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Abstract 

The application of artificial intelligence (AI) techniques may lead to significant improvements in different aspects 
of rail sector. Considering asset management and maintenance, AI can improve data analysis and asset status 
forecasting and decision-making processes, fostering predictive and prescriptive maintenance strategies. A prescrip-
tive approach should be able to predict future scenarios as well as to suggest a course of actions. Nevertheless, 
the decision-making in rail asset management is often based on the classical asset-oriented approach, concentrating 
on the function of the asset itself as a main key performance indicator (KPI), whereas a user-oriented approach could 
lead to improved performance in terms of level of service. This paper is aimed at integrating the passengers’ perspec-
tive in the decision-making process for asset management to mitigate the impact that service interruptions may have 
on the final users. A data-driven prioritisation framework is developed to prioritise maintenance interventions taking 
into account asset status and criticality. In particular, a three-step approach is proposed, which focuses on the analy-
sis of passenger data to evaluate the failure impact on the service, the analysis of alarms and anomalies to evaluate 
the asset status, and the suggestion of maintenance interventions. The proposed approach is applied to the mainte-
nance of the metro line M5 in the Italian city of Milan. Results show the usefulness of the proposed approach to sup-
port infrastructure managers and maintenance operators in making decisions regarding the priority of maintenance 
activities, reducing the risk of critical failures and service interruptions.

Keywords Rail maintenance, Service-based asset management systems, Maintenance decision support, User-
oriented planning approach, Passenger flow analysis, Dynamic asset criticality, Maintenance prioritisation, Prescriptive 
analytics

1 Introduction
With the digitalisation of rail infrastructure, an increas-
ingly amount of data is becoming available, and 
automated tools based on artificial intelligence (AI) tech-
niques are under development to extract information 
from them [1–5].

Different definitions of AI exist [6], since the defini-
tions of artificial intelligence evolve based upon the 
goals that are trying to be achieved with an AI system, 
e.g. to imitate the human behavior, to use human rea-
soning as a model, etc..[7]. AI can be defined as “the 
ability of a digital computer or computer-controlled 
robot to perform tasks commonly associated with intel-
ligent beings”. AI techniques represent methods, algo-
rithms and approaches enabling systems to perform 
tasks commonly associated with intelligent behaviour 
(e.g. machine learning, evolutionary computing [8, 9].) 
In the literature Bésinovic et  al. [10], Ghofrani et  al. 
[11], Yin et  al. [12], aspects considered crucial when 
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considering AI applications in the railway domain are: 
1) the capability to accomplish tasks that would require 
critical intelligence that can be done by a human (e.g. 
decision-making); 2) the capability of taking into 
account uncertainties and/or unexpected scenarios (e.g. 
machine learning models for data-driven predictive 
maintenance); 3) Being able to learn from experience 
and take autonomous decisions in uncertain scenarios.

Machine learning is at the core of many approaches 
to artificial intelligence; according to Yong et al. [13] a 
large part of AI for railways today is based on machine 
learning (ML). In particular, ML is a branch of the 
broader field of AI that uses statistical models to iden-
tify anomalies and develop predictions [14, 15]. How-
ever, AI tools include also other techniques such as 
search algorithms, mathematical optimisation, evolu-
tionary computation, logic programming, automated 
reasoning, probabilistic methods such as bayesian net-
work and Markov model [4].

In this context, there is a high demand for a step change 
in asset management (AM) [16] to be delivered through 
innovative data-driven technologies and AI techniques 
[17–22].

This innovation of asset management strategy and 
techniques is particularly challenging in the railway sec-
tor where complex systems are integrated to achieve 
high safety and reliability standards. Kumari et  al. [19, 
20] develop and propose a concept for augmented asset 
management for railway assets, which involves the aug-
mentation of AM with advanced analytics, based on 
digitalization and AI techniques, to provide augmented 
decision support for fleet management. McMahon et al. 
[21] analyse requirements and challenges for big data 
analytics applications to railway asset management and 
recommend that the research efforts should be directed 
to define potential data-driven analytics frameworks, and 
to integrate different data-driven approaches for condi-
tion and failure monitoring and decision support.

As stated by [22], detecting defects of the railway infra-
structure in the early stage of defect development, can 
reduce the risk of railway operation, the cost of mainte-
nance, and make the asset management more efficient.

To this aim, condition-based [23–25] and predictive 
maintenance approaches [26–30] were studied to evalu-
ate rail asset current and future status, exploiting data 
collected in real-time by new monitoring technologies 
and sensors, installed on board trains and wayside.

Many initiatives for the innovation of AM approaches, 
through digitalisation and AI, are ongoing in the rail 
sector within the Shift2Rail and Europe’s Rail research 
framework with projects such as IN2SMART [31], 
IN2SMART2 [32], IAM4RAIL [33], IN2DREAMS [34], 
DAYDREAMS [35], and RAILS [36].

Moreover, a railway system is usually composed by 
numbers of interdependently linked subsystems, and a 
failed component or subsystem may differently affect the 
system performance, according to its function. Therefore, 
the evaluation of subsystems and components’ status and 
criticality is crucial for maintenance managers and oper-
ators [37]. The choice of maintaining the most degraded 
asset is not always the best one if, for example, the asset 
is redundant asset or its failure does not affect the service 
availability. For this reason, AM decision support systems 
should consider criticality considerations, besides the 
asset status evaluation, to identify the best AM strategy.

The goal is to achieve a prescriptive approach which 
is not only able to answer questions like “What is hap-
pening?” (the condition-based approach), or “What will 
happen?” (the predictive approach), but it can also pro-
vide answers to questions like “What could be done?” and 
“What are the best options?”, optimising, under context-
specific asset management constraints, preferences and 
targets of railway stakeholders [11, 38–40].

Nevertheless, the decision-making in rail asset man-
agement is still too often based on the classical asset-
oriented approach, which concentrates on the function of 
the asset itself as a main key performance indicator (KPI), 
whereas a user-oriented approach could lead to improved 
performance in terms of level of service.

Service-based asset management concentrates on pro-
vided services and serviceability of assets by applying 
service-level KPIs in order to reflect users’ perspectives 
in decision-making [41].

The availability of data on passengers’ transport 
demand collected by different systems, such as auto-
mated passenger counting (APC) and automated fare 
collection (AFC) systems, allows to exploit these data to 
extract important information to be used in many ser-
vice-based decision-making processes.

Recent studies [42, 43] focus on the impact on passen-
gers of service interruptions and delays caused by rail 
asset failures and maintenance to investigate and quan-
tify how disruptions to rail services are perceived by pas-
sengers [42], and to propose mitigation measures [43]. 
However, the passengers’ perspective is usually not inte-
grated in the decision-making framework for asset man-
agement. This leads to strategies that may keep assets in a 
high-quality condition but significantly affecting the pas-
sengers and the service, such as planning maintenance 
during days characterised by a peak of transport demand. 
Including passenger flow prediction as an input of the 
decision-making process would allow to avoid these situ-
ations, since maintenance tasks, which require temporary 
service disruptions or track closures, can be scheduled 
during off-peak time intervals. In addition, it would be 
possible to reduce the number of critical failures during 
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a peak demand period, by planning preventive mainte-
nance before the peak, ensuring a good condition of the 
assets when they are needed the most.  Finally, mainte-
nance strategies could be updated based on changing 
passenger behaviour, guaranteeing that maintenance 
plans could be always aligned with the most up-to-date 
rail line usage patterns.

The purpose of this paper is to fill this gap and move 
some steps towards a service-based asset management in 
the rail sector. In addition, the present study is aimed at 
answering to the research needs related to the definition 
of data-driven analytics frameworks and the integration 
of different data-driven approaches for condition and 
failure detection and maintenance decision support.

The addressed problem is the definition of a prescrip-
tive maintenance approach able to suggest the needed 
predictive maintenance activities and the best order to 
perform those interventions according to selected KPIs 
and targets for the infrastructure manager.

The objective of the study is to develop a data-driven 
framework to prioritise predictive maintenance interven-
tions according to asset status and criticality.

The prediction of rail assets’ status is performed based 
on an anomaly detection technique, and the capability of 
the proposed approach to predict failure and avoid cor-
rective interventions, suggesting predictive interventions, 
is evaluated.

The prioritisation approach is able to represent dif-
ferent decision-making criteria, including service-level 
targets, and to assign different weights to the criteria 
according to their importance for the infrastructure 
manager.

The assumption is that the asset criticality can be 
decomposed in two terms:

• a static term related to the type of asset and its spe-
cific function and types of failure;

• a dynamic term related to the service condition in the 
considered time period.

