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Abstract 

Several cities around the world rely on urban rail transit systems composed of interconnected lines, serving massive 
numbers of passengers on a daily basis. Accessing the location of passengers is essential to ensure the efficient and 
safe operation and planning of these systems. However, passenger route choices between origin and destination 
pairs are variable, depending on the subjective perception of travel and waiting times, required transfers, conveni‑
ence factors, and on-site vehicle arrivals. This work proposes a robust methodology to estimate passenger route 
choices based only on automated fare collection data, i.e. without privacy-invasive sensors and monitoring devices. 
Unlike previous approaches, our method does not require precise train timetable information or prior route choice 
models, and is robust to unforeseen operational events like malfunctions and delays. Train arrival times are inferred 
from passenger volume spikes at the exit gates, and the likelihood of eligible routes per passenger estimated based 
on the alignment between vehicle location and the passenger timings of entrance and exit. Applying this approach 
to automated fare collection data in Lisbon, we find that while in most cases passengers preferred the route with the 
least transfers, there were a significant number of cases where the shorter distance was preferred. Our findings are 
valuable for decision support among rail operators in various aspects such as passenger traffic bottleneck resolution, 
train allocation and scheduling, and placement of services.
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1  Introduction
Public urban rail transit is a major mode of transporta-
tion in many cities around the world. The latest report 
by the International Association of Public Transport 
estimates that metro systems had a total global ridership 
of 53,768 million in 2017, with Asia-Pacific and Europe 
leading the numbers [20]. The massive usage of urban 
rail transit underscores the importance of government 
efforts to ensure that metro systems are reliable, safe, and 
efficient for the public. Among the challenges tackled by 
metro operators is the effective resolution of bottlenecks 
in passenger traffic, including insufficient capacity for 

passenger demand, a task that has even more relevance in 
the context of the current COVID-19 pandemic to ensure 
the satisfaction of health safety norms.

Passenger route choices are not deterministic as they 
depend on the subjective perception of travel time, 
required transfers, convenience factors, and on-site train 
arrivals and waiting times, among others [5]. This makes 
it difficult to infer the volume of passengers along specific 
segments of the network at a given time.

In this study, we model individual passenger routes 
and the overall passenger flow in a rail network based 
only on automated fare collection data containing pas-
senger entrances and exits within the urban rail system. 
To accomplish this task, we present a computational 
approach that assesses the likelihood of each possi-
ble route choice by aligning card validation timestamps 
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against real-time route scheduling. In the absence of 
vehicle geolocation data, the locations of the trains at dif-
ferent times can be estimated by analyzing passenger vol-
ume peaks at the exit station gates. We can then use this 
information together with an analysis of the trip dura-
tions to better infer the likelihood that a passenger took a 
specific route by analyzing the location and timings of his 
or her entry and exit from the urban rail system.

In our approach, train arrival times are estimated by 
aligning passenger volume peaks at exit stations based on 
the theoretical velocity of the train along each line. Fur-
thermore, our approach considers the variability of wait-
ing times as a result of missing the next available train. 
It can be implemented without the use of complex and 
privacy-invasive sensors and monitoring devices and is 
adaptable to changes in the network not only because 
of unforeseen events like malfunctions and delays, but 
also changes in operational schedules and policies. This 
makes it robust to short-term changes in train dispatch 
times.

In this paper, we apply the proposed approach on the 
automated fare collection dataset of the Lisbon Metro for 
the month of October 2019 and discuss the correspond-
ing results. The paper is structured as follows. Section 2 
contains a discussion of related work. Section 3 contains 
a brief background of the Lisbon Metro and the auto-
mated fare collection dataset used in this paper. Section 4 
introduces the proposed approach for estimating pas-
senger route choices and passenger flow. Section 5 shows 
the results and validation of the proposed approach, and 
Sect. 6 contains the concluding remarks.

2 � Related work
This section discusses relevant advances on the task of 
inferring passenger route choice behavior within urban 
rail systems and the position of our work among these 
contributions. Traditionally, passenger route preferences 
are obtained through surveys which are then modelled 
mathematically to provide a systematic view of the pas-
senger flow in a network [7]. In this approach, passenger 
preferences are usually modelled in accordance with sev-
eral parameters such as in-vehicle travel time, transfer 
time, in-vehicle crowding, among others [15, 16]. Prato 
[14] surveys mathematical models used in modelling 
route choice behavior. Despite the relevance of this class 
of approaches, a core disadvantage of these approaches 
is the impracticality of collecting on-the-ground pas-
senger preference data, which is both time-consuming 
and costly. Furthermore, dynamic behavior and systemic 
changes are difficult to capture with the static nature 
of the data on which the models are based upon. In the 
work of Zhu et al. [24], a method has been proposed to 
calibrate existing models with more empirical data.

