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Abstract 

Background Preventing fatal traffic accidents towards Vision Zero is a challenge for the society. The collection of criti-
cal events from video recorded traffic data is of essential value for a better understanding on how and under what 
circumstances critical situations evolve. Identified behavioral patterns and derived infrastructural measures cannot 
only help to make driving safer, but also help to mature automated driving functions (ADFs) to make automated 
vehicles drive and interact more like humans especially in challenging situations. One flaw when developing ADFs 
is the dependency on synthetic simulated traffic scenarios.

Method In this paper, a novel probability-based framework is proposed allowing to measure the degree of criticality 
C(d) based on two dimensions explaining risk: severity (delta-v) and proximity (distance).

Results This metric is applied on real data of a roundabout. An initial evaluation of it was conducted using 
both a novel proposed method that takes the reaction of the second vehicle merged into account, and a practical 
application that shows a potential correlation between the traffic expert’s perceived risk and the metric.

Conclusion Quantifying risk on each of the collected real traffic scenarios makes testing ADFs possible in further 
more reliable and significant scenarios like near-crashes.

Keywords Traffic observation, Trajectory data, Roundabout scenario, Merging interactions, Traffic safety, Safety critical 
event, Criticality, SMoS

1 Introduction
Advances in traffic data observation systems such as 
the AIM (Application platform for intelligent mobil-
ity) Mobile Traffic Acquisition [5], allow the automatic 
collection of large amounts of trajectory data. The data 
can be reduced to the desired scenarios, e.g. near misses 
due to spatial and temporal closeness of interacting road 

users. Still some crashes and critical scenarios may not 
be found, which leads to deal with false-negative rates, 
making it difficult to derive statistically significant esti-
mations. The reason is either lack of accuracy, no detec-
tion of the object tracking system or a limitation of the 
algorithm detecting criticality. This paper focuses on the 
last point, by investigating ways to improve measurement 
of criticality. In general, Surrogate measures of safety 
(SMoS) in combination with collected microscopic traf-
fic datasets enable finding behavioral patterns that lead 
to risky interactions. In the following some exemplary 
works are presented.

Laureshyn et al. [7] defined the risk of collision and the 
severity of a potential crash as relevant metrics in a traf-
fic encounter. SMoS that are sensitive to both dimensions 
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have been developed like the extended delta V, which is 
one of the most relevant ones [6].

Even though thresholding criticality is a scientifically 
accepted standard, to define risk boundaries is a complex 
and subjective task. Stemmler et  al. [9] tackle this issue 
introducing a probabilistic framework that assesses safety 
critical events based on the likelihood of the collected 
parameter distributions from naturalistic driving data.

In this paper, this approach is extended by combining 
both proximity and severity as independent parameter 
distributions to build the probabilistic model based on a 
dataset of merging events. Distance (d) and difference of 
speed (delta-v) between the entities are mapped to prox-
imity and severity respectively.

Even though in traffic scenarios an interdependency 
exists in the proximity and severity dimensions, these two 
are independent continuous variables. For instance, there 
might be car following behavioral patterns that yield to 
a certain correlation between the relative distance (prox-
imity) and the difference in speed (severity) kept by the 
traffic entities, but there could also be two similar scenar-
ios with the same relative distance but having different 
values of the relative velocity. As explained in the follow-
ing method part, this assumption is key towards the defi-
nition of the probabilistic model.

2  Method
The proposed method consists firstly on mining a traf-
fic scenario (based on automatically annotated trajectory 
data). Once this is done, the parameters that are repre-
sentative of both proximity and severity are extracted for 
each of the mined events, creating the parameter-space 
distributions for the probabilistic model. Based on com-
bined probability of these two independent dimensions, 
each of the mined scenario is finally labeled with a fuzzi-
fied criticality index from 0 (barely critical, or extremely 
safe interaction) to 1 (extremely unsafe interaction). In 
this section a more detailed explanation of this index is 
given.

Proximity and severity of an encounter process of 
two interacting road users, are modelled as continu-
ous independent stochastic variables. For simplifica-
tion of the whole process, each of these dimensions’ 
metric is computed once per scenario (Sect.  “Scenario 
parameterization”).