While the static term is usually provided by the main-
tenance expert or the rail system designer, the dynamic 
term is evaluated considering the impact of failure on 
the service and the involved passengers according to the 
asset position and the utilisation rate of the different line 
sections over time. To achieve this objective, a model for 
the prediction of passenger flow at stations is proposed. 
This information is exploited in combination with the 
prediction of asset status to prescribe the needed pre-
dictive maintenance activities and to suggest the optimal 
sequence of interventions to the railway infrastructure 
manager. The ranking of the possible maintenance 
options is performed according to defined KPIs. Different 

options of maintenance ordering can be proposed to the 
infrastructure manager and the related KPIs can support 
the infrastructure manager in making the final decision.

The approach deals with a tactical level of decision 
making, providing a prioritisation of predictive mainte-
nance interventions. The detailed scheduling of the main-
tenance activities with their allocation to maintenance 
time windows and work teams is out of the scope of this 
paper and represents a consecutive decisional phase that 
will use the prioritisation as an input.

The considered maintenance activities are pre-
dictive maintenance work orders generated by the 
anomaly detection model. The anomaly can lead to a 
predictive maintenance work order if it is detected suf-
ficiently in advance, leaving enough time to organize the 
intervention.

Corrective maintenance interventions are neglected, 
but they can be integrated in the prioritisation list as 
activities with the highest priority to be executed as soon 
as possible.

Moreover, it is worth saying that the scope of the work 
is to show how different data-driven models and AI tools 
could be integrated in a data-driven framework for deci-
sion-making, including the passengers’ perspective in 
the maintenance planning. The identification of the best 
data-driven models for the considered data sets and the 
comparison with other existing methods is out of the 
scope of the paper.

The approach is suitable to estimate the predictive 
maintenance interventions needed in the upcoming 
week, considering a weekly time horizon.

2  Literature review
The proposed approach exploits different sources and 
types of data, linking three different models within a 
unique data-driven framework, to extract important 
knowledge to support maintenance decision-making.

In this section, the analysis of existing studies is pre-
sented considering the aims of the three models devel-
oped in this work: passenger flow prediction, rail assets 
status evaluation, and maintenance planning and deci-
sion support.

2.1  Passenger flow prediction
Considering the prediction of passenger flows and vehi-
cle occupancy, several studies have addressed the topic of 
predicting the number of passengers on public transport 
vehicles, including trains and metro lines; they mainly 
differ in the used type of data and the adopted prediction 
model.

Regarding the prediction framework, the cyclical com-
ponent of transport demand concerning the time of the 
day and the day of the week favored classical statistical 
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prediction techniques based on time-series forecasting 
methods, such as autoregressive integrated moving aver-
age (ARIMA) and Kalman filters [44–46].

However, since the changes in traffic data are nonlinear 
in nature, all the above-mentioned models are limited in 
their performance and application due to the assumption 
of linearity [47].

Therefore, research has shifted more towards machine 
learning and deep-learning techniques that can model 
the non-linearity and the feature interactions. Liu et  al. 
[47], Liu and Chen [48], Wang et al. [49], and Baek and 
Sohn [50] have successfully applied methods based on 
neural networks and deep learning, whereas Samaras 
et  al. [51], Ding et  al. [52], Vandewiele et  al. [53], and 
Gallo et  al. [54] have found that neural networks need 
large quantities of data to perform well, and are out-
performed in their cases by tree-based algorithms like 
random forests, gradient boosted decision trees, and 
Bayesian based models.

Jenelius [55] applied lasso, stepwise regression, and 
boosted tree ensembles to predict passenger numbers on 
metro lines both at the stations and on the trains, testing 
the effectiveness of different typologies of data.

Few papers tried to solve the passenger prediction 
problem using Markov chain-based methods, even 
though they have been proven to provide promising 
results, since they can capture memoryless dependencies 

between the crowding of temporally close public trans-
port services [56]. In addition, this prediction method 
has the advantage of requiring only recent data, without 
the need for large historical datasets.

In this paper, a Markov chain Monte Carlo (MCMC) is 
applied to estimate the passenger flow exploiting ticket-
ing data. The technique is exploited within a wide frame-
work, in which the final aim is the evaluation of asset 
criticality.

The choice of using MCMC technique is motivated by 
its adequate performance with data sets of limited size, 
with respect to approaches such as Bayesian networks 
methods and neural networks, which need a higher vol-
ume of data to provide good results.

Table  1 compares existing studies on passenger flow 
prediction.

2.2  Rail assets status evaluation
Regarding the second main goal of the present work, 
the asset status evaluation, different studies exist in the 
literature. In particular, several machine learning meth-
ods, including artificial neural networks, support vector 
machines and random forests have been used to evalu-
ate the asset degradation status by analysing data coming 
from the equipment [35]. These data can be used both to 
identify equipment faults and to predict potential asset 
failures.

Table 1 Comparison of the selected passenger flow prediction studies

Study Objective Type of data Methodology

Ni et al. [44] Station flows prediction Twitter data and turnstile usage Linear regression and seasonal autore-
gressive integrated moving average

Xue et al. [45] Onboard passenger prediction Passenger boarding data Algorithm based on interactive multiple 
model (IMM) filter and different types 
of moving averages

Zhang et al. [46] Onboard passenger estimation and pre-
diction

Smart card data and GPS data Extended Kalman filter

Liu et al. [47] Station flows prediction Passenger measured flow Deep learning

Liu & Chen [48] Station flows prediction Passenger flow data from automated 
passenger counting (APC)

Deep learning

Wang et al. [49] Incoming flows prediction at station Automated fare collection (AFC) data Dynamic spatiotemporal hypergraph 
neural networks

Baek and Sohn [50] Bus stop flows and onboard passenger 
prediction

Smart card data Deep learning

Samaras et al. [51] Onboard passenger prediction Automated vehicle location (AVL) 
and APC data

Several machine learning algorithms

Ding et al. [52] Onboard passenger prediction AFC data Gradient boosting decision trees

Vandewiele et al. [53] Onboard passenger prediction Crowd-sourcing data Neural networks and XGBoost

Gallo et al. [54] Onboard passenger prediction APC data Linear regression and LightGBM

Jenelius [55] Onboard passenger prediction Weight measurements in the air suspen-
sion system of the train cars

Lasso and stepwise regression, boosted 
trees ensembles

Wiecek et al. [56] Onboard passenger prediction APC data Markov chains

This paper Station flows prediction AFC data Markov chain Monte Carlo
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Thanks to the digitalisation of the sector, analytics can 
be used to manage large quantities of data and derive a 
prediction of the asset status [11, 57]. Pipe and Culkin 
[58] developed a data-driven model able to forecast the 
status of rail assets in order to achieve predictive mainte-
nance strategies.

Machine learning can be divided into supervised, semi-
supervised and unsupervised learning approaches [59]. 
Supervised models, such as artificial neural networks, 
support vector machines (SVM) and Bayesian networks, 
applied to fault detection, diagnosis and prediction, stand 
as an interesting option in operations with high maturity, 
whereby most possible faults are already mapped, meas-
ured and available for use to train models.

For example, Li and He [60] used a random forest based 
supervised methodology to predict the status and the 
remaining useful life of railcars combining multiple data 
sources. Niu et  al. [61] used an adaptive pyramid graph 
method to detect anomalies in rail surface using images. 
Shim et  al. [62] used deep learning to detect anomalies 
of wheel flats exploiting processed flat wheel signals. Li 
et al. [63] applied a supervised SVM technique that effec-
tively uses large-scale data and provides valuable tools 
for operational sustainability and alarm prediction in 
railways. Considering signaling assets and, in particular, 
track circuits, a solution based on SVM is proposed by 
Sun et al. [64].

However, in the real world, new faults can happen 
in unmapped forms. This means that even a known 
fault might manifest in different ways. Therefore, even 
if supervised learning might bring trustful results for 
known cases, these models are limited in the case of 
unexpected events.

Semi-supervised models for fault detection can be seen 
as a variation of supervised models, since it is assumed 
that the training data have labeled instances for only the 

normal class. Therefore, any observation that deviates 
from the training data might be classified as a fault.

Conversely, unsupervised learning models do not con-
sider any class variable. Unsupervised models focus on 
identifying similarities and discriminating clusters of 
observations with common characteristics [65].

In this paper, a one-class support vector machine 
(OCSVM) is applied. The choice of using OCSVM tech-
nique is motivated by the fact that it is one of the most 
well-established algorithms for outliner detection and a 
popular semi-supervised model already applied in rail 
sector [66]. The OCSVM model is here integrated within 
a framework for maintenance prioritisation and planning.

Table 2 summarises existing studies on rail assets status 
evaluation.

2.3  Maintenance planning and decision support
In the literature, several methods and works have been 
proposed to schedule railway maintenance interventions, 
focusing on predictive maintenance.

