
He and Ma ﻿
European Transport Research Review           (2022) 14:47  
https://doi.org/10.1186/s12544-022-00572-z

ORIGINAL PAPER

Examining the factors influencing 
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Abstract 

The progress of microtransit services across the world has been slower than expected due to institutional, operational, 
and financial barriers. However, how users’ ride experiences and system attributes affects their future ride decisions 
remain an important issue for successful deployment. A Bayesian network approach is proposed to infer users’ next 
ride decisions on a microtransit service based on historical ride data from Kussbus, a pilot microtransit system operat‑
ing in the Belgium–Luxembourg cross-border areas in 2018. The results indicate that the proposed Bayesian network 
approach could reveal a plausible causal relationship between different dependent factors compared to the classical 
multinomial logit modeling approach. By examining public transport coverage in the study area, we find that Kussbus 
complements the existing public transport and provides an effective alternative to personal car use.

Keywords:  Microtransit, Demand-responsive transport, On-demand mobility, Bayesian network, Next ride 
occurrence
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1  Introduction
In past decades, an increasing number of transport net-
work companies and public transport authorities have 
offered a spectrum of on-demand mobility services [1]. 
Despite numerous pilot studies, recent years have seen 
mixed results. Some operations such as Kutsusplus in 
Helsinki and Bridj in Boston failed to achieve financial 
sustainability [2, 3]. There is a need to learn from past 
experiences to improve business models [3]. Existing 
studies mainly focus on the evaluation of the impacts 
of microtransit services on transport systems, based on 
either simulation [4, 5] or post-evaluation [6, 7]. How-
ever, building a decision support tool to infer users’ 
future ride decisions based on system attributes and 
users’ ride experiences (e.g., delays, walking distance, in-
vehicle riding time) could be more useful to the operator 

for a successful deployment. This study fills this gap, 
investigating how customers’ ride experiences influence 
their future use of a microtransit service. An empiri-
cal study is conducted based on a recent microtransit 
service, Kussbus, operating in the cross-border areas of 
Luxembourg in 2018. The aim is to develop a tool to infer 
users’ next ride decisions and draw insight from this pilot 
implementation for the future successful deployment of 
on-demand mobility services.

The contributions of this study are threefold. First, 
we present the system characteristics of Kussbus and 
analyze its system performance. To understand how 
competitive the Kussbus service is, we compare it with 
alternative transport modes and illustrate the inconven-
ience of using public transport for commuters. While 
Kussbus ridership increased during the study period, the 
service was discontinued in early 2019. To understand 
the reasons for this, we propose a Bayesian network (BN) 
approach to identify the factors affecting users’ next 
ride decisions and their causal/correlational structure. 
The considered features include spatial-effect factors 
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(i.e. origin–destination zones), customer ride experi-
ences (e.g., fare, walking distance, in-vehicle travel time), 
weekly/seasonal factors, and relative travel time gain/loss 
compared to customers’ habitual commuting modes. We 
compare the result obtained by the BN approach with 
that obtained from the multinomial logit (MNL) model 
and test the proposed methodology on an independent 
dataset based on a fivefold cross-validation scheme for 
users’ next ride occurrence inference. Finally, we draw 
insights and discuss the findings of this study.

The remainder of this study is organized as follows. 
Section  2 reviews the literature related to factors that 
influence customers’ willingness to use microtransit ser-
vices, as well as the barriers and successful determinants 
of microtransit services. Section  3 presents the system 
characteristics of Kussbus, key performance indicators, 
and use cases of public transport in the studied area. In 
Sect.  4, a BN approach is proposed to model Kussbus 
users’ next ride decisions and compared with the MNL 
model. Finally, we discuss our findings, policy insights, 
and methodological limitations, and offer some conclud-
ing remarks.

2 � Related work
Previous studies on microtransit services have mainly 
focused on operation policy design [8], performance 
assessment [3, 6, 7, 9], and success/failure determinants 
[10, 11]. Due to the limited availability of data from 
microtransit companies, only limited studies examine 
service performance based on empirical trip data. For 
example, [6] propose an evaluation framework to analyze 
the performance of “Breng flex”, a microtransit operat-
ing in the Arnhem-Nijmegen region of the Netherlands. 
The authors compare passengers’ perceived trip journey 
times between the microtransit and fixed-route transit. 
They find that significant mobility improvements were 
observed thanks to the microtransit service. Haglund 
et al. [3] propose an evaluation framework to analyze the 
spatio-temporal distribution of Kutsuplus’s rides in Hel-
sinki. However, the relationships between users’ experi-
enced journey attributes and their future ride decisions 
were not investigated. Ma et  al. [12] propose a stable 
matching approach to assess the impact of different oper-
ational policies on the ridership of a microtransit service 
in Luxembourg. They find that reducing in-vehicle travel 
time and operational costs are two key factors in improv-
ing ridership and making the service sustainable.