The global rapid adoption of automated fare collection 
(AFC) systems triggered new opportunities. AFC data 
acquisition can address the key limitations of surveys, 
providing dynamic information on passenger behavior. 
Sun et  al. [17] estimates the density of in-vehicle and 
waiting rail passengers based on passenger entrance and 
exit times on a single segment of a rail network. Train 
velocities and dwell times are estimated using a linear 
regression model from the minimum travel times of a 
passenger for each pair of stations. Kim et al. [9] studied 
passenger preferences in taking regular versus express 
trains by inferring the passenger’s preference from travel 
time and train schedule. A limitation of the above studies 
is their restricted applicability to single lines, not captur-
ing the variability of route choices in complex rail net-
works with interconnecting lines and stops.

Nonetheless, some works have proposed approaches 
to infer passenger choices in the context of multiple-
line rail systems. Kusakabe et  al. [10] infers the train 
type choices of passengers by enumerating the possible 
paths each passenger takes based on train timetables. 
While still technically operating on a single route, this 
work considers the possibility of switching train types 
(e.g., rapid, express) in the middle of the journey, which 
is conceptually equivalent to the multiple-line scenario. 
However, it places an assumption that the passengers 
always minimized their travel time first, then the num-
ber of transfers second, which may not always be the 
case in real-world situations due to both personal and 
external factors. Hong et  al. [8] targets passenger route 
choices in interconnected lines. They estimate boarding 
and alighting time intervals of passengers based on entry 
and exit timings of the most efficient passengers and the 
arrival and departure times of the trains. From this esti-
mation, each passenger is matched into the appropriate 
boarding and alighting group in order to determine the 
passenger’s most likely route in the network. Wu et  al. 
[21] used a clustering approach to group the travel times 
of passengers for a particular origin and destination sta-
tion. Thereafter, for each possible route, theoretical travel 
times from the origin station to the destination station 
are computed from the train schedules, allowing the esti-
mation of walking and transfer times. Finally, the theoret-
ical travel times are matched to the corresponding cluster 
centers to determine the route taken by each passenger.

While the above studies can consider multiple routes, 
they still present some limitations. First, they work under 
the assumption of well-defined train timetables as well as 
the punctuality of the trains. While in some major cities, 
such as Tokyo and Beijing, it is common to have precise 
train schedules that are followed on the dot, this is not 
always the case in many other cities [3, 4, 11]. Second, 
they do not consider the waiting time of passengers due 
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to external factors and circumstances. For example, it is 
possible for passengers to miss a train because they were 
waiting for a friend, or the train was too crowded for their 
liking. In several of the aforementioned studies, transfer 
times and waiting times for each station are modeled as 
static parameters, thus disregarding those possibilities.

There are two studies that propose more complex 
models for the variability of waiting and transfer times. 
In the work of Sun and Xu [18], a generalized concept of 
the platform waiting time called platform-elapsed time, 
which comprised of the actual waiting time and any addi-
tional delays caused by missing the trains. The platform-
elapsed time is modelled as a random variable following 
a geometric distribution. Similarly, in the work of Zhao 
et  al. [23], the number of trains skipped at transfer sta-
tions is modelled as a random variable following a poly-
nomial distribution. However, there are still two caveats. 
First, the parameters of the distribution are estimated 
based on the train arrival times, which as mentioned are 
not always precise in all rail systems. Second, there is an 
assumption that waiting time distributions are consistent.

Finally, a few studies target the task of inferring pas-
senger route choices with the help of mobile phone tra-
jectories [19, 22]. These studies augment the inference of 
route choices with additional information obtained from 
passengers’ mobile phones. Yet, such principles may not 
be easily applicable by the transport operators and other 
stakeholders as mobile data is not always easily accessi-
ble due to poor connectivity in subway systems as well as 
privacy and ethical concerns.

Our proposed method for inferring passenger route 
choices offers several advantages compared to previ-
ous approaches. First, it requires minimal informa-
tion that is easily obtainable in most urban rail systems. 
Specifically, aside from the automated fare collection 
data, our approach does not require precise timetables 
that define arrival and departure times for each station. 

Furthermore, our approach also considers the variabil-
ity of waiting times as a result of missing the next avail-
able train. The proposed approach can be implemented 
without the use of complex and privacy-invasive sensors 
and monitoring devices and is adaptable to changes in 
the network not only because of unforeseen events like 
malfunctions and delays, but also changes in operational 
schedules and policies. Table  1 summarizes the con-
tributions of our work in relation to previous studies in 
inferring passenger routes in urban rail systems. Among 
the studies on individual passenger route inference, our 
approach is to our knowledge the only one that does not 
require precise train timetables.

3 � Case study
3.1 � Problem formulation
The objective of this work is to estimate the route 
choices of passengers in a mass transit system, in which 
the system is composed of a set of interconnected lines, 
with each line serviced periodically by vehicles pass-
ing through a series of stations. Passengers may enter 
and exit the system through any station and may take 
as vehicles as many times as they want while within the 
network. We define the route of a passenger as the path 
taken from the station of entry to the station of exit. We 
then formalize the task as follows: given the passengers’ 
time and location of entry and exit in the transit system, 
how can we predict the actual routes that were taken by 
each passenger?