Scheduling methods for predictive maintenance are 
expected to reduce both the maintenance cost and the 
risk of service disruptions; thus they should consider 
both the asset status and the asset criticality to identify 
the interventions priority [67]. In doing so, the most 
widely used minimisation targets are intervention costs 
and time duration, to maximise the system’s reliability 
and availability [68–70]. Solution approaches are based 
on heuristic approaches like tabu search algorithms, sim-
pler greedy heuristic and genetic algorithms [71, 72].

Lopes Gerum et  al. [73], Hamshari et  al. [74], Chang 
et al. [75] include, in the scheduling method, data related 
to the asset condition, collected by diagnostic trains and 
sensors, and degradation models to predict the probabil-
ity of asset failure. Mira et  al. [76] integrates the main-
tenance scheduling into a fleet assignment model to 

Table 2 Comparison of the selected rail assets status evaluation studies

Study Objective Type of data Methodology

Li and He [60] Prediction of the remaining useful life of train 
wheels and trucks

Data from three types of detectors (wheel 
impact load detector, machine vision sys-
tems, and optical geometry detectors)

Random forest

Niu et al. [61] Anomaly detection of rail surface Rail surface images Adaptive pyramid graph and variation 
residuals

Shim et al. [62] Anomaly detection of wheel flats Wheel flat signals Signal processing and deep learning

Li et al. [63] Early fault detection of trucks and train 
wheels

Data from multiple types of detectors Support vector machine

Sun et al. [64] Fault diagnosis in railway track circuits Short-circuit current signals Multi-class support vector machine

Wan et al. [66] Anomaly detection of train wheels Vibration signal collected with a pair of fiber 
Bragg grating sensors

Unsupervised learning algorithms

This paper Asset status evaluation Automatic train supervision (ATS) logs, assets 
parameters, and maintenance data

One-class support vector machine
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schedule train services. Baglietto et al. [37] and Carretero 
et al. [77] include risk-based methodologies and take into 
account the asset criticalities, but they do not incorpo-
rate asset condition prediction methods.

However, scheduling optimisation models are NP-
hard problems, which can be optimally solved within an 
acceptable computational time only for small instances, 
while heuristic algorithms, such as genetic algorithms, 
can provide sub optimal solutions also for bigger 
instances, but need long time to converge [78].

The ad-hoc prioritisation algorithm proposed in this 
paper allows to model the specific optimisation criteria 
of the infrastructure manager and to compare different 
solutions in a short computational time.

In addition, the ad-hoc optimisation algorithm has 
been formulated in order to include the outputs from the 
data-driven models for the evaluation of asset status and 
asset criticality.

Table  3 compares the existing studies on rail mainte-
nance planning and scheduling.

Therefore, in this paper, a model for prioritising pre-
dictive maintenance interventions and mitigating the 
impact on service is developed. The goal is two-fold: 
on one hand, this study is aimed at predicting future 
failures based on the detected anomalies and, on the 
other hand, the focus is on the identification of asset 

criticality based on the impact that its failure would 
imply on the service. The detected anomaly is consid-
ered a true anomaly if it would be followed by a failure. 
Therefore, if a true anomaly is detected sufficiently in 
advance, a predictive maintenance intervention can be 
performed, having sufficient time to organize the inter-
vention. The objective is to avoid critical failures and 
corrective interventions that would imply higher costs 
and service disruptions, as much as possible.

In this regard, the passenger flow along the line is 
estimated to identify the line sections with the higher 
utilisation rate and its variation over time, taking into 
account periodic fluctuations.

The asset status (i.e., functioning, low degraded, 
medium degraded, high degraded) is evaluated through 
a machine learning technique, the one-class support 
vector machine and a threshold-based approach.

Finally, a prioritisation algorithm is proposed to find 
the best compromise between different infrastructure 
manager’s targets and KPIs.

In summary, the innovative aspects of this paper are:

• addressing a service-based asset management in the 
rail sector, with the introduction of the impact on 
final users in the evaluation of maintenance priority;

Table 3 Comparison of the selected maintenance planning studies

Study Objective Methodology Optimised variables

Consilvio et al. [67] Maintenance planning Mixed integer linear programming problem 
solved with a Matheuristic approach

Tardiness with respect to the soft deadlines 
and the total completion time

Khalouli et al. [68] Maintenance scheduling Mixed-integer linear programming model 
solved with an ant colony optimisation 
method

Possession costs, maintenance costs, and pen-
alty costs

Macedo et al. [69] Maintenance scheduling Mixed-integer linear programming model 
solved with a variable neighborhood search

Total operational costs

Zhao et al. [71] Maintenance scheduling Mixed-integer linear programming model 
solved with a genetic algorithm

Cost benefit obtained by combining renewal 
activities for a track section

Quiroga et al. [72] Maintenance scheduling Heuristic algorithm that maximises the defined 
maintenance process’s objectives

Total reduction track geometry deviation, 
expected time to failure, and expected geom-
etry deviation at next campaign

Lopes Gerum et al. [73] Maintenance scheduling Markov decision process Maintenance costs

Hamshari et al. [74] Maintenance scheduling Gradient descent optimisation Risk of asset failure and total maintenance costs

Chang et al. [75] Maintenance scheduling Hybrid multi-objective optimisation algorithm 
based on a quantum-behaved particle swarm 
optimisation

Total cost, window leveling, and resource 
leveling

Mira et al. [76] Maintenance scheduling Integer linear programming mathematical 
model

Dead-headings, turning times robustness, 
and number of shuntings to the depot needed 
to be executed

This paper Maintenance prioritisation Ad-hoc prioritisation algorithm Cost of executing the maintenance intervention 
after the due date, cost related to postponing 
in the sequence the maintenance of an asset 
with a high criticality, and cost of executing 
in a consecutive order the maintenance of assets 
located far from each other
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• answering to the research needs related to the defini-
tion of a data-driven analytics framework for mainte-
nance decision-making and the integration of differ-
ent data-driven approaches;

• linking different sources of data and different mod-
els for data analysis in the decision-making process, 
moving towards prescriptive maintenance strategies;

• the evaluation of assets’ status by machine learning 
algorithms and their clustering according to degra-
dation thresholds, defining predictive maintenance 
work orders;

• the representation, in a prioritisation approach, of 
different decision-making criteria, including service-
level targets;

• the consideration of criticality concept in mainte-
nance prioritisation, in addition to the asset status, to 
reduce the risk of critical failures and service disrup-
tions;

• the prediction of passenger flow at stations in order 
to estimate the involved passengers in case of failure.

3  Methodology
The proposed approach consists of three steps:

• a Markov chain Monte Carlo technique is applied to 
evaluate the criticality of the assets according to the 
impact of their failure on the passengers, taking into 
account their position along the line, and exploiting 
the passengers data from the ticketing system of each 
station;

• a machine learning algorithm, the one-class sup-
port vector machine, is applied to cluster the assets 
according to their status, based on data collected 

from the field on events and alarms logs, asset 
parameters, and maintenance data;

• an ad-hoc ordering algorithm is developed to pri-
oritise the interventions considering as inputs the 
results of the previous steps.

The proposed framework is described in Fig.  1. The 
“asset criticality evaluation” module computes the aver-
age passenger flow trend in the different line sections. By 
considering the asset position and the transport demand, 
a dynamic criticality value πpτi  is computed for each asset 
i in the time horizon τ.

In addition, given the type of failure and the impact 
caused by the failure in terms of duration of service inter-
ruption, a static criticality value πi is defined for each 
asset i.

The “asset status evaluation” module exploits the data 
about alarms, parameters, and the maintenance data to 
assess the asset condition. The output is the list of the 
assets with an anomalous status, the related maintenance 
interventions to be done, and their due dates DDτ

i  , com-
puted in the considered time horizon τ.

Finally, the “asset maintenance prioritisation” module 
evaluates the best m sequences with the related KPIs val-
ues to be shown to the operator.

3.1  Asset criticality in terms of impact on passengers
As mentioned, a static term of criticality πi is considered, 
related to the type of asset and its specific function. It is 
usually provided by the maintenance expert or the rail 
system designer, given the data about the types of failures 
for each asset and their time to repair.

Fig. 1 The proposed AI-based three-step approach
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The dynamic term of asset criticality πpτi  is, instead, 
evaluated in terms of impact that the asset failure may 
cause to the service, taking into account the asset posi-
tion and the transport demand over time.

In order to evaluate the impact on passengers, a 
Markov chain Monte Carlo (MCMC) approach has 
been applied to analyse the data of the passengers 
entering and exiting each station, which are available 
from the ticketing systems. The model estimates the 
passengers in the different sections of the line and their 
evolution over time.

Monte Carlo method is a family of computational 
techniques based on random sampling to obtain 
numerical results. The goal is to solve problems that 
might be deterministic using randomness. They are 
mainly used for optimisation, numerical integration 
and generating draws from probability distribution.