The Cd metric is based on the definition of a percentile 
value (P). Considering the proximity first, let di be the dis-
tance d between the traffic entities of a specific scenario 
i to which its risk is intended to be quantified, and D the 
random variable representing the collected distribution 
of distances of multiple events of the same scenario. Pdi is 

then equal to the probability that the random variable (D) 
is less than or equal to the upper bound di . This is math-
ematically expressed as:

Since the probability density function of distances 
( f (d) ) represents the probability that the random vari-
able D takes on values less than or equal to any par-
ticular value, the probability that D takes on a value 
less than or equal to its maximum value should be 
1(P(D ≤ max(D)) = 1) . Being the low distance values a 
high-risk indicator, and following the logic that the sce-
nario with the smallest d of the distribution should be 
labeled as 1, Pdi is inverted by subtracting it to 1 to get the 
proximity indicator (pi):

When it comes to the severity indicator (si), the higher 
the delta-v of both entities the higher the severity of the 
event. In terms of probability of occurrence, this implies 
that any random merging scenario’s delta-v (�V ) would 
have low chances of being larger than an event with an 
extremely high delta-v (�vi).

Following the initial assumption of the non-depend-
ency of both criticality dimensions, in probability this 
is expressed as the product of both indicators pi and si . 
This results in a normalized risk metric taking both prox-
imity and severity into account.

(1)Pdi =
di
∫

min(D)
f (d)�d = P(D ≤ di)

(2)pi = 1− Pdi

(3)P�di =
�vi

∫
min(�V )

g(x)dx = P(�V ≤ �vi),

(4)si = P�vi

(5)Cd = pi ∗ si

Fig. 1 Bird’s eye view of mobile camera pole-units facing the center 
of the single-lane roundabout
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3  Results and discussion
3.1  Dataset and preprocessing steps
Motivated by the European research project L3Pilot, the 
test dataset consists of one month of trajectory data, col-
lecting around 24,000 merging interactions during Octo-
ber–November 2019. For the data collection campaign, 
the AIM traffic data acquisition system, consisting on ste-
reo cameras tracking traffic participants based on optical 
flow detection algorithms was used. Three of its mobile 
units were located in a roundabout in Wolfsburg (see 
Fig.  1 below). The perceived trajectory data consists of 
position, time, velocity, heading and acceleration meas-
urements in time, which is afterwards used for testing the 
proposed framework.

3.1.1  Scenario mining
The chosen scenario of interest inside a roundabout to 
test the proposed metric must be the one with the higher 
probability of being severe. According to [8], conflicts in 
roundabouts are mainly caused by merging and diverg-
ing scenarios, being merging more critical due to both 
a higher uncertainty and the specific angle of attack in 
caused collisions [1].

For a better understanding of the scenario, a further 
split into sub scenarios (SC) is made, differentiating 
events where the entering stream yields (YSC) and does 
not yield (NYSC) to the circling stream.

Using the satellite view of the roundabout, several opti-
cal loops (OL) and areas of interest (AOI) where included 
within one of the entering arms of the roundabout and 
the circling stream. The intersection of those loops with 
the recorded trajectories is used for the extraction of the 
merging candidates (Fig. 2).

To improve the quality of those trajectories an 
Unscented Kalman Filter (UKF) method is applied in a 
post processing step. Following the L3Pilot requirements, 
any merging interaction between both streams was con-
sidered as true if their absolute Post encroachment time 
(PET) was below or equal to six seconds. If being greater 
than this threshold, the road users most likely did not 
interact. Beware that this criterion itself could be a limi-
tation due to potential high PET as a consequence of 
critical events yielding to a strong braking of either of 
the entities. The flow diagram below illustrates the whole 
mining process (Fig. 3).

All in all, the image processing part corresponds to 
the collection and processing of traffic data, while the Fig. 2 Entering stream (C 376) yielding to the circling stream (C 375)

Fig. 3 Flow Diagram of the scenario mining process
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mining part comes after the collection of those events, 
where certain rules are applied to obtain the SCs of inter-
est. A more graphical and simplistic view of the process 
described above is shown in Fig. 4.

3.1.2  Scenario parameterization
For generating the sample’s parameter distribution, the 
current approach simplifies the whole merging scenario. 
Being this a complex time dependent interaction, it is 
reduced to the computation of some scenario parameters 
at a single specific frame of interest (t = T). As can be 
seen in Fig. 5, a representation of this timestamp for both 
entering stream yielding (right) and no yielding (left) is 
shown.

The sub-indexes 1 and 2 refer to the order the merging 
entities merged; the time instant (T) corresponds to the 
moment either of the vehicles exposes to the a-posteriori 
recorded trajectory of the other stream.