3.2 � Lisbon metropolitan system
In this work, we consider the Lisbon metropolitan sys-
tem, also referred as Metro, as the guiding case study to 
assess passenger route choice estimators. The Metro is 
an urban rail rapid transit system in Lisbon, the capital 
city of Portugal. As of 2021, it consists of 4 lines: azul 
(blue), amarela (yellow), verde (green), and vermelha 

Table 1  Studies on inferring passenger route choice behavior in urban rail systems

Study Single line? Multiple lines? Applicable to route 
choice estimation?

Considered 
skipping/missing 
trains?

Precise train 
timetables?

Additional sensors?

Sun et al. [17] Yes No No Yes Not required Not required

Kim et al. [9] Yes No No No Not required Not required

Tao et al. [19] Yes Yes No No Not required Mobile signal

Kusakabe et al. [10] Yes Yes Yes No Required Not required

Hong et al. [8] Yes Yes Yes No Required Not required

Wu et al. [21] Yes Yes Yes Yes Required Not required

Sun and Xu [18] Yes Yes Yes Yes Required Not required

Zhao et al. [23] Yes Yes Yes Yes Required Not required

Our approach Yes Yes Yes Yes Not required Not required
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(red) with a total of 56 stations [12]. As with most other 
urban rail transit systems, the different lines intercon-
nect with one another through certain common sta-
tions. Figure 1 shows a map of the rail network.

As the rapid transit system of a capital city, the Lis-
bon Metro serves a massive number of passengers. In 
2019, the annual ridership of the Lisbon Metro reached 
173 million people [13]. Similar with most other urban 
rail systems, the Lisbon Metro makes use of an auto-
mated fare collection system, in which passengers use 
cards to enter and exit the stations. After entering, the 
passenger is free to ride any train within the network 
as many times as they want, before exiting at any sta-
tion. With each entrance and exit made by each passen-
ger, the automated fare collection system records the 
following information: the timestamp (date and time), 
the station, and a unique identifier for the passenger 
(i.e., the number of the card used for the entry or exit). 
The collection of all such records from the automated 
fare collection system forms the dataset that we will be 
using for estimating passenger flow and route choices 
within the network. Specifically, we will be focusing on 

data for the month of October 2019 containing over 33 
million entrances and exits.

4 � Methods
In this section, we present a two-step approach for esti-
mating passenger route choices in urban rail transit 
systems. The approach is divided into two parts: (a) esti-
mating the locations of the trains in the network, and (b) 
estimating the likelihood of each passenger’s route choice 
based on the train locations.

4.1 � Estimation of the train locations
The first step is to estimate the locations of each train in 
the network over time. To this end, peaks in the volume 
of passengers exiting the stations are identified based on 
automated fare collection data. For any given day, we can 
form a time series for each station by aggregating the 
number of exit records per station into 15 s intervals. 
We then perform a rolling average and rolling devia-
tion on the time series to identify passenger exit peaks 
along a line to estimate the precise location of vehicles. 
We define a passenger volume spike as a peak in the time 

Fig. 1  Lisbon metro network map
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series that is at least one standard deviation higher than 
rolling mean. This scheme aims to ensure that only peaks 
deviating from typical behavior along a given period are 
considered and has previously been used similarly for 
robust peak detection in other studies [2, 6].

Using the Lisbon Metro as an example, Fig. 2 shows the 
aggregated passenger exits on Santa Apolónia station on 
a single day. The red dots represent the passenger volume 
spikes, as identified through the peaks that are at least 
one standard deviation away from the rolling mean. From 
this, it is apparent that there are periodic spikes in the 
number of people exiting the station, caused by groups of 
people alighting from the trains that arrive periodically. 
We identify such spikes in passenger volume and use 
them as a basis for estimating the train locations within 
the network.

We then identify the travel time durations of each train 
through each line. This data can easily be obtained based 
on the urban rail system’s operational protocols or, in the 
absence of this data, could be estimated from averaging 
times of actual train operations. Given a line consisting 
of stations s1, s2, ..., sn , the train arrival offset at station si , 
referred to as offset(si) , is the total amount of time it takes 
for a train to arrive at station si from station s1 . Thus, 
offset(si) can be defined recursively, where offset(s1) = 0 
and offset(si) = offset(si−1)+ δ(si−1, si) , with δ(si−1, si) 
being the time takes for the train to arrive to si from si−1 . 
Note that the train arrival’s offsets on the same line mod-
erately differ from the reverse direction.

Using the Lisbon Metro’s green line as an example, 
Fig.  3 shows the train arrival offsets of each station for 
both directions.