In the past, several studies have focused on the les-
sons learned from past experiences [13, 14]. A notable 
example is Helsinki’s Kutsuplus, which was ceased due 
to an operational cost overrun [7]. Several authors point 
out that insufficient fare revenue due to low prices or 
ridership has led to the end of many microtransit pilots 

[3]. However, higher fares may lead to an unexpected 
decrease in ridership [15]. Westervelt et al. [14] analyze 
the experiences of the public–private partnership of 
three microtransit pilots in the United States and find 
that these pilots placed an emphasis on technological 
innovation but did not equally focus on customer needs. 
Volinski [1] points out that many-to-many services (i.e., 
door-to-door-like services) are often seen as more com-
plex designs as they try to cover many requested origins 
and destinations with one route. Applying many-to-one 
services, which fixes one destination as the trip end, 
could reduce operating costs significantly [16]. West-
ervelt et  al. [14] argue that operators should maintain 
users’ needs as a priority when designing and implement-
ing their services. In regards to this, Avermann et al. [10] 
analyze user satisfaction of demand responsive transport 
(DRT) systems based on an ordered logit model and sur-
vey data. They find waiting times and the perceived effort 
to catch the buses are two key determinants of DRT user 
satisfaction. Yu and Peng [17] apply a weighted Poisson 
regression model to analyze the relationship between 
built environment factors and ridesourcing demand in 
Austin, Texas. They find that ridesourcing demand is pos-
itively associated with land-use mix and population den-
sity. Deka and Fei [18] model ridesourcing trip frequency 
based on a zero-inflated negative binomial model to ana-
lyze the influence of individual socio-demographic attrib-
utes and the neighborhood effect. However, fewer studies 
have focused on how users’ ride experience impact their 
willingness to continue the service due to limited empiri-
cal data availability. In addition, most studies focus on the 
aspect of system attributes [13, 19], the effect of users’ 
socio-demographic attributes is mainly studied using 
survey questionnaires. Table  1 highlights the influence 
of individuals’ sociodemographic attributes on DRT sys-
tem usage based on the literature review. It shows that 
the socio-demographic factors of individuals (gender, car 
ownership, household income, reduced mobility, attitude 
towards the service and lifestyle) can affect the propen-
sity to use DRT services. The reader is referred to a more 
comprehensive review on factors influencing user accept-
ance and use of DRT services [20].

3 � Kussbus service characteristics and performance 
analysis

3.1 � Kussbus service characteristics
Kussbus is a microtransit pilot using a fleet composed 
of a variety of shuttles to provide a commuting service 
in Luxembourg and its cross-border areas (Belgium 
and France). Due to the low coverage of public trans-
port in these areas and job concentration in the city of 
Luxembourg, more than 70% of cross-border workers 
(more than 200,000 individuals in 2019 according to [25] 
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commute by car [26]. Consequently, 163 extra hours per 
driver were spent driving in rush hour in 2019 [27]. Kuss-
bus aims to provide an alternative and flexible transit 
solution for these cross-border workers and reduce their 
personal car use.

The first Kussbus line was launched on April 25, 2018, 
connecting Luxembourg City (specifically, the Kirchberg 
district) and the Arlon region in Belgium. A second line 
linking the Kirchberg district to the Thionville region in 
France was launched later in September 2018. As there 
is very limited data available for the second line, our case 
study focuses on the first line. We summarize the features 
of the Kussbus service as follows.

•	 Operating policy Kussbus utilizes so-called “virtual 
stops” (i.e., optional bus stops within walking dis-
tance, e.g., less than 1  km.) to pool passengers into 
these stops near their origin/destination locations. 
The virtual stops are optimized based on historical 
ride-request data. To increase user convenience, the 
maximum journey time and maximum detour time 
are used for vehicle route planning. The service oper-
ates from 5:30 to 9:30 a.m. (Arlon → Luxembourg) 
and from 4:00 to 7:00 p.m. (Luxembourg → Arlon) 
on weekdays excluding public holidays.

•	 Booking A reservation can be made in advance or at 
short notice via the smartphone application of Kuss-
bus. Users input their origin, destination, and desired 

pick-up time. The app will display the nearest Kuss-
bus stop on the app, and users can track the locations 
of Kussbus vehicles in real-time. Notifications are 
sent via the app to inform users of a bus approaching, 
as well as delays or changes in the vehicles’ routes.

•	 Vehicle A mixed fleet of shuttles with 7, 16, and 19 
seats are used. Based on the user’s booking informa-
tion, historical ride data, and operational constraints, 
the operator decides which type of vehicles to use to 
minimize the daily operational costs.

•	 Pricing Kussbus offers 6 free rides for new users to 
experience the service. Afterward, each ride costs 
4.95 euros and a monthly subscription is also avail-
able. Note that the Kussbus ticket price is about twice 
the regular Luxembourg bus ticket fare in 2018.