As to the computation of those parameters, both d 
and delta-v are then computed at that specific moment 
of time for each of the 24,000 recorded events. As stated 
in the introduction, the criticality’s parameter-space is a 
combination of the outcome severity in case of a collision 
and the probability of both entities colliding (proximity). 
d(T ) is then taken as representative of closeness, and 
v2(T )− v1(T ) as the measure explaining severity. The 
diagram below exemplifies this process (Fig. 6).

3.2  Analysis of parameter distributions
The scenarios’ parameter distributions introduced in 
this section help to understand, validate, and derive con-
clusions about the performance of the proposed metric 
(Sect. 3.3). Beware that the current validation method is 
not completed, since the current work provides only with 
an initial validation and a practical application.

3.2.1  Traffic flow
Hydén [4] and [11] suggest a strong correlation between 
the number of crashes and the frequency of conflicts. 
Hence, there is a focus on identifying events with a 
higher probability of ending in a conflict. Since proxim-
ity is directly related to a higher probability of crashing, 
and the traffic flow is a direct consequence of the time 

Fig. 4 Image flow from the processing of the frame, to the mining of the SC

Fig. 5 Bird’s eye view of the merging scenario for both NYSC (left) 
and YSC (right) subscenarios

Fig. 6 Evolution in time of both entities’ projected distance (left) and delta-v (right) in a given merging scenario
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gap (PET) between merging vehicles, a higher probabil-
ity of crashing is expected to be found on larger traffic 
volumes. In Fig.  7, a bar plot with the merging events 
per hour is shown. As expected, the [7–9] and the 
[15–16] time intervals have the highest traffic peaks. 
Furthermore, low PET values (below 1.5 s) per hour is 
used as a tool to count the frequency of close events 
(or conflicts). As can be seen in red below, most criti-
cal events would have a higher probability of occurring 
during those hours where traffic volume is also high. 
This chapter later links to the validation of the metric, 
showing indeed that these hours lead to higher average 
Cd.

This observed correlation between traffic flow and 
the number of close encounters is better described in 
the scatter plot below (Fig. 8). In the vertical axis, the 
hourly average PET values are calculated, whereas 
in the horizontal axis the hourly number of merging 
events. The higher the amount of traffic (in this case 
represented by high merging events per hour), the 
less the chance of finding time gaps to safely merge 
by the entering stream, so in order to keep a balance 
between efficiency and safety, this last one is compro-
mised resulting in lower PET values. Intuitively, this 
could be thought as if an entering vehicle wants to find 
a safe time–space spot to enter; it is more likely that 
this vehicle spends more time waiting for this time-gap 
to appear, the higher the traffic density in the rounda-
bouts’ circling stream is.

3.2.2  Distance (d)
The proximity component of the Cd is the distance 
between the merging entities. The distribution below 
shows how in the YSC (blue), the resulting space gap is 
much smaller. In the NYSC, the average distance between 

Fig. 7 Number of merging cumulated per hour of day

Fig. 8 Merging event’s mean PET (muPET) and number of events 
grouped per hour

Fig. 9 Distributions of distances Pd (YSC and NYSC)

Fig. 10 Different stream’s velocity distributions for YSC vs NYSC
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the entities is a little less of twenty meters, while in the 
YSC the average distance does not reach ten meters. We 
can state that during the YSC, being a more controlled 
scenario, the resulting merging event tends to generate 
closer gaps (see Fig. 9).

3.2.3  Delta‑v
The distribution of the severity component of the Cd is 
firstly introduced through a set of boxplots (Fig.  10). 
These boxplots represent the stream’s velocities for both 
SCs. YSC interactions show the severity of a potential 
collision being clearly smaller, since the velocity of the 
circling stream, and therefore the first one merging, is 
significantly higher (see first two boxplots starting from 
the left). On the contrary, the NYSC barely states a differ-
ence in velocity between both streams (two boxplots on 
the right of the figure). This means that this SC leads to 
merging events with a higher probability of being severe.

Theoretically, and assuming no acceleration is 
expected from the second entity merging, an event with 
delta− v <= 0 has zero probability of being severe. The 
probability of an event having a delta-v greater than zero 
is expressed by the next equation.

The higher the severity exposure of this SC is clearly 
represented in the probability distribution of the delta-
v, where NYSC have 42% of chances of being exposed 
to at least a minimum severity level (see Fig. 11). On the 
contrary, the YSC barely have a chance of being exposed. 
The red area in the density graphs below represents the 
events with a likelihood of being severe. Equations  (7) 
and (8) represent the probability given a specific SC.