The next step is to align the passenger volume peak 
data for each station according to the projected passing 
of the train along the stations using the previously identi-
fied offsets. To do this, we perform a shift by subtract-
ing the corresponding train arrival offset from each of the 
passenger volume peaks in each station. We then esti-
mate the likelihood that a train started on the first sta-
tion at a given time. To this end, we define a likelihood 
score based on the total distance from the closest passen-
ger volume spikes. Given a starting time t, the likelihood 
score L(t) is computed as:

where S is the set of stations in the target time and α is 
a constant time duration threshold. The closest function 
returns the time of the closest passenger volume peak 
(after shifting) that occurs after t, bounded by a maxi-
mum value of t + α . The count function returns the total 
number of exits made within the range [t − α, t + α] 
(after shifting). In this work, α = 180 by default, but can 
be adjusted accordingly. Intuitively, the numerator repre-
sents the squared error of the train arrival times for each 
station from the closest passenger volume peak, while the 
denominator weighs the errors according to the volume 

(1)L(t) = 1−
1

α2
s∈S

(closest(s, t,α)− t)2

count(s, t,α)+ 1

Fig. 2  Volume of passengers over time for October 7 in Santa Apolónia station. Red dots show spikes in passenger volume, blue line shows the 
rolling mean, yellow line shows the rolling standard deviation, and green line shows one standard deviation away from the rolling mean

Fig. 3  Train arrival time offsets from the first station in Linha Verde (green line)
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of passengers to give more importance to stations with 
larger volumes of passengers around that time. The 1 
constant is added to ensure that the operation is defined 
even in the absence of passenger exits. Finally, the sum-
mation of the errors is normalized to the range [0, 1] , 
where 1 represents a perfect alignment of the train arriv-
als with passenger volume peaks. We can identify the 
times where trains are likely to have started from the first 
station of the line by identifying the peaks of the likeli-
hood score plot.

Illustrating, Fig.  4 shows the times of the passenger 
volume spikes in Linha Verde (green line) before and 
after shifting. Based on our assumption that the arrival 
of a train on a station implies a possible spike in pas-
senger volume at the exit gates, we are able to draw a 
vertical line on the shifted plot and observe volume 
spikes close to that line. We can visually observe in 
the figure that this hypothesis holds true, particularly 
on the latter half of the line. This makes sense because 
people are more likely to get off at later stations accord-
ing to the natural flow of the line direction. Figure  5 

shows L(t) computed for various values of t, showing 
the likelihood peaks at times where the passenger vol-
ume peaks are well-aligned, with the purple dots show-
ing the peaks which represent the predicted times that 
the trains have started travelling from the first station 
in this direction.

Now that the predicted starting times of the trains 
have been identified, actual train arrival times for each 
station can be easily inferred. To compute the train 
arrival times at a given station si , we simply add offset(ti) 
to each of the estimated starting times from the lines 
passing through si . Using this information, given a pas-
senger’s entrance and exit information from the auto-
mated fare collection data, potential routes taken from 
entrance to exit can now be explored.

4.2 � Prediction of passenger route choices
Before route choices are predicted, we first pair the 
entrance and exit records in the automated fare collec-
tion dataset. Given that each record contains the fol-
lowing information: (a) entrance or exit, (b) timestamp, 

Fig. 4  Passenger volumes spikes per station on Linha Verde (green line) before and after shifting according to train arrival time offsets

Fig. 5  Likelihood score computed across different times, showing the score peak at times where the passenger volume peaks are well-aligned
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(c) station, and (d) identifier, we can match each pas-
senger’s entrance record with its corresponding exit 
record considering the card identifiers and trip prec-
edencies. There may be some cases where an entrance 
or exit record is missing its corresponding pair in the 
dataset. These can occur due to operational anoma-
lies (e.g., malfunctions, cases where passengers were 
allowed to enter/exit without passing through the gates 
in extraordinary situations). Understandably, route 
choice estimation for incomplete trips should be pro-
ceeded by well-established principles for boarding or 
alighting station inference [1]. Nevertheless, the likeli-
hood of incomplete trip records for rail systems with 
closed gates is generally low.

In fact, after pairing the entrance and exit records in 
the Lisbon Metro, Fig.  6 shows the ratio of incomplete 
trips (i.e., missing entrance or missing exit) over all trips 
for each day in the month of October. Overall, only 2.09% 
of the trips are incomplete, although there was an unusu-
ally high number of incomplete trips on the 12th of the 
month, likely caused by an unusual operational event. To 

remove the additional uncertainty associated with route 
choices along incomplete trip records, we excluded these 
records from the conducted experimental analysis.

We define a route as a path that a passenger takes 
to get from an entry to an exit station. A route may 
contain one or more segments, which represent a sin-
gle train ride on any given line. Given a passenger’s 
time and location of entry and a candidate route, the 
expected exit time of the passenger by following that 
route can be computed. To estimate the expected exit 
time along a route, travel can be simulated considering 
the train arrival times for the relevant stations.