3.2 � Kussbus ride statistics and system performance
The ride data was provided by Utopian Future Technolo-
gies S.A. for the period of April 25, 2018, to October 17, 
2018. In total, 2,846 rides (trips) were realized by 134 
users during the study period. Figure  1 shows Kussbus 
operation routes during the studied period. The evolu-
tion of weekly ridership is shown in Fig. 2. It shows sev-
eral quite distinctive phases. After an initial slow period 
during the first two months, an initial steep increase in 
rides can be observed. Then there is a period of stagna-
tion until the end of August, then the rides increase again 

Fig. 1  Kussbus operating routes from Arlon region to Luxembourg City [12]
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from September due to a new advertising campaign. Each 
ride observation data point contains detailed information 
about users’ trips, including latitude and longitude coor-
dinates of users’ origins and destinations, shuttle pick-up 
and drop-off locations (allowing for accurate measure-
ment of walking distance), users’ reservation time and 
pick-up and drop-off times (accurate in seconds), zip 
codes, country and street names, travel time, vehicle ID, 
passenger capacity, user ID, and fees paid. The service 
attributes obtained in this study are quite reliable given 
the accurate trip data obtained from the service appli-
cation and GPS tracking of vehicles. User socio-demo-
graphic characteristics are not available for our analysis. 
Table 2 reports the system performance in terms of rid-
ership, user experience, and the competitiveness of the 
Kussbus service compared to its alternatives (car and 
public transport). The average number of rides per week 
and weekday is 109 (= 2846 rides/26  weeks, see Fig.  2) 

and 24 (= 2846 rides / number of weekdays excluding 
public holidays during the studied period), respectively. 
The average in-vehicle travel time of Kussbus users is 
48.7 min. The average walking distance to pick-up stops 
and drop-off stops is 0.21 and 0.25  km, respectively. 
Regarding the journey time of Kussbus users (54.7 min on 
average), it is higher than for cars (42.81 min on average). 
Users’ travel times by car and public transport are calcu-
lated from Google’s Distance Matrix API1 by considering 
traffic congestion and the departure times of trips. Note 
that one can compute the generalized journey time as a 
weighted sum of different travel-time legs (i.e., walking 
time, waiting time, in-vehicle travel time, and the number 
of transfers [6] to compare their performance. In terms 

Fig. 2  Weekly ridership of Kussbus between Arlon and Luxembourg City

Table 2  Kussbus service attributes and users’ journey time of other transport alternatives

Category Indicator Mean S.D Min Max

Kussbus ridership Number of rides per week 109.46 64.8 12.0 225.0

Number of rides per weekday 23.7 13.7 2.0 59.0

Service attributes In-vehicle travel time (minute) 49.2 11.4 10.0 116.1

Total walking distance (km) 0.5 0.5 0.0 3.5

Door-to-door travel time (minute) 54.7 12.7 11.5 122.0

Fare (euro) 2.8 2.5 0.0 5.0

Starting time of trips (morning) 7h11 44.8 5h48 8h33

Starting time of trips (afternoon) 17h21 41.9 15h48 19h33

Journey time of users’ alterna‑
tives

Car (minute) 42.8 6.6 25.6 67.6

Public transport (minute) 75.2 18.0 42.7 393.5

1  https://​devel​opers.​google.​com/​maps/​docum​entat​ion/​dista​nce-​matrix/​overv​
iew.

https://developers.google.com/maps/documentation/distance-matrix/overview
https://developers.google.com/maps/documentation/distance-matrix/overview
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of the number of rides per user, Fig.  3 shows a highly 
skewed distribution. It shows that there are quite a few 
people who only used the service once, while some peo-
ple used it as it was free. Apart from that, there are some 
regular users. A large share of customers used Kussbus 
for fewer than 15 rides (based on user’s ID information in 
the dataset). Users’ monthly subscription information is 
not available to help explain users’ ride patterns.

3.3 � Public transport coverage in the study area
We analyze the coverage of public transport connect-
ing Arlon and Luxembourg City. There is one railway 
line and four cross-border bus lines. The train operates 
from Monday to Friday with a frequency of 10–20 min, 
with the first departure at 06:05 from Arlon station. The 

travel time from Arlon to the major train station in Lux-
embourg City takes around 30  min. Figure  4 illustrates 
the itineraries of these cross-border bus lines and Kuss-
bus users’ pickup locations in Arlon in the morning. We 
find that Kussbus users are poorly covered by these train 
and bus lines. Regarding bus line frequency, there is only 
one bus operation for lines 80, 81, and 84 every morn-
ing departing at 6:40 and 7:00. Line 80/1 departs from 
Arlon terminal at 05:54 and 07:40. This shows that Kuss-
bus complements the existing public transport network 
in the Arlon–Luxembourg corridor. Regarding the com-
petitiveness of Kussbus compared with public transport, 
Kussbus users’ riding times (49.2  min on average) are 
lower than those of public transport (75.2 min on aver-
age) (see Table 2). Figure 5 illustrates the transit network 

Fig. 3  Distribution of the number of rides taken by Kussbus users

Fig. 4  Available cross-border bus lines for Kussbus users in the Arlon region (the hot spots are Kussbus ride request origins)
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coverage for commuters arriving in Luxembourg City 
on public transport. For bus users, another bus transfer 
is required at Bertange in Luxembourg. For train users, 
they need to take additional bus transfers at the Luxem-
bourg central railway station as the tram network did not 
cover the central station in 2018. Consequently, commut-
ing from Arlon to Luxembourg City using public trans-
port requires at least one transfer, with a higher travel 
time compared to driving or Kussbus.