A Markov chain or process is a stochastic model 
describing a sequence of possible events where the 
probability of each event depends only on the state 
attained in the previous event. In such a process, pre-
dictions of future outcomes can be made by consider-
ing the present state, and such predictions are just as 
good as the ones that could be made knowing the pro-
cess’s full history.

MCMC methods [79, 80] comprise a class of  algo-
rithms  for sampling from a  probability distribution. 
By constructing a  Markov chain  that has the desired 
distribution as its  equilibrium distribution, one can 
obtain a sample of the desired distribution by recording 
states from the chain. The more steps are included, the 
more closely the distribution of the sample matches the 
actual desired distribution.

In this study, the MCMC methodology was imple-
mented to create the model that fits the data. A decom-
posable time series model is used. The three main 
model components are trend, seasonality, and holidays, 
combined as it is shown in Eq. (1):

where:

• g(t) is the trend function which models non-peri-
odic changes in the value of the time series;

• s(t) represents periodic changes (e.g., weekly and 
yearly seasonality);

• h(t) represents the effects of holidays which occur 
on potentially irregular schedules over one or more 
days;

• ǫt is the error term which represents any idiosyn-
cratic changes that are not accommodated by the 
model.

(1)y(t) = g(t)+ s(t)+ h(t)+ ǫt

Two different models for the trend are considered: non-
linear saturation growth in Eq. (2), and linear trend with 
changepoints in Eq. (3).

where:

• C is the carrying capacity;
• k the growth rate;
• m an offset parameter;
• a(t) defined in Eq.  (4) and γ in Eq.  (5) model the 

trend changes.

Trend changes are incorporated in the growth model 
by explicitly defining changepoints where the growth rate 
is allowed to change. Suppose there are S changepoints 
at times sj, j = 1, . . . , S . The vector of rate adjustments 
δ is defined, where δj is the change in rate that occurs at 
timesj.

Seasonality trends are modelled as Fourier series 
(Eq. (6)). P is the regular period and n the Fourier series 
order. The periodic changes are modelled as Eq.  (7) 
shows.

Holidays are modelled using a matrix of regressors, 
being Di the set of past and future dates for that holi-
day for each holiday, as shown in Eq.  (8). The effect of 
holidays is modelled in a similar way than the periodic 
changes following Eq. (9).

(2)

g(t) =
C(t)

1+ exp −(k + a(t))T δ t − m+ a(t)Tγ

(3)g(t) = (k + a(t))T δ + (m+ a(t)Tγ )

(4)aj(t)

{
1, if t ≥ sj
0, otherwise

(5)γj =


sj −m−

�

l<j

γl





1−

k +
�
l<j

δl

k +
�

l≤j δl




(6)X(t) =

N∑

n=1

(
ancos

(
2πnt

P

)
+ bnsin

(
2πnt

P

))

(7)s(t) = X(t)β

(8)Z(t) = [1(t ∈ D1), . . . , l(t ∈ DL)]

(9)h(t) = Z(t)κ
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A prior distribution representing our beliefs prior 
to the application of the algorithm was selected. The 
selected distribution for δ is Laplace to obtain a sparse 
prior. The rest of priors are selected as Normal due to 
computational simplicity and central limit theory, where 
large number of independent and identically distributed 
random variables tends to follow a normal distribution. 
Nevertheless, in the tuning process different distribu-
tions such as Student’s t or exponential were used, and no 
significant changes on the results were found.

The prior distributions are represented in Eq. (10–14).

The approach has been developed by using the Prophet 
Python library [81] which is an open-source library for 
univariate time series forecasting that allows to estimate 
trends over time considering fluctuations due to season-
ality. In this study, as described in Sect. 4, seasonality rep-
resents periodic changes relative to week and day due to 
the considered time horizon and the available data set.

Figure 2 shows, in blue colour, the data related to the 
passengers entering a given station of the line (collected 
through the ticketing system) that were used to train the 

(10)K ∼ Normal
(
0, σ 2

k

)

(11)m ∼ Normal
(
0, σ 2

m

)

(12)β ∼ Normal
(
0, σ 2

β

)

(13)κ ∼ Normal
(
0, σ 2

κ

)

(14)δ ∼ Laplace(0, τ)

algorithm, whereas the forecasted values are depicted in 
orange. The model is fitted using Stan’s L-BFGS [82] to 
find a maximum a posteriori estimate.

Given the average passenger flow trend in the different 
line sections and knowing the asset position, a criticality 
value πpτi  is assigned to each asset i and time horizon τ , 
according to three criticality thresholds, as depicted in 
Fig. 7. In addition, a static criticality term πi is given by 
considering the type of assets and the impact caused by 
its failure, in terms of service interruption.

3.2  Asset status evaluation and suggestion 
of interventions

The asset status evaluation is based on support vector 
machines, a technique based on statistical learning the-
ory with its root in structural risk minimisation (SRM) 
principle. It represents a well-known state-of-art machine 
learning tool which has been widely used in the last few 
decades. The one-class SVM algorithm, as defined in 
Schölkopf et  al. [83, 84], is an extension of the original 
SVM; this technique can be used in an unsupervised set-
ting for anomaly detection. Basically. the OCSVM algo-
rithm separates all the data points from the origin (in 
the feature space) and maximises the distance from this 
hyperplane to the origin. This results in a binary func-
tion which captures regions in the input space where the 
probability density of the data lives. Thus, the function 
returns +1 in a “small” region (capturing the training data 
points) and −1 elsewhere.

The algorithm, trained with positive examples only (i.e. 
data points from the target class), allows only a small 
part of the dataset to lie on the other side of the deci-
sion boundary (the outliers). The quadratic program-
ming minimisation function is slightly different from the 

Fig. 2 The passenger flow prediction at a given station
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original one presented by Cortes and Vapnik [85] and has 
the form:

In this different formulation, the solution is character-
ised by the parameter ν , which affects the smoothness of 
the decision boundary. The tuning of this parameter is 
two-fold: on one hand, it sets an upper bound on the frac-
tion of identified anomalies (training examples regarded 
out-of-class) and, on the other hand, it represents a lower 
bound for the number of training examples used as sup-
port vector. Due to the importance of this parameter, this 
approach is often referred to as ν-SVM.

By using Lagrange techniques and using a kernel func-
tion for the dot-product calculations, the decision func-
tion becomes:

Thus, this method creates a hyperplane characterised 
by w and ρ that has maximal distance from the origin in 

(15)min
w,ξ i ,ρ

1

2
�w�2 +

1

νn

n∑

i=1

ξi − ρ

subject to:

(16)(w · φ(xi)) ≥ ρ − ξi ∀i = 1, . . . , n

(17)ξi ≥ 0 ∀i = 1, . . . , n

(18)

f (x) = sgn((w · φ(xi)− ρ) = sgn(

n∑

i=1

αiK (x, xi)− ρ)

the feature space and separates all the data points from 
the origin.

It was of interest to study and understand if OCSVM 
can perform well in the proposed case study. Since 
OCSVM should only be trained on healthy data to 
perform the training, only data points whose features 
fell in predefined ranges of values were considered. A 
hyper-parameter tuning step has been performed to 
find the best values to fit our dataset and the best ker-
nel found is the Gaussian Radial Basis Function (RBF) 
reported in Eq. (19):

where  σ ∈ R  is a term of the kernel parameter 
and �x − x′� is the dissimilarity measure.

Therefore, after setting the kernel, the hyper-parame-
ters to be tuned are the smoothing parameter ν  and the 
kernel parameter γ , defined as 1/2σ 2.

The result of the training is the creation of a separat-
ing hyperplane, which can be visualised in Fig. 3, where 
points that fall within the plane are considered healthy, 
whereas points that fall outside are faulty.

The OCSVM model classify the assets in “function-
ing” and “degraded”. An asset is functioning if it is 
behaving normally. An asset is degraded if it presents 
anomalies in its behaviour. When the asset status is 
degraded, it is classified in different levels of degrada-
tion through a threshold-based model that considers 

(19)K
(
x, x′

)
= exp

(
−
�x − x′�

2

2σ 2

)

Fig. 3 Hyper-plane generated by the RBF
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the number of anomalies detected for each asset and 
assign a level of degradation based on that number.

The threshold-based model defines a specific thresh-
old for each asset, as reported in Table 4. The threshold 
is estimated according to the asset behaviour and repre-
sents the percentage of anomalies to assign to the asset a 
critical level of degradation.

The space of the hyper-parameters tested for the 
OCSVM module is ν ∈ [0.01, 0.02, 0.05, 0.1] and γ in a 
logarithmic distributed space of 60 instances ranging 
from 10−6 to 103 , on the other side, thresholds have been 
tested in a range from 1 to 99%. An example of validation 
results for a subset of 10 assets is presented in Table 4.