To accommodate for cases where a passenger misses 
the next available train (e.g., train is full, walked too 
slowly from gate to the train platform, waiting for 
a friend), we introduce a parameter max_lag  which 
represents the maximum number of trains skipped 
per segment of the route. Thus, for each route the 
algorithm returns a set of expected exit times, each 
computed based on the number of trains skipped in 
different segments of the route. To formalize, given the 
time of entrance and a candidate route, we estimate the 
time of exit using Algorithm 1.

Fig. 6  Ratio of incomplete trips over all trips per day in the Lisbon Metro

Algorithm 1 Algorithm for computing estimated exit time from a candidate route
procedure GetEstimatedExit(entrance time, route)

curr time ← entrance time
for segment ∈ route do

source, dest ← start and end station of the segment
train arrivals ← set of arrival times of trains at source
travel time ← offset(dest)− offset(source)
nexttime ← {}
for curr ∈ curr time do

next time idx ← index of the next train arrival from curr
for i ∈ {0..max lag} do

push(next time, train arrivals [next time idx+ i]) + travel time
end for
curr time ← next time

end for
end for
return curr time

end procedure
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Given a set of estimated exit times R = {r1, r2, ...} 
from a specified route and the actual exit time texit 
of the passenger, an error score can be computed as 
minri∈R(ri − texit)

2 . The error scores of different candi-
date routes could be compared to assess the likelihood 
that each route was taken, with a smaller score represent-
ing a better likelihood. A threshold can also be placed to 
ensure that the error is small enough to assert confidence 
in the prediction.

In the Lisbon Metro dataset, consider for instance 
a passenger who entered through Alameda station at 
12:59:15 and exited through Campo Grande station at 

13:11:27. Two possible routes that this passenger could 
have taken are as follows: (a) green line from Alameda 
to Campo Grande and (b), red line from Alameda to 
Saldanha, followed by the yellow line from Saldanha to 
Campo Grande. As visualized in Fig.  7, from the time 
of entry, the expected exit time if route (a) was taken is 
13:10:40, while the expected exit time if route (b) was 
taken is 13:22:56. Since the actual duration of the passen-
ger’s trip was 13:11:27, it is more likely that route (a) was 
taken.

In Fig. 8, we can see a plot of the actual exit times of 
each passenger who entered through Alameda and exited 

Fig. 7  Two possible routes from Alameda to Campo Grande, shown in light green (a) and pink (b). It is more likely that the passenger took route (a) 
based on the distance between the expected arrival at Campo Grande and the actual exit time

Fig. 8  Actual passenger exit times in comparison with the expected exit times for two different routes from Alameda to Campo Grande
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through Campo Grande, as well as the expected exit 
times of route (a) in light green and route (b) in pink, 
both computed with a max_lag of 1. Most passenger 
exits are closer to the expected exit times of route (a), 
which is the more direct path that does not require any 
transfers. Nevertheless, it can be seen that there are a few 
passengers likely to have taken the other route based on 
their exit timing.

5 � Results and discussion
To validate the approach, the introduced methodology 
was applied to the Lisbon Metro dataset. For simplicity, 
the reported results are conducted on a single randomly 
selected day for the purposes of this analysis: October 
7, 2019, which contains 600,548 pairs of entrance-exit 
data. While the absence of ground-truth data on passen-
ger preferences makes it infeasible to provide an abso-
lute comparison, we make use of available knowledge 
to check the consistency of the results of the approach 
against background expectations.

A key component of the proposed approach is the esti-
mation of train dispatch times in the absence of precise 
timetables. However, in the case of Lisbon Metro, while 
precise timetables are not available, approximate waiting 
times for each of the four lines are made available to the 
public for different times of the day.1 As such, it is pos-
sible to validate the estimated train dispatch intervals of 
the proposed approach against the theoretical dispatch 

frequencies. Figure  9 shows the average dispatch inter-
vals across different hours of the day.

It can be seen that estimated dispatch intervals mostly 
coincide with the theoretical intervals defined by the 
Lisbon Metro for each of the four lines. There are a few 
noticeable deviations towards the end of the day, which 
could be attributed to abnormal peak patterns due to 
sparse ridership. Nonetheless, the overall consistency of 
the estimated train dispatch intervals with the theoreti-
cal dispatch intervals shows the possibility of estimating 
train locations, without precise timetables, from passen-
ger volume peaks.

To validate the prediction of passenger routes, we 
exploit the case where there is only one possible route 
from the entrance and exit station, and that route is with-
out any transfers, i.e. station pairs on the same segment 
of the line without branching paths. In these cases, we 
assume that the passenger must have taken the undoubt-
edly shortest route. For these cases, we run the algorithm 
to validate whether the predicted exit times of the only 
available route are reasonably close to the actual exit 
times of the passengers. We used a max_lag of 1, assum-
ing that most passengers will not skip trains apart from 
cases passenger did not walk fast enough to the platform 
to catch the next available train.