4 � User’s next ride occurrence modeling 
and prediction

4.1 � Factors affecting users’ next ride occurrence
To understand how Kussbus users’ ride experiences 
influence their future ride decisions, we present a BN 
approach to predict the next-ride occurrence of users. 
In Sect.  3.2, we observed that users’ ride patterns are 
quite heterogeneous: some rarely use the service again 
after the first trial or after a couple of rides. As there is 
no socio-demographic information about the users in 
the data, using traditional count-based regression mod-
els performs very poorly (i.e. individual-based regression 
model needs the individual’s socio-demographic attrib-
utes and other individual-related indicators as regressors 
to explain the variation in the response variable). Given 
the failure of Kussbus after around one year of operation, 
we are particularly interested in understanding how and 
to what extent users’ ride experiences influence their ride 
patterns. For this reason, we apply the BN approach to 
model users’ next ride decisions, i.e., to predict whether 
a user will continue to use the service or not, and their 
next ride occurrence if they continue. The model allows 
the operator to determine the factors affecting users’ ride 
decisions and provides useful insights for improving their 
service. Note that it would be particularly interesting 

to model and compare the behavior of users who made 
more than 6 trips versus another group. Since the data-
set used for the analysis is made by 132 users during the 
study period with 46.21% (61 users) made more than 6 
trips. The sample size is not sufficient to fit two separate 
models. This could be the future extension of this work 
when more data is available.

A user’s next ride occurrence is measured as the days 
elapsed between their current ride and their next ride. As 
the distribution of users’ next ride days is highly skewed 
and no individual socio-demographic variables are avail-
able, directly modeling this decision variable based on 
the regression models results in a poor fit. Moreover, 
from the point of view of the operator, it is relevant to 
predict a user’s next ride occurrence within one day, one 
week, or more than one week. For this purpose, we clas-
sify the next ride occurrence of users into four categories: 
within 1 day, 2–7 days, ≥ 7 days, and no use of the ser-
vice after that ride within the studied period. The reason 
for setting the maximum observation period as 7  days 
for each ride is motivated by prior surveys on commute 
mode choice that over 70% of people show a habitual 
behavior within 7 days [28]. On the other hand, as a com-
muter service operator, it is important to understand 
why some customers use the ride service daily, weekly or 
lower frequency. In this case, the operator could identify 
the determinants of ride characteristics to improve their 
service over different planning horizons.

Given the available data fields, the influential factors 
include users’ ride characteristics: pickup and drop-off 
locations, departure time category (peak hour or not), 
trip journey time, trip journey time difference with cars, 
walking distance, free ride or not, fare of the next ride, 
and whether it is their first ride or not. We also control 
for calendar and seasonal effects by adding determinants 

Fig. 5  Example of possible public transport options to commute from Arlon to Luxembourg City (the hot spots are Kussbus ride request 
destinations)
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related to whether the next weekday of the current ride 
is a holiday or not and whether it falls in August. Table 3 
shows the list of key variables and their descriptive sta-
tistics. Note that the user origin and destination (OD) 
pair is classified into 5 categories based on geographical 
coordinates using the K-means clustering approach. The 
number of clusters is determined by inspecting whether 
the within-cluster sum of squares  error stabilizes when 
increasing the number of clusters. Note that for the con-
tinuous variables (journey time using Kussbus (T_Kuss-
bus) and the journey time difference between Kussbus 
and a car (T_diff)), their histograms suggest that they 
follow normal distributions. We perform the Shapiro–
Wilk normality tests, the associated p-values are less than 
0.001 suggesting the rejection of this hypothesis. The 
Pearson correlation coefficient between these two varia-
bles is 0.8364. As we are interested in studying the effects 
of in-vehicle travel time and relative delay to the user’s 
usual mode of transportation, both variables are included 
in the BN model. More sophisticated independent vari-
ables could be used by considering the interaction effect 

between these two variables. In this study, we use Harte-
mink’s discretization algorithm [29] to preserve the cor-
relation structure and mutual information between these 
two variables to learn discrete BNs.

4.2 � BN for users’ next ride occurrence inference
BNs have been widely applied in different fields to 
uncover the casual or dependency relationships between 
domain variables under uncertainty. A BN is a probabil-
istic graphical model represented by a directed acyclic 
graph G = G(X ,A), where X is a set of random variables 
and A is a set of directed arcs representing the probabil-
istic correlations. A directed arc Aij from node Xi to Xj 
means that Xi has a direct causal/dependent effect on Xj . 
We call Xi the parent of Xj and Xj the child of Xi . Based 
on the chain rule, the joint distribution of X over G can 
be expressed as Eq. (1).