The considered indicators of model performance are:

• anomaly detection precision: True anomalies
Total occurred failures;

• true anomaly rate: True anomalies
Total identified anomalies;

• precision or positive predictive value (PPV) = TP

TP+FP
;

• specificity or true negative rate (TNR) = TN

FP+TN
.

where:

• true anomaly is an anomaly event which occurs at 
most 1,5 months before a reported failure;

• false anomaly is an anomaly event which is not 
followed by a reported failure in the following 
1,5 months;

• true positive (TP) is the sum of anomalous patterns 
correctly predicted as anomalies;

• false positive (FP) is the sum of normal patterns pre-
dicted as anomalies;

• true negative (TN) is the sum of normal patterns cor-
rectly predicted as normal;

• false negative (FN) is the sum of anomalous patterns 
identified as normal.

The data used to evaluate the assets status are:

• ATS logs: collection of events and alarms log from 
the Automatic Train Supervision (ATS). These large 
set of logs allow to extract information about alarms 
and events related to every asset and information 
about trains movements;

• asset parameters: meaningful asset parameters col-
lected from the field;

• maintenance data: collection of corrective and pre-
ventive maintenance activities for all the assets.

Based on the level of degradation of an asset, estimated 
according to the detected anomalies that contribute to 
the definition of the asset status, a specific maintenance 
intervention should be done within a suggested due date 
DDτ

i  , for the considered time horizon τ . The output of the 
asset status evaluation is the list of the monitored assets 
with their status, the related predictive maintenance 
interventions to be done, and their due dates, as shown 
in Table 5.

3.3  Asset ordering and intervention prioritisation
In this section, the predictive maintenance interventions, 
identified by the OCSVM model, are prioritised. To 
order the assets and the related predictive maintenance 

Table 4 Anomaly detection model’s parameters and performance

Selected parameters Performance measures

Asset ID ν γ Threshold (%) ρ Anomaly detection 
precision (%)

True anomaly 
rate (%)

PPV TNR

1 0.05 0.00322 10 0.053799 67 67 0.564956 0.964856

2 0.05 0.00458 15 0.054133 67 100 0.581549 0.968125

3 0.01 0.000001 40 0.011452 100 100 0.822188 0.996917

4 0.01 0.00112 20 0.011158 75 75 0.733333 0.995465

5 0.05 0.00000142 20 0.052545 100 100 0.669077 0.975273

6 0.02 0.00159 35 0.021406 100 60 0.815661 0.995486

7 0.05 0.00000579 15 0.049346 67 100 0.717913 0.983427

9 0.02 0.000001 35 0.022559 67 67 0.649317 0.989856

10 0.01 0.000001 20 0.010219 100 67 0.813356 0.997402

Table 5 Asset status evaluation—output example

Asset ID Asset status Maintenance 
intervention

Due Date DDτ
i

A001 Functioning None

A002 Low Degraded Intervention X M days

A003 Medium Degraded Intervention Y L days

A004 High Degraded Intervention Z P days
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interventions, an ad-hoc prioritisation method is devel-
oped with the objective of mathematically representing 
the infrastructure manager’s prioritisation criteria and 
including in the approach the outputs from the data-
driven models for the evaluation of asset status and asset 
criticality.

Therefore, the ordering algorithm uses as inputs the 
data received from the previous steps; in particular, the 
due date DDτ

i  of the maintenance intervention on asset i 
and the asset criticality 

(
πi + πpτi

)
.

The algorithm is based on an iterative approach aimed 
at finding the best sequence of assets to be maintained 
in a given time period τ . The main idea of the algorithm 
consists of computing, for each asset i, the cost dk ,ri  for 
maintaining that asset in a given position p(k , r, i) within 
the sequence computed at iteration k of run r . The term 
dk ,ri  represents the weighted sum of the main infrastruc-
ture manager’s targets or KPIs for a given asset i : dk ,r1i  is 
the KPI related to the status of the asset i derived from 
the OCSVM model, dk ,r2i  is the KPI related to the critical-
ity of the asset i derived from the MCMC model, and  dk ,r3i  
is the KPI related to the distance to be covered to execute 
the maintenance interventions according to the position 
of the asset i along the line.

In detail, considering a given time horizon τ and 
assuming, therefore, τ as constant, dk ,ri  is expressed by 
the following equation:

where:

The cost terms are represented by Eq. (21), Eq. (23) and 
Eq. (24).

Equation  (21) represents the cost of executing the 
maintenance intervention after the due date, defined 
according to the asset status; Eq. (23) represents the cost 

(20)dk ,ri =
1

br

[
α1d

k ,r
1i + α2d

k ,r
2i + α3d

k ,r
3i

]

(21)dk ,r1i = max
{
0,
(
tk ,ri − DDτ

i

)}
∀i, ∀k , ∀r

(22)

tk ,ri =



�

j≺i

Sj−1,j + ej


+ Sj,i + ei ∀i, j, ∀k , ∀r

(23)dk ,r2i =
πi + πpτi

n+ 1− p(k , r, i)
∀i, ∀k , ∀r

(24)dk ,r3i = Sj(k−1),r ,i + Si,h(k−1),r
∀i, j, ∀k , ∀r

(25)br =

{
k , if k ≤ k̃

k0.8, if k > k̃
∀r

related to postponing in the sequence the maintenance 
of an asset with a high criticality; Eq.  (24) is the cost of 
executing in a consecutive order the maintenance of 
assets located far from each other. Equation  (22) evalu-
ates the time instant of maintenance execution for each 
asset in the sequence, while Eq. (25) defines the value of 
the parameter br which changes value after k̃  iterations. 
The relevant notation can be summarised in Table  6. 
It is worth noting that only costs, affected by the order 
in which the maintenance interventions are executed, 
are considered and that the infrastructure manager can 
impose different weights αl in the objective function 
according to the importance of the different KPIs.

The ordering algorithm is described in Table  7. At 
the beginning of each run r , a feasible initial solution is 
built by randomly generating a sequence of assets. After 
that, the iterative steps of the algorithm follow. In doing 
so, at each iteration k of the algorithm, the parameters 
dk ,r1i , d

k ,r
2i , d

k ,r
3i  for each asset i are computed and the assets 

i = 1 . . .N  are sorted in descending order according to 
the maintenance cost dk ,ri  to generate a new sequence. 
The iterations stop when dk ,r is lower than a given thresh-
old δ or when the maximum number of iterations K  are 
reached. At the end of the R runs, the best m sequences 
are shown to the operator with the related KPIs values.

Since  dk ,r1i , d
k ,r
2i , d

k ,r
3i  are related to a specific asset i , the 

final KPIs values associated to each sequence m that are 
shown to the operator are the total values:

The output of the prioritisation algorithm is reported 
in Sect. 4 Fig. 9, which shows for the two best sequences, 
the related KPIs values.

It is worth noting that the prioritisation considers the 
predictive maintenance work orders generated by the 
OCSVM anomaly detection model; however, a corrective 
maintenance intervention can be integrated as first in the 
ordered list assigning to it the highest level of priority.

To test its effectiveness and performance, the proposed 
approach has been applied to a real-world case study. Its 
details and the results are discussed in Sect. 4.

4  Case study and results
This section describes the results of the application of 
the approach described in Sect.  3 to a real-world case 
study, consisting of the metro line M5 of the Italian city 
of Milan (Fig. 4), a completely automated line composed 

(26)dk ,r1 =
∑

i
dk ,r1i

(27)dk ,r2 =
∑

i
dk ,r2i

(28)dk ,r3 =
∑

i
dk ,r3i
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by 19 stations, three of which are transfer stations to lines 
M1, M2 and M3.

The total number of the considered assets is 850, 
belonging to these categories: track circuits, switches, 
platform doors, signalling equipment rooms, wayside 
antennas. These assets were selected according to their 
relevance for the infrastructure manager and the avail-
ability of data.

The asset status evaluation is performed using the ATS 
logs, the assets parameters and the maintenance data.

The ATS logs include a large number of records for 
each day, which mainly refer to two different categories: 
events and alarms. The typical log record is composed of 
three main parts: timestamp, involved system, and event 
description.

In Table  8, the list of alarms with their description is 
shown for each asset.

The maintenance data include both the preventive 
maintenance interventions, scheduled based on assets 
manuals, and the corrective maintenance interventions, 
scheduled after the occurrence of a failure during the 
normal train operations. In Table  9, an example of the 
maintenance data is shown.

Following the methodology explained in Sect. 3.1, the 
real data sets of June 2020 of passengers entering and 
exiting each station are modelled, considering weekly and 
daily trends.

Before forecasting future values, in-sample predictions 
are made dividing the dataset in training/testing data 

using 80% of the data for the training set and 20% for the 
test set.