Illustrating, Fig. 10 shows two such examples: Reboleira 
→ São Sebastião from the Blue Line and Alameda → Ori-
ente from the Red Line. In both of these pairs, there is only 

Fig. 9  Average train dispatch intervals: comparison of estimated and theoretical values across different lines and hours of the day

1  https://​www.​metro​lisboa.​pt/​en/​travel/​timet​ables-​and-​frequ​ency%​20/.

https://www.metrolisboa.pt/en/travel/timetables-and-frequency%20/
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one possible route and as such we assume that passengers 
should have taken that route. We can see that visually, this 
is indeed the case, apart from a few cases in the Alameda 
→ Oriente route where the actual exit time was consider-
ably later than the predicted exit times. These cases could 
be either motivated by the fact that a passenger skipped 
more than one available train or special cases (e.g., indi-
viduals with lengthy stops at metro stores and cafes, sub-
way workers). Nonetheless, these cases are a minority and 
most passenger exit times are accurately predicted.

Next, we look at cases where multiple route choices are 
involved. To do this, we first identify all pairs of stations 
within the rail network. For each pair (sa, sb), sa  = sb , we 
identify all candidate route choices from station sa to sb 
though a standard exhaustive graph search algorithm. To 
limit the candidate route choices, we impose the restric-
tion that a route cannot contain the same station more 
than once. We then apply the proposed approach to 
predict the route that is more likely to have been taken 
by each passenger who entered through sa and exited 
through sb . We used max_lag = 1 , α = 180 , an error 
threshold of 1802 = 32400 to only consider predictions 
that are within 180  s of the closest expected exit time. 
Because of this, not all passenger trips are assigned a pre-
dicted route choice, i.e., if the exit time is not within 180 s 
of the expected exit times of the candidate routes, the 
route choice is deemed “unknown”. This is to be expected 
given the presence of small markets, stores and coffee 
shops within a few stations in the network. In the dataset, 
89% of the trips were successfully assigned to a candidate 
route choice (i.e., not “unknown”).

In our analysis, we highlight two common criteria for 
passenger preference: (a) “least transfers” (least number 
of transfers between lines, a measure of convenience and 
time), and (b) “least stations” (least number of stations 
passed, a measure of distance and time). There are a total 
of 49 stations across all lines in the metro, resulting in 
2352 possible entrance-exit pairs. Out of these pairs, 636 
are non-trivial entrance-exit pairs where the route with 
the least transfers is different from the route with the 
least stations.

Among the 636 non-trivial station pairs, the preferred 
route is the one with least transfers in 562 (88.36%) of 
the pairs. On the other hand, the preferred route is the 
one with the least number of stations in 54 (8.49%) of the 
pairs. As for the remaining pairs, the preferred route was 
neither of the two. It is possible to visualize the prefer-
ence of passengers for various pairs of stations.

Figure  11 shows the preference of the passengers for 
station pairs between the yellow-green and blue-green 
lines. For the stations between the yellow-green line, it 
can be seen that passengers prefer the least number of 
transfers in most cases. However, there are noticeable 
exceptions on the station pairs on the lower-right por-
tion. This tendency can be explained by the fact that in 
these pairs, it is possible to include an additional trans-
fer to the red line to cut several stations from the trip. 
In the most extreme case, take for example the case of 
Rato (RA) ↔ Cais do Sodré (CS), illustrated in Fig. 12. To 
minimize the transfers in these routes, one has to do one 
transfer at Campo Grande (CG). However, it is possible 
to do two transfers at Marquês de Pombal (MP1/MP2) 

Fig. 10  Examples of two single-route pairs to validate the prediction of passenger exit times
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and Baixa-Chiado (BC) to cut the trip much shorter. As 
the tradeoff is quite large, it is reasonable that a signifi-
cant amount of passengers preferred the route with more 
transfers.

For the stations between the blue-green line, once again 
most passengers preferred routes with least transfers. 
However, a significant amount of passengers going to 
Anjos (AN), Intendente (IN), and Martim Moniz (MM) 
from the northern blue line stations tend to pick the 
route with the least stations. Interestingly, however, this 
was not case for the reverse direction, as also illustrated 
in Fig.  12. A possible explanation for this is the flow of 
the passengers throughout the day. The area around AN, 
IN, and MM stations is mostly commercial, and based 
on the volume of entrance-exit pairs, it is known that 

the passenger flow goes from the northern blue line sta-
tions to the commercial areas in the morning and in the 
reverse direction at night. It is possible that variations 
in route behavior are influenced by factors such as the 
desire to be on-time in the morning, while convenience is 
more prioritized at the end of the day.

Table  2 shows more selected cases among non-trivial 
pairs. In examples (a–d), the route with the least trans-
fers was the preferred route, while in examples (e–g) the 
preference is towards routes with the least number of sta-
tions. As shown in Fig. 13, for passengers travelling from 
Campo Pequeno (CP) to Areeiro (AE), more passengers 
preferred to take the route with only one transfer, even 
it had a longer distance. However, this is not always the 
case, as for passengers travelling from Jardim Zoologico 

Fig. 11  Route preference for passengers on non-trivial pairs in the yellow-green lines and blue-green lines. For conciseness, rows and columns with 
no non-trivial pairs are omitted
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(JZ) to Intendente (IN), slightly more passengers took the 
route with more transfers but with lower distance, as dis-
cussed previously. This shows the variability of passenger 
preferences as influenced by a variety of hidden factors 
that cannot be straightforwardly captured by determin-
istic models.