(1)

P(X1,X2, . . . ,Xn) =P(X1)× P(X2|X1)

× . . .× P(Xn|X1,X2, . . . ,Xn−1)

Table 3  Description of the key variables of the discrete BN (N = 2,783)

Variable Definition Levels %

Occurrence_nr Category of user’s next ride occurrence ≤ 1 day 71.8

2− 7 days 19.4

≥ 7 days 5.6

Not utilize anymore 3.2

OD_pair Class of user’s origin–destination pair od_pair 1 (Arlon-Limpersberg) 7.1

od_pair 2 (Habay to Luxembourg) 2.2

od_pair 3 (Arlon-Kirchberg) 24.5

od_pair 4 (Arlon-Luxembourg) 61.4

od_pair 5 (within Luxembourg) 4.8

Is_morning 1 if the ride is in the morning and 0 otherwise 49.0

Is_peak 1 if the vehicle departure time is during peak hours and 0 otherwise 70.0

Is_august 1 if the ride occurred in August and 0 otherwise 20.5

Is_holiday 1 if the day after the ride is a public holiday and 0 otherwise 19.4

Is_first 1 if the ride is a user’s first ride and 0 otherwise 4.7

T_Kussbus User’s journey time using Kussbus ≤ 41 23.9

> 41 and ≤ 52.1 43.2

> 52.1 and ≤ 64 22.8

> 64 10.1

T_diff Journey time difference between Kussbus and a car (minutes) ≤ 2.5 39.8

> 2.5 and ≤ 14.7 39.4

> 14.7 and ≤ 25.9 15.8

> 25.9 5.0

Walk_dist Total walking distance between user’s origin/destination and Kussbus stops (km) < 0.4 50.8

> 0.4 and ≤ 0.8 39.5

> 0.8 9.7

Is_free 1 if this ride is free and 0 otherwise 42.8

Isfree_next_ride 1 if the next ride is free and 0 otherwise 41.2
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In the context of BNs, the variables are condition-
ally independent given their parents. The conditional 
probability distribution of Xi can be expressed as 
P(Xi|pa(Xi)) , where pa(Xi) denotes the parents of Xi . 
The joint distribution over all variables in G(X ,A) can 
then be factorized into a product of local distributions 
over X as Eq. (2).

The BN approach consists of learning the graphical 
structure and then estimating the local distributions 
associated with each node, given the learned network 
structure. The problem of finding the exact BN struc-
ture is an NP-hard problem [30]. The structure-learn-
ing algorithms can be classified into three categories: 
constraint-based, score-based, and hybrid learning 
algorithms [31]. The constraint-based algorithms uti-
lize conditional independence tests to identify the 
dependency relationships between the variables and 
construct the graph. The score-based algorithms try 
to maximize a fitness score using some heuristics. The 
hybrid algorithms utilize the constraint-based algo-
rithms or expert/domain knowledge to identify the 
partial graphical structure and then apply the score-
based algorithms to maximize the fitness score, given 
the restricted graphical structure [31, 32]. The advan-
tage of the hybrid algorithms is that they allow combin-
ing domain knowledge as a structural skeleton and then 
learning plausible structures to fit the data. Parameter 
learning consists of estimating the local distributions 
over the variables based on the maximum likelihood 
estimator. In this study, we apply the hybrid structure-
learning algorithm using structural restrictions based 
on domain knowledge and model averaging to learn the 
BN structure so as to infer a user’s next ride occurrence 
decision. The reader is referred to [31, 32] for a more 
detailed description. The hybrid algorithm is described 
in Table 4.

(2)P(X1,X2, . . . ,Xn) =

n

i=1

P(Xi|pa(Xi))

4.3 � Results
4.3.1 � BN structure and parameter learning
We apply the hybrid structure-learning algorithm to 
learn the BN structure. First, the potential dependency 
relationships between the variables are identified based 
on domain knowledge, a literature review, and a Pear-
son correlation matrix to study the potential dependence 
between these variables. The identified dependency rela-
tions between the variables are as follows.

•	 The pickup and drop-off locations have a direct effect 
on users’ trip journey times.

•	 The departure time influences users’ trip journey 
times, in particular during peak hours.

•	 If a user utilizes the Kussbus service for their morn-
ing commute, they will likely use the service for their 
returning trip.

•	 The fare of the next ride depends on the fare of the 
current ride, as Kussbus provides 6 free rides for each 
user.

•	 The journey time difference between Kussbus and a 
car for the conducted trip is correlated to the Kuss-
bus journey time.

Based on the identified dependency relations, we build 
the structural skeleton of the BN and apply the score-
based algorithms and model averaging for BN structure 
learning. The parameters and results of the learned BN 
is shown in Table  5. We use the k-fold cross-validation 
scheme, which randomly divides the full data set into k 
subsets (k = 5), then we use one subset to test the predic-
tion accuracy based on the model fitted by the remaining 
k–1 subsets. The implementation is based on the bnlearn 
package in R for learning the BN structure learning and 
then using Netica BN software for visualization and the 
sensitivity analysis.