The information from the training data is used to train 
the model to forecast the testing data. The differences 
between the testing data and the forecasted testing data 
are used to calculate errors.

The obtained final results are:

• train-test prediction: graph showing the training and 
testing data evolution with respect to time as well as 
the forecasted values of the testing dataset with their 
correspondent absolute error (Fig. 5);

• forecasted values for particular days: different dates 
have been chosen to be forecasted for the different 
stations;

• different seasonalities and trend obtained: plot of 
the previously defined model components with their 
uncertainty (Fig.  6). The increase of uncertainty 
around 3:00 am is due to the closing hours of the 
metro station, closing hours (from midnight until 6 
am) are not taken into account to model and make 
predictions.

Finally, the estimation of the average passenger flow 
at the different line stations is reported in Fig. 7, which 
shows the most critical sections of the line accord-
ing to the passengers’ flow level. From this diagram, the 
criticality πpτi  is evaluated for each asset i according to 

Table 6 Notation of the ordering algorithm

Notation Description

i Asset index

n Total number of considered assets

r Run index

k Index of the iteration for each run r

t
k,r
i

Time of execution of the maintenance of asset i  in the sequence defined at iteration k of run r

k̃ Number of iterations after which the parameter b changes its value

K Maximum number of the considered iterations for each run r

R Total number of runs

DDτ
i Due date of the maintenance intervention according to asset status

πi Static asset criticality related to the type of asset

πpτi Asset criticality in the considered time horizon τ related to the passenger flow

p(k, r , i) Position of asset i  in the sequence at iteration k of run r

ei Time penalty for postponing asset i  in the sequence, that is, the average duration of mainte-
nance execution

Sj(k−1),r i Distance between the asset and the previous one at the iteration k − 1 of run r

Sih(k−1),r
Distance between the asset and the following one at the iteration k − 1 of run r

αl Weights to be calibrated

t
k,r
i − DDi

Indication of asset degradation/status
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its position along the line considering three criticality 
thresholds, represented in green, orange and red in Fig. 7, 
correspondent to high, medium and low criticality.

Cross-validation results for eight different stations 
are shown, as example, in Table  10. For each station, 
the mean error values are reported.

The mean errors are in all cases lower than 8 passen-
gers. The total mean error is 18.56% which is an accept-
able value for the considered application of supporting 
maintenance decision-making.

The OCSVM model, instead, identifies the list of 
degraded assets among the 850 considered assets, with 
the indication of their current degradation and due 

date for maintenance execution. In Fig.  8, an exam-
ple of asset status evaluation is depicted for a specific 
asset, the track circuit. Four different levels of degra-
dation are considered to represent the asset condition. 
In particular, track circuits are represented in the track 
layout, coloured based on their status:

• green colour indicates a functioning condition;
• yellow colour indicates a low degraded condition;
• orange colour corresponds to a medium degraded 

condition;
• red colour corresponds to the high degraded condi-

tion.

Table 7 Algorithm
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The results show an average anomaly detection pre-
cision of 67% and a true anomaly rate of 76% for track 
circuits, reaching the 75% and the 80%, respectively, con-
sidering all the assets.

The availability of data about corrective mainte-
nance activities allows to estimate if, with the applica-
tion of the proposed approach, corrective interventions 
could have been avoided. In order to avoid a corrective 

maintenance intervention, the anomaly detection 
model should be able to detect the anomaly sufficiently 
in advance and with a sufficient level of precision.

The OCSVM identified 50% of track circuits’ anoma-
lies sufficiently in advance to avoid a corrective inter-
vention. Considering all the types of monitored assets, 
the percentage of avoided corrective interventions 
reaches 54%.

Fig. 4 The considered metro line

Table 8 Critical events and alarms

Alarm code Description Asset

W010 Vital Sequencing Error Detected, Track Occupancy Lost Track circuit

A046 Track Occupancy with no Tracking ID Track circuit

W103 On-Line AF902 Failure Track circuit

W104 Off-Line AF902 Reserve Failure Track circuit

W103 Vital MLK to AF902 Link Failed Track circuit

W201 Battery (for Internal SER Equipment) Blown Fuse Signalling equipment room

W202 Battery (for Internal SER Equipment) Ground Detect On Signalling equipment room

W205 Battery (for External SER Equipment) Power Failure Signalling equipment room

W030 Switch Never Came into Correspondence Switch

W031 Switch Lost Correspondence without a Switch Move Request Switch

V023 Vehicle TWC Link Failure—Master ATP in Non-Critical Fault Wayside antenna

P023 Door Obstructed Platform door

P026 Door Out of Order Platform door

P053 Major Fault—Isolate Door Platform door

P054 Medium Fault—Cycle Door Platform door
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Therefore, even if the model identifies the anomaly 
with a high precision, it is not always possible to avoid 
the failure and the corrective intervention.

Other machine learning algorithms and statistics mod-
els are currently under evaluation to compare their per-
formance such as the simple non regressive informed 
machine learning model applied in [86] for track circuits.

As mentioned, the asset status and criticality results are 
then used as input by the prioritisation algorithm.

A comparison between the scenario in which the main-
tenance planning is performed without considering pas-
sengers data and the scenario in which the estimation of 
criticality is done according to the number of passengers, 
is performed. The results show a reduction of the num-
ber of passengers affected by service interruptions is of 
around 37% in comparison to the scenario without pas-
senger prediction.

Figure  9 shows the comparison of two prioritisation 
options (solution 1 and solution 2) according to the three 
considered KPIs: d1(asset status), d2 (criticality), and d3 

(covered distance). Solution 1 performs better in terms 
of asset status (- 43% of the cost) but presents a worse 
performance in terms of asset criticality, while the cost 
related to the covered distance is comparable in the two 
solutions.

It is worth noting that the decision support suggests 
the two best options, and the infrastructure manager can 
choose the preferred one according to its specific con-
straints or needs.

A sensitivity analysis has been conducted to test the 
robustness of the solution. The results show that the 
solution is robust since the choice of the weights αl does 
not significantly affect the costs.

As an example, Fig. 10 depicts the relative variation of 
the costs d1 , d2 and d3 with the criticality weight α2 , con-
sidering as reference values for d1 , d2 and d3 those corre-
sponding to α2 = 1.

Finally, to clarify how the passenger flow affects 
the solution, two scenarios of transport demand are 
compared:

Table 9 Maintenance data example

Work order code Asset ID Start date End date Intervention 
code

WO001 A001 13/04/22 12:00:00 13/04/22 18:00:00 I004

WO002 A001 15/04/22 11:00:00 15/04/22 22:00:00 I005

WO003 A002 14/04/22 03:00:00 14/04/22 06:00:00 I001

WO004 A003 13/04/22 17:00:00 13/04/22 23:00:00 I010

WO005 A004 14/04/22 22:00:00 15/04/22 02:00:00 I005

Fig. 5 Train-test prediction for passengers entering a given station
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• a reference scenario, with the nominal transport 
demand;

• a passenger flow peak scenario, which has, in addi-
tion to the nominal demand, a predicted increase of 
passenger flow at station Monumentale M5.

In Fig. 11, the dynamic criticality πpτi  for the assets at 
the different stations of the line is reported. In detail, four 
discrete dynamic criticality values are assigned for high, 
medium, low and very low passenger flow.

The dynamic criticality corresponding to the nominal 
transport demand is reported in blue, and the increase 
in the dynamic criticality, due to the passenger flow 
peak at the station Monumentale M5, is depicted in 

red. These values are assigned to each asset i according 
to the station of the line where the asset is located.

The prioritisation, in the reference scenario and in 
the peak demand scenario, for a subset of 20 assets 
is reported in Table  11. With respect to the solution 
obtained in the reference scenario, the decision support 
system suggests to maintain earlier the asset located 
at the Monumentale M5 station (highlighted in bold 
in Table 11), which is moved from position 20 to posi-
tion 9 in the maintenance activities’ prioritised list. As 
a consequence, the ordering of the other assets in the 
proposed prioritisation changes as well, to optimise 
also the KPIs values d1 (asset status), and d3 (covered 
distance).

Fig. 6 Seasonalities and trains obtained using the model
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In particular, the asset status cost d1 increases of 4.9%, 
while the covered distance cost d3 increases of 23% with 
respect to the reference scenario results. This shows 
the capability of the model to deal with passenger flows 
peaks while keeping a good performance in terms of 
asset status, with a small increase of the covered distance. 
The variation of the covered distance is usually accept-
able since it is deemed less relevant for the infrastructure 
manager in comparison to the asset status.