Finally, examining the trivial pairs where the route with 
the least transfers is also the route with the least stations, 

that route is the preferred route choice in almost all 
cases as to be expected. However, there are cases where 
evidence suggests this is not the case. We present two 
cases of this in Fig. 14. In the left example, although the 
ideal route to Saldanha (SA) from various stations in the 
northern half of the blue line is through a transfer in São 
Sebastião (SS), relatively higher number of individuals 
preferred to transfer in Marquês de Pombal (MP) instead. 

Fig. 12  Visualization of non-trivial pair route choices. Left: Rato (RA) ↔ Cais do Sodré (CS) and Right: Stations in the upper portion of the blue line 
↔ Anjos (AS), Intendente (IN), Martim Moniz (MM)

Table 2  Some examples among non-trivial pair

Bold values indicate larger percentage

Entry station Exit station Least transfers route Ratio Least distance route Ratio

(a) AN AS AN→ BC→ AS 0.98 AN→ AM→ SS→ AS 0.02

(1 transfer, 18 stations) (2 transfers, 12 stations)

(b) TP OR TP→ SS→ OR 0.96 TP→ BC→ AM→ OR 0.02

(1 transfer, 14 stations) (2 transfers, 12 stations)

c) CP AE CP→ CG→ AE 0.56 CP→ SA→ AM→ AE 0.44

(1 transfer, 6 stations) (2 transfers, 3 stations)

(d) AM AV AM→ SS→ AV 0.28 AM→ SA→ MP→ AV 0.01

(1 transfer, 6 stations) (2 transfers, 4 stations)

AM→ BC→ AV 0.70
(1 transfer, 7 stations)

(e) PI CS PI→ CG→ CS 0.11 PI→ MP→ BC→ CS 0.86
(1 transfer, 15 stations) (2 transfers, 5 stations)

(f ) CS PI CS→ CG→ PI 0.06 CS→ BC→ MP→ PI 0.57
(1 transfer, 15 stations) (2 transfers, 5 stations)

(g) JZ IN JZ→ BC→ IN 0.47 JZ→ SS→ AM→ IN 0.51
(1 transfer, 10 stations) (2 transfers, 6 stations)
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This observation can be partially explained by the large 
walking distance that is associated with the Alameda’s 
transfer. Similarly, in examples (k) and (l), a comparable 
number of passengers chose to transfer in São Sebastião 
(SS) instead of Alameda (AM) on the way to Baixa-Chi-
ado (BC). These examples demonstrate instances where 
the predicted route choice contradicts the obvious choice 
and may be of interest to administrators and stakeholders 
of the metro.

Overall, these results show that the proposed approach 
is able to make predictions of passenger route choices in 
urban rail transit systems that is consistent with back-
ground expectations, while at the same time revealing 
interesting phenomena on passenger behavior in certain 
instances.

We highlight three main strengths of the proposed 
approach in comparison with other works on passenger 
route choice inference: (a) non-requirement of precise 

train timetables, (b) robustness to short-term changes, 
and (c) consideration of missed or skipped trains.

First, the non-requirement of precise train timeta-
bles means that our approach can infer passenger route 
choices even without knowing the exact times the trains 
arrived at each station. This is important because not all 
urban rail systems around the world follow fixed sched-
ules that are observed to the dot. In the context of our 
case study on the Lisbon’s metro, train schedules are 
not precise/fixed. Nonetheless, estimated waiting times 
between each train are defined for each line at differ-
ent times of the day. Still, these intervals are only esti-
mates and are generally not followed on the dot. One of 
the main contributions of our work is to infer the arrival 
times of trains in each station even in the absence of 
timetables, which is a required input in previous studies 
[8, 10, 18, 21, 23].

To assess the importance of estimating train locations 
in the absence of precise timetables, we compared the 
proposed solution against one based on the theoretical 
waiting time intervals from the Lisbon metro website.2 
For instance, according to the metro website, the wait-
ing time for the blue line on weekdays from 10:01 a.m. 
to 4:45 p.m. is 6  min and 40  s. Following this assump-
tion, we once again used the single-route case to validate 
whether the actual passenger exit times coincide with the 
expected exit times from the train movements. We base 
the arrival of the first train on the first passenger vol-
ume peak at the exit gate for the station in question, then 
assume that succeeding trains arrive at 6  min and 40  s 
from this interval as indicated in the website.