(6)

P(delta− v > 0) =
max(delta−v)

0

f (delta− v)�delta− v

(7)P
(

delta_v > 0|SC == yield
)

= 0.01

3.2.4  Delta‑v—distance
When both parameters are contrasted in a ridge plot 
(Fig.  12) it can be seen that the closer the merging 
vehicles are, the lower is the probability of them being 
injured, or in other words, the higher the delta-v. This 
of course is a representation of normal driving behavior. 
Negative delta-v values occur whenever the vehicle in 
front has a bigger longitudinal speed than the vehicle in 
the back, resulting theoretically in a zero probability of 
collision. NYSC is more frequent the higher the distance, 
and gets dispersed the closer the merging actors.

3.2.5  Criticality degree (Cd)
The 24,000 merging events are the basis sample for the 
probabilistic framework. A criticality index is computed 

(8)P
(

delta_v > 0|SC == no yield
)

= 0.42

Fig. 11 Delta-v probability density functions for yield and no-yield 
SCs
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Fig. 12 YSC (blue) and NYSC (orange) for d-delta-v

Fig. 13 Histogram of distribution of the Cd computed for all 
recorded events
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for each of the events. The histogram below (See Fig. 13), 
shows a discrete distribution of all the resulting Cds. Inter-
estingly, different phases can be determined (visualized 
by the vertical black lines): From 0–0.1 an increase on the 
frequency can be seen. This seems to be in line with the 
idea by [3] and [10] of perfectly safe events being less com-
mon than moderate severe events due to the smaller gap 
acceptance on the interactions to gain travel time but also 
consequently increasing the risk level. Reaching the peak 
around 0.1, it can be seen how the number of events starts 
decreasing at three different rates: [0.1–0.3], and [0.3–0.5], 
and [0.5–1], potentially defining different risk ranges. Of 
course, these statements might need to be considered in 
different scenarios, or even in different samples of the same 
scenario, on the one hand, and on the other hand the low 
rate might be biased by the PET threshold limitation of six 
seconds to include a merging scenario or not within the 
sample.

3.3  Cd initial evaluation and discussion
Once the theoretical framework was introduced, the pro-
posed metric Cd is evaluated by using relevant parts of the 
descriptive analysis’ results as well as parts of the human-
video-observation-based analysis. The Cd is evaluated in 
the following three steps:

 I. Measuring the reaction of the 2nd entity merging 
and compare it with the Cd.

 II. Finding a correlation between traffic flow and the 
mean Cd at different hours of the day.

 III. Practical application by traffic safety experts.

3.3.1  Reaction of 2nd merged vehicle
The reaction of the 2nd vehicle merging to a potentially 
critical scenario is a novel proposed good indicator of its 
criticality. By adding the Initially Attempted PET (IAPT 
[2]) to the equation, a metric representing the reaction of 
the second vehicle is incorporated. Being the PET the real 
crossing/merging time gap between the entities, and the 
IAPT the initially expected PET whenever the 1st vehicle 
leaves the crossing/merging area, this metric then only 
depends on the actions taken by the 2nd vehicle. If initially 
the IAPT was 3 s and the real PET was then 1 s, a statement 
can be made that the 2nd vehicle accelerated (reducing this 

way the expected time gap from 3 s to just 1 s). On the con-
trary, if some risk is perceived by the 2nd vehicle, it shall 
increase the time gap, resulting in IAPT/PET being smaller 
than 1. The ratio between the IAPT and the PET therefore 
describes the kinematic behavior of the second vehicle until 
it reaches the crossing/merging area. If this ratio is equal to 
1, it is understood that the entity did not react after the first 
vehicle left the area and kept the velocity constant, there-
fore the IAPT’s value remains unchanged. When a change 
in the velocity is made, then the final PET value will be 
either bigger or smaller than the IAPT. Mathematically this 
can be expressed as:

One would expect that when a merging scenario has a 
higher potential of being critical, the reaction of the sec-
ond vehicle to this event should be to brake rather than 
to accelerate, since this last action would close the gap 
between both merging actors even more. According to 
what is expected, Fig.  14 shows how whenever the 2nd 
entity brakes, in average those events indicated a higher 
degree of criticality. In other words, as expected there 
seems to be a higher tendency to brake the higher the 
perceived risk is.

3.3.2  Traffic flow
As stated in 3.2.1, this parameter plays an important role 
in traffic management when balancing both safety and 
efficiency. Figure  15 shows the mean Cd after group-
ing all merging scenarios per hour of the day. According 
to the bar-plot, the [7–9] and [15–17] h ranges contain 
the highest average risk indices, meaning the higher 

IAPT/PET . . .