Figure  6 shows the learned BN for users’ next ride 
occurrence inference. We summarize the causal/depend-
ency relations of the learned BN as follows.

Table 4  Hybrid BN structure-learning algorithm

1 Input a set of variables X  and the empirical ride data D

2 Identify an expert BNexpert = (X , Aexpert) based on expert knowledge

3 Given BNexpert as the structural restrictions, utilize a bootstrap sampling approach from D to learn n plausible data-driven BN structures according to 
the score-based learning algorithms

4 Utilize a model averaging approach to select the robust arcs with a probability greater than a statistical significance threshold (0.5 or more). This 
significance threshold reflects the probability that the selected arcs belong to the true (unknown) structure

5 Refine the newly added arcs from Step 4 based on the domain knowledge to obtain a final BN. This step involves checking and adjusting the direc‑
tions of these newly added arcs so that they are consistent with the causal/dependent effect between the connected nodes

6 Perform parameter learning to fit the data with maximum likelihood and obtain the local distributions associated with the nodes of the final BN
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•	 A user’s next ride occurrence is directly influenced 
by the commute time dissonance between the 
actual commute time using Kussbus and a user’s 
habitual commuting time by car. A user’s next ride 
decision is indirectly affected by the Kussbus com-
mute time. The latter is determined by the user’s 
OD pair and departure time.

•	 The walking distance to Kussbus stops measures 
the inconvenience a user experiences in using the 
service and affects their tendency to continue to 
use the service.

•	 A user’s next ride occurrence is influenced by the 
fare (whether the next ride is free or not), which is 
determined by the current fare as Kussbus provides 
6 free rides to its users.

•	 The ‘Is_first’, ‘Is_morning’, ‘Is_holiday’, and ‘Is_
august’ variables have a direct influence on whether 
a user’s next ride occurrence is within one day or 
over a longer horizon.

To evaluate the proposed structure-learning approach, 
we compare it with the benchmark BN, i.e., naive Bayes. 
The naive Bayes assumes dependency between the 
determinants and the target variable, and independence 
between the determinants. We use the fivefold cross-val-
idation scheme to evaluate the prediction accuracy. The 
result shows that the BN learned from the hybrid struc-
ture-learning algorithm significantly improves the per-
formance of the naive Bayes with an average prediction 
accuracy of 0.79 (vs. naive Bayes of 0.66). Table 6 reports 
the MNL model estimation results using the same vari-
ables with “within 1  day” as the reference class. The 
pseudo R2 value of the MNL model is 0.2893. The coef-
ficients allow us to analyze the related positive (or nega-
tive) influence of the covariates on the class (category) 
of the user’s next ride occurrence. As the sample size of 
different classes is unbalanced, the interpretation of the 
estimated coefficients need be cautious. For the class of 
‘Not utilize anymore’, the variable T_Kussbus is statisti-
cally significant, suggesting that higher user’s ride time 
is, users tend to continue to use the service, which seems 
counter-intuitive. However, higher users’ journey time 
difference between Kussbus and a car (T_diff) tends to 
discourage users to continue to use the service. A similar 
effect is observed for the total walking distance between 
user’s origin/destination and Kussbus stops (Walk_dist). 
Users’ OD pairs between Habay/Arlon and Luxembourg 
City or Kirchberg district tend to use the service fre-
quently (coefficients are negative for ‘ ≥ 7 days’ and ‘Not 
utilize anymore’). ‘Isfree_next_ride’ and ‘Is_morning’ 
have a negative effect on not continuing to use the ser-
vice, while ‘Is_holiday’ and ‘Is_first’ have a positive effect 

Table 5  Parameters and results of the BN using the hybrid 
structure-learning algorithm

Attribute/Parameter Value Attribute/Parameter Value

Number of nodes 12 Score-based algorithm Hill climbing

Number of arcs 15 Log-likelihood − 21,184.91

Number of samples 
using bootstrap resa‑
mpling

100 BIC − 26,288.7

Significance threshold 0.5 Parameter learning Maximum 
likelihood 
estimates

Fig. 6  Learned BN structure for Kussbus user next ride occurrence inference
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on users’ not continuing to use the service. A similar 
interpretation could be given for the other two categories 
‘2–7 days’ and ‘ ≥ 7 days’. In terms of prediction accuracy, 
the MNL model provides a similar performance (0.79) 
compared with the BN approach. As an alternative to 
the MNL approach, the BN approach learns a rule-based 
decision model providing an intuitive way to reveal the 
dependency relationship between different influencing 
factors from the learned BN structure.