Fig. 13  Visualizations of examples (b) and (c) where the route with least transfers is preferred (left) and examples (e) and (g) where the route with 
least stations is preferred (right)

Fig. 14  Visualizations of selected examples (h) and (k)

2  https://​www.​metro​lisboa.​pt/​en/​travel/​timet​ables-​and-​frequ​ency/.

https://www.metrolisboa.pt/en/travel/timetables-and-frequency/
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Figure 15 shows the distribution of the absolute error 
in seconds, of estimating passengers’ exit times using (a) 
our proposed approach, and (b) the train dispatch inter-
vals based on the website as described above. This figure 
shows a one-route scenario (São Sebastião → Reboleira) 
from 10:00 a.m. to 2:00 p.m., where there is only one 
straight path from the origin and destination, eliminating 
possible variances in route choice. While the absence of 
precise timetables can still allow us to estimate passen-
ger exit times according to operational guidelines, the 
estimation errors are much higher. This suggests that in 
the case of the Lisbon metro, the actual time intervals 
in-between trains do not strictly follow the prescribed 
values exactly. On the other hand, our approach is able 
to estimate the passenger exit times with a significantly 
lower error in a paired t-test ( p = 0.0075 ). The median 

error of the estimated exit times using the theoretical 
intervals is 146 s, while the median error of the estimated 
exit times using our approach is only 42 s.

We further highlight the inconsistency of the real-
world operating schedules in Fig.  16, which shows the 
aligned passenger volume peaks on the last six stations of 
the blue line for four consecutive days. Given the timeline 
of 12:00– 2:00 p.m., we expect that the intervals between 
trains are 6  min and 40  s as stated in the operational 
schedules. However, the aligned passenger volume peaks 
show clear evidence that this is not the case. In October 7 
alone, the peaks indicate that the actual intervals are not 
consistent and could take up to 10 min. Furthermore, the 
intervals are not consistent across different days, despite 
all being weekdays. This highlights the second strength 
of our proposed approach, which is the robustness to 

Fig. 15  Absolute error in exit time estimation for passengers in São Sebastião → Reboleira from 10 a.m. to 2 p.m., using our approach and relying 
only on the operational schedule specifications, showing that our approach can estimate passenger exit times with significantly lower error 
( p = 0.0075)

Fig. 16  Aligned passenger volume peaks for the last six stations of the blue line for four different dates over the same time of the day, showing 
evidence of inconsistencies in actual train dispatch intervals
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short-term changes in terms of operational schedules. 
While previous studies rely on static timetables for train 
movements, our approach estimates them according to 
the available real-world data.

Finally, our approach also considers the possibility of 
passengers missing or skipping the next immediately 
available train. For example, in the same single-route 
of São Sebastião → Reboleira, 85% of the trips made 
on October 7, 2019 that were within 180  s of the pre-
dicted exit times fell under the condition of having no 
skips ( lag = 0 ). On the other hand, the remaining trips 
fell under the condition of having skipped one train 
( lag = 1 ). These likely comprise of people who had to 
skip a train due to the time of walking from entrance to 
platform or due to other reasons such as overcrowding or 
personal decisions. In some previous works [8, 10], this 
possibility of skipping trains is not considered, which 
could limit the potential to infer route choices under 
these scenarios.

6 � Conclusion
In this paper, we proposed a novel approach for pre-
dicting passenger route choices in a transport network 
using automated fare collection data. In contrast with 
state-of-the-art principles on route estimation, the pro-
posed method does not require precise train timeta-
bles and is parameterizable to contemplate the missing 
of trains due to arbitrarily-high movement from gate 
to the platform and unavailable capacity at vehicles at 
peak hours. The proposed method is further robust to 
unforeseen events, such as malfunctions and opera-
tional delays, and dynamically adaptable to topological 
changes in the network as long as those are standardly 
captured in the reference General Transit Feed Specifi-
cation source.

We applied the approach to a real trip record data col-
lected from the Lisbon metropolitan system and found 
that different users place different choices along the same 
entry-exit station pairs. Although the majority of pre-
ferred routes along the network corresponds to those 
with the least transfers, a considerable amount of choices 
do not follow this assumption. In our manuscript, we 
comprehensively present cases wherein the route choice 
by the majority of passengers is guided by the shortest 
distance and not by the number of transfers.

We believe that these are valuable to metro admin-
istrators and urban policymakers, as it gives a better 
understanding of line demand, and in-vehicle occupa-
tion levels. Inferring passenger route choices is essential 
to understanding the passenger flow and volume within 
an urban rail network, which can be used to guide a vari-
ety of aspects, such as bottleneck detection, simulation 

studies on railway networks (e.g., how does the deacti-
vation of a segment affect the operations of a network), 
satisfaction of safety norms especially in times of a pan-
demic, amenity and service placements, among others. 
The fine-grained location of passengers along a urban rail 
transit systems can also support vehicle scheduling and 
their re-capacitation along different periods, as well as 
guide complementary initiatives for the positive condi-
tioning of route choices.

Future directions on this study include supplementary 
ground-truth based validations against survey data, and 
the possibility of assessing the proposed approach on 
complementary case studies.
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