= 1 → No reaction (constant speed)
< 1 → brake

�

increasing final gap time (PET )
�

> 1 → accelerate
�

decreasing the final time gap
�

Fig. 14 Reaction to risk representation, observing a more tendency 
to brake the higher the Cd
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probability of events yielding to a conflict the hours 
where traffic volume is higher (See Fig. 7).

3.3.3  Practical application of the Cd
In the EU funded project L3Pilot, traffic experts anno-
tated 4 merging scenarios with different perceived sever-
ity and proximity levels (low/medium/high) so that a first 
practical example of this metric is seen. Table  1 repre-
sents the conducted study. The last column is the frame 
corresponding to the time where the scenario-parame-
ters where extracted.

To help a further understanding of the scenarios, some 
of the computed parameters for each of these events 
are also added. The scenario id 1 has a low Cd of 0.18, 
matching the resulting high PET of 3.71  s. The delta-
v of -1.22 indicates that the vehicle in front is 1.22  m/s 
faster; in other words, no severity. The corresponding 
video frame in Table  1 also show a huge gap between 
both entities. The second and third scenario ids show a 
similar medium-risk Cd (0.43 and 0.44 respectively), 
with a significantly different PET value (2.2  s vs. 0.5  s). 
This makes sense considering that the PET is a proximity 
metric; when taking the severity values into account, the 
one with a higher PET (id = 2), has a significantly higher 
delta-v value (1.66  m/s vs.  − 3.47  m/s), balancing the 
PET inequality into a similarly risk indexed scenario. The 
table’s last row shows the merging event with the highest 
perceived criticality, being in line with the resulting risk 
index of 0.75. This event has a low PET value (0.6 s), as 
well as a high delta-v (3.7 m/s).

Even though after a first review there seems to be a 
strong correlation between the perceived risk by the 
human experts and the proposed metric Cd, a more 
robust empirical evaluation is still needed with a higher 
number of computed scenarios and a validated question-
naire involving perceived risk, proximity and severity 
analysis.

Fig. 15 All event’s Cd values grouped by its mean per hour of day

Table 1 Parameter-table of 4 merging events

Scenario id Severity level Proximity level PET (s) Delta-v (m/s) Cd [0–1] Frame (t = T)

1 Low Low 3.71  − 1.22 0.18

2 High Medium 2.2 1.66 0.43

3 Medium High 0.5  − 3.47 0.44

4 High High 0.6 3.7 0.75
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4  Conclusions
This paper’s main contribution is the proposal of a proba-
bilistic framework to determine a criticality index Cd to 
collected real traffic scenarios. The parameter space was 
selected as a combination of the most representative 
criticality dimensions: severity and proximity. The result-
ing index ranges from 0, or no probability of the scenario 
being severe at all, to 1, or most safety critical event of the 
collected dataset. This simple novel metric allows quan-
tification of criticality in one value, which is the main 
weakness of currently used methods to assess criticality 
by multiple metrics with individual thresholds so far.

The proposed method is applied in a statistically sig-
nificant batch of 24,000 collected scenarios, and com-
pared with both traditional existing metrics for crossing 
and merging events such as the PET. The Cd was evalu-
ated based on the perceived risk based on the reaction of 
the 2nd entity to the interaction calculated by IAPT/PET. 
Finally, the subjective rating of the risk in four merging 
scenarios showed a consistency with the obtained Cd.

5  Future prospects
When seeking for a universal SMoS, there is still much to 
be done. One aspect is the need to overcome the depend-
ency on the collected dataset; in other words, one might 
collect 1  month of trajectory data, and still not get an 
extremely critical event, but nevertheless it would be 
indexed as the most critical one ( Cd = 1 ); this metric 
gives a criticality degree relative to the distribution, not 
universal.

The presented approach also equally weights both proxim-
ity and severity dimensions, so a subjective (further expert 
evaluation of more scene videos) and objective (find cor-
relation between an already validated SMoS, for instance, 
extended deltav and Cd) evaluation of the metric would 
still be needed to validate this metric. This follows the logic 
that depending on the situation, the user might seek for traf-
fic efficiency instead of safety, biasing the collected batch 
of data, and the resulting Cd from the obtained parameter 
distribution.

Finally, and with regards to the generalization of the 
method, this technique should be applied in other rel-
evant scenarios (for example left turn with oncoming 
traffic at an urban intersection). The parameterization 
part would have to be readjusted, because it is currently 
biased by the tested roundabout scenario (see Scenario 
parameterization above).
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