Fig. 7 Passenger flow estimation at different stations (criticality thresholds in yellow, orange and red)

Table 10 Cross-validation results

Mean error [Number 
of passengers]

Mean error [%]

ISOLA M5 4.32 19.04

GERUSALEMME M5 4.09 13.13

GARIBALDI M5 6.86 23.79

DOMODOSSOLA FNM M5 5.52 14.89

CENISIO M5 5.88 15.54

CA GRANDA M5 6.09 13.94

BIGNAMI M5 5.64 15.74

BICOCCA M5 5.73 18.90

Fig. 8 Example of asset status evaluation for track circuits
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5  Conclusions
This paper proposes a novel data-driven prioritisation 
framework to prioritise maintenance interventions on 
railway lines taking into account the asset status and crit-
icality. More in detail, a dynamic criticality term related 
to the service condition in the relevant time period is 
considered, which is updated on the basis of the pas-
senger flow trend over time at the different stations. 
The proposed three-step approach includes the analysis 
of passenger data to evaluate the failure impact on the 
service, the analysis of alarms and anomalies to evalu-
ate the asset status, and the suggestion of maintenance 

interventions. The application to the maintenance of the 
metro line M5 in the Italian city of Milan shows the use-
fulness of the proposed approach to support infrastruc-
ture managers and maintenance operators in making 
decisions regarding the priority of maintenance activities, 
reducing the risk of critical failures and service interrup-
tions, and paving the way towards the adoption of pre-
scriptive maintenance strategies.

Based on the asset status and criticality, a list of pre-
dictive interventions on track circuits, switches, platform 
doors, signalling equipment rooms and wayside antennas 
is calculated. In this way, these interventions are planned 
more efficiently and have a lower impact on service 
quality.

The results show a good precision in the detection of 
the anomaly with an anomaly detection precision of 75% 
and a true anomaly rate of 80%.

The percentage of avoided corrective interventions that 
are identified through the data-driven model is around 
54%, which represents the corrective interventions that 
are detected sufficiently in advance, and replaced by 
predictive interventions that can be planned in advance 
more efficiently.

The reduction of the number of passengers affected by 
service interruptions is around 37% in comparison to the 
scenario without passengers prediction.

This paper does not focus on the identification of the 
best data-driven models for each considered data set and 
the comparison with other existing methods. For this 

Fig. 9 Comparison of two prioritisation solutions

Fig. 10 Costs relative variation with the criticality weight α2
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Fig. 11 Passenger flow criticality in the scenario with a passenger flow peak at station Monumentale M5

Table 11 Comparison of maintenance activities’ order in the reference and passenger flow peak scenarios

ID asset Asset category Station Maintenance order 
(reference scenario)

Maintenance order 
(passenger flow peak 
scenario)

A060 Track circuit BIGNAMI M5 1 8

A070 Track circuit GARIBALDI M5 8 5

A065 Track circuit ISTRIA M5 11 13

A088 Track circuit SAN SIRO STADIO M5 10 3

A071 Track circuit MONUMENTALE M5 20 9

A076 Track circuit TRE TORRI M5 6 15

A059 Switch BIGNAMI M5 9 7

A598 Switch BIGNAMI M5 18 11

A701 Switch GARIBALDI M5 12 2

A653 Switch ISTRIA M5 3 6

A605 Wayside antenna BIGNAMI M5 4 18

A083 Wayside antenna SAN SIRO STADIO M5 19 20

A319 Platform door BICOCCA M5 14 14

A608 Platform door BIGNAMI M5 13 17

A644 Platform door CA GRANDA M5 2 1

A746 Platform door DOMODOSSOLA M5 5 10

A785 Platform door LOTTO M5 16 16

A673 Platform door MARCHE M5 15 12

A829 Signalling equipment room SAN SIRO STADIO M5 17 19

A758 Signalling equipment room TRE TORRI M5 7 4
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reason, future developments will consist of testing and 
comparing the performance of various machine learn-
ing algorithms and statistics models and improving the 
accuracy and the prediction horizon of the forecasting 
model of asset status. The aim is to predict the failure 
more in advance, avoiding a higher percentage of correc-
tive interventions.

The presented system represents the backbone of the 
intelligent asset management system that was developed, 
implemented, and validated by the IN2SMART2 project.

Acknowledgements
None.

Author contributions
We confirm that the paper contains original work and that all authors have 
approved the manuscript for submission. All authors contributed to the study 
conception and design. The first draft of the manuscript was written by AC 
and all authors commented on previous versions of the manuscript.

Funding
This research has received funding from the Shift2Rail Joint Undertaking 
(JU) under grant agreement No 881574. The JU receives support from the 
European Union’s Horizon 2020 research and innovation programme and the 
Shift2Rail JU members other than the Union.

Availability of data and materials
Data not available for confidentiality reasons.

Declarations

Competing interests
The authors have no competing interests to declare.

Received: 14 March 2023   Accepted: 21 December 2023

References
 1. UIC Rail System Department. (2021). Artificial Intelligence. Case 

of the Railway Sector. State of Play and perspectives. 1–28, ISBN 
978-2-7461-3065-4.

 2. Tang, R., De Donato, L., Bes̆inović, N., Flammini, F., Goverde, R. M. P., Lin, Z., 
Liu, R., Tang,T., Vittorini, V., & Wang, Z. (2022). A literature review of Artificial 
Intelligence applications in railway systems. Transportation Research Part 
C: Emerging Technologies, 140, 103679. https:// doi. org/ 10. 1016/j. trc. 2022. 
103679

 3. Mulongo, N. Y., Mnkandla, E., & Kanakana-Katumba, G. (2021). Artificial 
Intelligence as key driver for competitiveness in the railway industry: 
Review. In 62nd International scientific conference on information technol-
ogy and management science of Riga Technical University (ITMS), Riga, 
Latvia (pp. 1–6). https:// doi. org/ 10. 1109/ ITMS5 2826. 2021. 96153 14.

 4. Vatakov, V., Pencheva, E., & Dimitrova, E. (2022). Recent advances in 
artificial intelligence for improving railway operations. In 30th National 
conference with international participation (TELECOM), Sofia, Bulgaria (pp. 
1–4). https:// doi. org/ 10. 1109/ TELEC OM561 27. 2022. 10017 265.

 5. Pappaterra, M. J., Flammini, F., Vittorini, V., & Bešinović, N. (2021). A system-
atic review of artificial intelligence public datasets for railway applica-
tions. Infrastructures., 6(10), 136. https:// doi. org/ 10. 3390/ infra struc tures 
61001 36

 6. Simmons, A. B., & Chappell, S. G. (1988). Artificial intelligence-definition 
and practice. IEEE Journal of Oceanic Engineering, 13(2), 14–42. https:// doi. 
org/ 10. 1109/ 48. 551

 7. Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the 
IRE, 49(1), 8–30. https:// doi. org/ 10. 1109/ JRPROC. 1961. 287775

 8. Kak, S. C. (1996). Can We Define Levels of Artificial Intelligence? Journal 
of Intelligent Systems, 6(2), 133–144. https:// doi. org/ 10. 1515/ JISYS. 
1996.6. 2. 133

 9. Davenport, T. H. (2018). From analytics to artificial intelligence. Journal 
of. Business Analytics, 1(2), 73–80.

 10. Bešinović, N., De Donato, L., Flammini, F., Goverde, R. M. P., Lin, Z., Liu, R., 
Marrone, S., Tang, T., & Vittorini, V. (2022). Artificial intelligence in railway 
transport: taxonomy, regulations and applications. IEEE Transactions on 
Intelligent Transportation Systems, 23(9), 14011–14024. https:// doi. org/ 
10. 1109/ TITS. 2021. 31316 37

 11. Ghofrani, F., He, Q., Goverde, R. M. P., & Liu, X. (2018). Recent applica-
tions of big data analytics in railway transportation systems: A survey. 
Transportation Research Part C: Emerging Technologies, 90, 226–246. 
https:// doi. org/ 10. 1016/j. trc. 2018. 03. 010

 12. Yin, M., Li, K., & Cheng, X. (2020). A review on artificial intelligence in 
high-speed rail. Transportation Safety and Environment, 2(4), 247–259. 
https:// doi. org/ 10. 1093/ tse/ tdaa0 22

 13. Yong, G., & Lee, G. (2022). Trends, topics, leaders, influential studies, 
and future challenges of machine learning studies in the rail industry. 
Journal of Infrastructure Systems, 28(2), 03122001. https:// doi. org/ 10. 
1061/ (ASCE) IS. 1943- 555X. 00006 91

 14. Yang, C., Sun, Y., Ladubec, C., & Liu, Y. (2021). Developing machine 
learning-based models for railway inspection. Applied Sciences, 11, 13. 
https:// doi. org/ 10. 3390/ app11 010013

 15. Nugraha, A. C., Supangkat, S. H., Nugraha, I. B., Trimadi, H., Purwadi-
nata, A. H., & Sundari, S. (2021). Detection of railroad anomalies using 
machine learning approach. In 2021 International conference on ICT for 
smart society (ICISS) (pp. 1–6). IEEE. https:// doi. org/ 10. 1109/ ICISS 53185. 
2021. 95332 26

 16. ISO. (2014). ISO 55000: Asset Management.
 17. Mattioli, J., Perico P., & Robic, P. -O. (2020). Artificial intelligence based 

asset management. In 2020 IEEE 15th international conference of system 
of systems engineering (SoSE) (pp. 151–156). https:// doi. org/ 10. 1109/ 
SoSE5 0414. 2020. 91305 05

 18. Consilvio, A., Solis-Hernandez, J., Jimenez-Redondo, N., Sanetti, P., Papa, 
F., & Mingolarra-Garaizar, I. (2020). On applying machine learning and 
simulative approaches to railway asset management: The earthworks 
and track circuits case studies. Sustainability, 12, 2544–2567. https:// doi. 
org/ 10. 3390/ su120 62544

 19. Kumari, J., Karim, R., Thaduri, A., & Castano, M. (2021). Augmented 
asset management in railways – Issues and challenges in rolling stock. 
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of 
Rail and Rapid Transit, 236(7), 850–862.