4.3.2 � Sensitivity analysis
We further analyze the changes in the conditional 
probability distribution of users’ next ride occurrence 
when new evidence is provided (see Table 7). For exam-
ple, the operator might be interested in knowing such 
a probability if users’ journey times using Kussbus are 
(1) similar to (T_diff ≤ 2.5  min.) or (2) much longer 
(T-diff > 25.9  min.) than using cars. For the first case, 
the probability of users’ next ride occurrence being 
within one day would increase by 5.1%, with slightly 
decreasing probabilities for within one week/weeks 
and no further use of the service. For the second case, 
we observe that users’ next ride occurrence would be 
negatively affected: − 5.5% and − 4% probabilities for 

the next ride occurrence being within one day and 
within one week, + 3.69% for more than one week, 
and + 5.85% for no further use of the service. If the 
ride is the first ride, this increases the probability of no 
longer utilizing the service by 13.85%. Similarly, when 
a user’s next trip has to be paid for, the probability of 
not using the service increases from 4.05 to 5.9%. How-
ever, other factors may influence this result, such as the 
socio-demographic characteristics of users (income, 
attitude and perception of the service, mobility needs, 
etc.). Further research is needed to investigate this 
aspect, which could provide useful information to the 
operator for their system design and service improve-
ment. The operator can further quantify the probability 
changes of the target variable by inspecting the inter-
action effect of several variables. Based on the learned 
BN model in Figs. 6 and 7 illustrates an example of such 
an interaction effect with a journey time greater than 
25.9  min for a user’s first ride and when the next ride 
is not free. In this case, the probability of not using the 
service again increases from 4.05 to 25.1% (+ 20.05%).

From this example, we see how the operator could 
apply this tool to infer the next ride occurrence of users 
under uncertainty.

Table 6  Multinomial logit model results

Remark The reference class is more within 1 day.

Statistical significance levels: *0.05 < p-value ≤ 0.1; **0.01 < p-value ≤ 0.05; ***p-value ≤ 0.01

Category of user’s next ride occurrence 2 to 7 days ≥ 7 days Not utilize anymore

Variable Coef z-value Coef z-value Coef z-value

T_Kussbus 0.03 1.63 − 0.02 − 0.75 − 0.05* − 1.76

T_diff − 0.04** − 2.48 0.01 0.34 0.06** 2.09

Walk_dist 0.29** 2.11 0.72*** 4.43 0.72*** 3.28

OD_pair

Habay–Luxembourg − 0.33 − 0.67 − 2.28** − 2.14 − 1.72** − 2.06

Arlon–Kirchberg 0.10 0.36 − 1.32*** − 3.87 − 2.40*** − 5.05

Arlon–Luxembourg 0.01 0.04 − 0.95*** − 3.17 − 1.69*** − 4.73

within Luxembourg 0.71 1.59 − 19.12 − 0.01 0.41 0.36

Is_peak − 0.42*** − 3.02 − 0.63*** − 3.21 0.004 − 0.02

Isfree_next_ride 0.04 0.19 − 0.25 − 0.93 − 1.91*** − 6.56

Subsidy 0.36* 1.94 0.63** 2.28 19.89 0.02

Is_morning − 3.49*** − 17.19 − 2.68*** − 10.09 − 1.69*** − 4.89

Is_holiday 2.82*** 17.16 2.40*** 10.8 1.38*** 4.04

Is_august − 0.04 − 0.27 − 0.19 − 0.8 − 0.08 − 0.22

Is_first 0.56 1.61 1.69*** 4.99 2.14*** 5.96

Constant − 1.94** − 2.52 − 0.55 − 0.52 − 17.44 − 0.02

N 2783

DF 42

Log-Likelihood − 1634.79

McFadden’s Pseudo R2 0.2893

Likelihood-ratio test (Prob > χ2) < 0.0001
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5 � Discussion and conclusions
5.1 � Discussion
In this section, we discuss the main findings, policy rec-
ommendations, and methodological limitations of this 
study.

(a)	 It has been demonstrated that many microtran-
sit services play the role of complementing pub-
lic transport in a rural area [15]. From our analy-
sis of public transport coverage and Kussbus ride 
demand, we see that the current transit network 
in the study area could not meet users’ mobility 
needs, with higher trip journey times and incon-
venient transit transfers. Kussbus provides a user-

centered, flexible shuttle service with advanced 
booking, meeting points, and the latest real-time 
vehicle location tracking technologies. The progress 
of Kussbus ridership over time shows the potential 
of promoting flexible transit to change commuters’ 
mode-choice behavior from their habitual car use.

