

Vulnerability functions for the increase in total delay 
were developed for each AV scenario to understand 
improvements caused by AVs on network sensitivity in 
the case of road blockage. The four developed regres-
sion models are shown below with R squared values of 
86.5%, 88.6%, 87.6%, and 83.9% for AV30, AV50, AV80, 
and AV100, respectively. Table  7 shows the estimated 

Fig. 3  Methodology framework for sensitivity analysis

Table 5  Jarque–Bera and Shapiro–Wilk p value associated with 
each parameter

Parameter Jarque–Bera p value Shapiro–
Wilk p 
value

Length 0.1065 0.0022

Nr. lanes 0.3247 0.0003

Speed 0.1636 0.0010

Distance 0.0721 0.0136

Nr. of connectors 0.4956 0.2685
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p value for each developed model. Further analysis of 
each independent variable weight compared to all vari-
able values are shown in Fig. 9. The speed, distance, and 
the number of connectors weights are nearly unchanged 
if AVs are implemented. The most significant change is 
shown in the increase in the number of lanes weight of 
the eliminated road in the vulnerability equation with 
more AVs in the traffic flow and road length–weight 

reduction for the same condition. The changes in 
weights mean that roads with higher number of lanes 
are more sensitive to a fully automated flow network 
than to road length. Another is that the number of lanes 
significantly impacts the network delay.

Validation for the five developed mathematical models 
has been made using 20% of the total 30 selected roads. 
RMSE values calculated for the six roads were evalu-
ated firstly by comparing them with RMSE values of the 
dataset used for developing the model and secondly by 
calculating the normalized RMSE values. Table  8 below 
presents the validation process results. The first com-
parison between RMSE of the validation dataset and the 
training dataset shows a low difference. The Normalized 
RMSE shows values of 0.23 and lower; these two findings 
with the calculated R2 indicate that the developed models 
can relatively predict the data accurately.

AV 30 Increase in Total Delay =278.98L+ 1000N

+ 58.69S − 296d

+ 150.36Co− 4410

AV 50 Increase in Total Delay =306.93L+ 886.72N

+ 49.769S − 282d

+ 113.02Co− 3630

AV 80 Increase in Total Delay =264.72L+ 747.8N

+ 40.29S − 243.5d

+ 86.17Co− 2767

AV 100 Increase in Total Delay

= 183.64L+ 618.96N + 30.05S − 183.44d + 63.14Co− 2054

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

De
la

y 
In

cr
ea

se
%

Road Number
Fig. 4  Delay increase percentage for each eliminated road for AV0 scenario

Fig. 5  Normal P–P plot of regression residual of independent 
variable increase in total delay

Table 6  p value associated with each parameter of AV0 model

Parameter p Value VIF value

Length 3.03 × 10–6 3.70

Nr. lanes 0.006 1.97

Speed 0.0019 3.46

Distance 2.28 × 10–5 4.68

Nr. of connectors 0.0266 1.30
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Fig. 7  Delay increase percentage of different AV scenarios for each eliminated road
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5 � Conclusion
This research studied road network vulnerability in 
terms of daily travelled hours, daily travelled km and 
total delay by eliminating roads with different character-
istics (length, distance from the centre, speed, number 
of lanes, and connectors). Simulations and the develop-
ment of a multi-linear regression statistical model of 26 
different eliminated roads concluded that the number of 
lanes in a road has the most significant effect on delay. 
The second high impact characteristics are road length 
and distance from city centre, followed by the remaining 
characteristics.

A methodology was adopted to study the impact of 
autonomous vehicles (AVs) on the network model using 
different passenger car values (PCU) for AVs. Four sce-
narios were chosen with different combination of SAE 
levels of automation and AV proportion in the traffic 
flow. Total delay showed significant improvement reach-
ing a 28.52% reduction in a fully automated fleet scenario. 

Travelled daily kilometres and hours were also reduced 
by 0.19–1.29% and 0.73–5.78% with the various AV sce-
narios, respectively.

Finally, the proposed model vulnerability based on 
delay was examined for all 30 selected roads for the four 
AV scenarios. The introduction of AVs resulted in a sig-
nificant reduction of the increased delay caused by elimi-
nated roads. The average decrease proved to be up to 
43.08% from the base scenario with all conventional vehi-
cles. The findings were further analysed by developing a 
statistical delay model for the four AV scenarios and com-
pared with the zero AV statistical model. It was found 
that the impact of the road number of lanes parameter on 
delay has significantly increased with higher AV penetra-
tion. At the same time, the number of lanes remained the 
most significant one in this respect.

This research did not consider the change in speed 
caused by the failure of the selected road on other roads, 
especially adjacent roads. Future work will focus on 
studying and applying a speed correlation matrix for the 
whole network. The study also focused on eliminating 
one road at a time; a good extension is examining how 
eliminating a combination of roads or on the influenced 
region with AV implementation; consequently, it would 
be possible to model AVs in a more dynamic method-
ology. Such work could also explain the relationship 
between AV implementation, number of eliminated road 
lanes, and delay relation found in this paper. Future work 
will also focus on terminating the roads and re-routing 
all public services using the eliminated road to different 
routes.
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Table 7  p value associated with each parameter of AV30, AV50, 
AV50, and AV100 models

Parameter AV30 AV50 AV80 AV100

Length 0.0001 4.83 × 10–6 6.22 × 10–6 8.83 × 10–5

Nr. Lanes 0.0104 0.0075 0.001 0.0133

Speed 0.0021 0.002 0.0038 0.0107

Distance 0.0001 2.91 × 10–5 3.64 × 10–5 0.00024

Nr. of connectors 0.016 0.029 0.045 0.101
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Fig. 9  Independent variable weight compared to all variables values

Table 8  Models validation results

Model RMSE of the 
validation 
dataset

RMSE Of 
the training 
dataset

Normalized 
RMSE

R2 (%)

AV0 832.5 806.8 0.18 89.1

AV30 989.9 889.8 0.23 86.5

AV50 695.0 728.4 0.17 88.6

AV80 516.2 640.9 0.14 87.6

AV100 376.8 556.9 0.12 83.9
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