(b)	 Despite the success of Kussbus in attracting car 
users by providing 6 free trials and setting a ticket 
price in between the cost of using a car and pub-
lic transport fares, Kussbus discontinued its service 
after one year due to insufficient revenue and cost 
overrun [12]. Lessons learned from Kussbus opera-
tions suggest that financial viability remains a bar-
rier to successful deployment of such a service. In 

Table 7  Probability changes in users’ next ride occurrence given new evidence from other nodes

Remark The numbers in parentheses are the probability changes with respect to the case without new evidence from other nodes of the BN, i.e., 0.7 (< = 1 day), 0.196 
(2–7 days), 0.0631 ( ≥ 7 days), and 0.0405 (no further use)

Node New evidence Conditional probability distribution of the target node (Occurrence_nr), measured in %

 <  = 1 day Between 2 and 7 days more than 7 days No further use

T-diff (in minutes) ≤ 2.5 75.1(5.1) 16.9(− 2.7) 5.3(− 1.01) 2.7(− 1.35)

> 2.5 and ≤ 14.7 67.8(− 2.2) 21.9(2.3) 6.8(0.49) 3.5(− 0.55)

> 14.7 and ≤ 25.9 63.4(− 6.6) 23(3.4) 6.5(0.19) 7.1(3.05)

> 25.9 64.5(− 5.5) 15.6(− 4) 10(3.69) 9.9(5.85)

Is_first Yes 45.2(− 24.8) 19.4(− 0.2) 17.5(11.19) 17.9(13.85)

No 71.3(1.3) 19.6(0) 5.8(− 0.51) 3.4(− 0.65)

Is_free_next_ride Yes 73.6(3.6) 19.2(− 0.4) 5.8(− 0.51) 1.4(− 2.65)

No 67.6(− 2.4) 19.8(0.2) 6.7(0.39) 5.9(1.85)

Is_morning Yes 88(18) 6(− 13.6) 3.3(− 3.01) 2.7(− 1.35)

No 52.8(− 17.2) 32.6(13) 9.2(2.89) 5.4(1.35)

Fig. 7  Example of the probability changes in users’ next ride occurrence given new evidence from “T_diff”, “tIsfree_next_ride”, and “Is_first”
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terms of operation policy, the operator could con-
sider providing feeder services to connect train sta-
tions as a part of seamless multimodal transit solu-
tions to increase their ridership and reduce their 
operating costs.

(c)	 To understand the factors affecting users’ next 
ride decisions, we were able to model the causal/
dependent relationships between users’ ride experi-
ences and their next ride decisions with a discrete 
BN and compare it with an MNL model. Overall, 
our findings suggest that the results obtained by 
the BN approach provide similar prediction power 
compared to the MNL model, while the former 
presents an advantage of revealing the dependency 
structure of different factors and easy to under-
stand. We find that the commuting time difference 
between Kussbus and cars plays a key role in their 
willingness to continue to use the service. Moreo-
ver, when users experience longer commute times 
in their initial trials, they tend to not continue to 
use the service. This is not surprising as this com-
mute time dissonance with respect to travelers’ 
ideal/actual commute time would negatively impact 
users’ travel satisfaction and thus their mode-choice 
behavior [33, 34]. It is then necessary to improve 
this issue by examining operation policies or chang-
ing current transport policy in this area to favor 
the use of public transport. Another interesting 
research line is to compare the factors affecting 
users’ ride decisions for the free trial and paid user 
groups. We were unable to conduct reliable analysis 
due to restricted sample size.

(d)	 In terms of methodological limitations, future 
research could consider the hybrid BN with both 
discrete and continuous variables [31]. In our 
empirical data, the continuous variables do not 
follow continuous probability distributions (e.g., 
normal distribution), so we adopt a discrete BN 
approach. Collecting data over a longer period 
with additional fields regarding users’ socio-demo-
graphic attributes is expected to improve the model 
fitness and prediction performance. Another pos-
sible extension is to apply under-/over-sampling 
techniques to address the issue of imbalanced class 
(i.e., the classes of “ ≥ 7 days” and “no further use”) 
so as to increase the prediction accuracy for the 
class of interest [35].

5.2 � Conclusions
On-demand microtransit services have been considered 
an efficient alternative to reduce personal car use in rural 

areas as they provide a user-centered service and have 
the potential to complement traditional fixed-route tran-
sit. While many studies have focused on the ex-post eval-
uation of microtransit services based on empirical ride 
data, few studies have tried to understand the relation-
ships between users’ ride experiences and their next ride 
decisions. In this study, we aim to analyze these relation-
ships and propose a BN approach to analyze the factors 
affecting users’ next ride decisions (i.e., next ride within 
the same day, within one week/weeks, or no further use). 
Using the historical ride data provided by a recent micro-
transit pilot, “Kussbus”, in the Arlon–Luxembourg cross-
border area, we were able to identify key factors and the 
relationships between them for predicting the next ride 
occurrence decisions of users. Furthermore, we find that 
the Kussbus service plays a role in complementing the 
existing bus and train network for Belgium cross-border 
commuters, who have largely been relying on personal 
car use.

The results of the proposed BN model allow the oper-
ator to forecast future ride demand for a short horizon 
and manage their resource allocation in advance. Given 
that the public transport supply in the study area does 
not currently provide a convenient option for cross-bor-
der commuters (multiple transit transfers are required), 
commuting by private car has been the preferred option, 
causing serious traffic congestion and raising public 
health concerns in the study area. Our findings suggest 
that new operational strategies and a thorough analysis of 
financial feasibility are needed to improve service viabil-
ity and promote public transportation in the study area.
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