 20. Kumari, J., Karim, R., Thaduri, A., et al. (2022). A framework for now-
casting and forecasting in augmented asset management. Interna-
tional Journal of Systems Assurance Engineering and Management, 13, 
2640–2655. https:// doi. org/ 10. 1007/ s13198- 022- 01721-2

 21. Mcmahon, P., Zhang, T., & Dwight, R. (2020). Requirements for big data 
adoption for railway asset management. IEEE Access, 8, 15543–15564. 
https:// doi. org/ 10. 1109/ ACCESS. 2020. 29674 36

 22. Sresakoolchai, J., & Kaewunruen, S. (2022). Integration of building infor-
mation modeling (BIM) and artificial intelligence (AI) to detect com-
bined defects of infrastructure in the railway system. In: Kolathayar, S., 
Ghosh, C., Adhikari, B. R., Pal, I., & Mondal, A. (eds) Resilient infrastructure. 
Lecture Notes in Civil Engineering, 2022. Springer, Singapore. https:// doi. 
org/ 10. 1007/ 978- 981- 16- 6978-1_ 30

 23. Fumeo, E., Oneto, L., & Anguita, D. (2015). Condition based mainte-
nance in railway transportation systems based on big data streaming 
analysis, procedia computer science, 53. ISSN, 437–446, 1877–2509. 
https:// doi. org/ 10. 1016/j. procs. 2015. 07. 321

 24. Vale, C., & Ribeiro, I. M. (2014). Railway condition-based maintenance 
model with stochastic deterioration. Journal of Civil Engineering and 
Management, 20(5), 686–692. https:// doi. org/ 10. 3846/ 13923 730. 2013. 
802711

 25. Su, Z., Núñez, A., Baldi, S., & De Schutter, B. (2016). Model predictive 
control for rail condition-based maintenance: A multilevel approach. In 
2016 IEEE 19th international conference on intelligent transportation systems 
(ITSC), Rio de Janeiro, Brazil (pp. 354–359). https:// doi. org/ 10. 1109/ ITSC. 
2016. 77955 79.

https://doi.org/10.1016/j.trc.2022.103679
https://doi.org/10.1016/j.trc.2022.103679
https://doi.org/10.1109/ITMS52826.2021.9615314
https://doi.org/10.1109/TELECOM56127.2022.10017265
https://doi.org/10.3390/infrastructures6100136
https://doi.org/10.3390/infrastructures6100136
https://doi.org/10.1109/48.551
https://doi.org/10.1109/48.551
https://doi.org/10.1109/JRPROC.1961.287775
https://doi.org/10.1515/JISYS.1996.6.2.133
https://doi.org/10.1515/JISYS.1996.6.2.133
https://doi.org/10.1109/TITS.2021.3131637
https://doi.org/10.1109/TITS.2021.3131637
https://doi.org/10.1016/j.trc.2018.03.010
https://doi.org/10.1093/tse/tdaa022
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000691
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000691
https://doi.org/10.3390/app11010013
https://doi.org/10.1109/ICISS53185.2021.9533226
https://doi.org/10.1109/ICISS53185.2021.9533226
https://doi.org/10.1109/SoSE50414.2020.9130505
https://doi.org/10.1109/SoSE50414.2020.9130505
https://doi.org/10.3390/su12062544
https://doi.org/10.3390/su12062544
https://doi.org/10.1007/s13198-022-01721-2
https://doi.org/10.1109/ACCESS.2020.2967436
https://doi.org/10.1007/978-981-16-6978-1_30
https://doi.org/10.1007/978-981-16-6978-1_30
https://doi.org/10.1016/j.procs.2015.07.321
https://doi.org/10.3846/13923730.2013.802711
https://doi.org/10.3846/13923730.2013.802711
https://doi.org/10.1109/ITSC.2016.7795579
https://doi.org/10.1109/ITSC.2016.7795579


Page 22 of 23Consilvio et al. European Transport Research Review            (2024) 16:6 

 26. Davari, N., Veloso, B., & Costa, G.d.A., Pereira, P.M., Ribeiro, R.P., Gama, J. 
(2021). A survey on data-driven predictive maintenance for the railway 
industry. Sensors., 21(17), 5739. https:// doi. org/ 10. 3390/ s2117 5739

 27. Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., & Hampapur, A. (2014). 
Improving rail network velocity: A machine learning approach to predic-
tive maintenance. Transportation Research Part C: Emerging Technologies. 
https:// doi. org/ 10. 1016/j. trc. 2014. 04. 013

 28. Pratama, Z. A., & Hidayat, F. (2022). Predictive maintenance on railway 
turnout system: A systematic literature review. In International conference 
on ICT for smart society (ICISS), Bandung, Indonesia (pp. 1–6). https:// doi. 
org/ 10. 1109/ ICISS 55894. 2022. 99150 46.

 29. Binder, M., Mezhuyev, V., & Tschandl, M. (2023). Predictive maintenance for 
railway domain: A systematic literature review. IEEE Engineering Manage-
ment Review, 51(2), 120–140. https:// doi. org/ 10. 1109/ EMR. 2023. 32622 82

 30. Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., da Francisco, R., & P., Basto, J. P., 
& Alcalá, S. G. S. (2019). A systematic literature review of machine learn-
ing methods applied to predictive maintenance. Computers & Industrial 
Engineering, 137, 106024. https:// doi. org/ 10. 1016/j. cie. 2019. 106024

 31. Bornia, O., & Vignola, G. et al. (2019). Anomalies Detection Prototype and 
Validation Report; Deliverable 8.2, s.l. In2Smart EU Project.

 32. Vignola, G., & Consilvio, A. et al. (2021). Data Analytics and DSS Framework 
Design; D4.2 IN2SMART2 EU Project.

 33. IAMS4RAIL. (2023). Deliverable D 2.6 Definition of Use Cases, including 
Innovation, Business Assessment, KPIs definition and roadmap (first Issue) 
https:// proje cts. rail- resea rch. europa. eu/ eurail- fp3/

 34. IN2DREAM. (2018). D5.1: Data Analytics Scenario http:// www. in2dr eams. 
eu/ Page. aspx? CAT= DELIV ERABL ES& IdPage= 917d8 011- 8d9f- 4df1- 9bb4- 
5a1d8 743ef ed

 35. DAYDREAMS. (2022). Deliverable D3.2 Report on Artificial Intelligence 
Modelling, https:// daydr eams- proje ct. eu/ Page. aspx? CAT= DELIV ERABL 
ES& IdPage= 10064 474- 222d- 4270- a7ba- 98aa2 ff044 22

 36. RAILS. (2021). D1.3, Deliverable 1.3: Application areas. https:// doi. org/ 10. 
13140/ RG.2. 2. 15604. 07049, URL: https:// rails- proje ct. eu/ downl oads/ deliv 
erabl es/.

 37. Baglietto, E., Consilvio, A., Febbraro, A. D., Papa, F., & Sacco, N. (2018). A 
Bayesian network approach for the reliability analysis of complex railway 
systems. International Conference on Intelligent Rail Transportation (ICIRT), 
2018, 1–6. https:// doi. org/ 10. 1109/ ICIRT. 2018. 86416 55

 38. Karim, R., Westerberg, J., Galar, D., & Kumar, U. (2016). Maintenance analyt-
ics—The new know in maintenance. IFAC-PapersOnLine, 49(28), 214–219. 
https:// doi. org/ 10. 1016/j. ifacol. 2016. 11. 037

 39. Land, A., Buus, A., & Platt, A. (2020). Data Analytics in rail transportation: 
Applications and effects for sustainability. IEEE Engineering Management 
Review, 48(1), 85–91. https:// doi. org/ 10. 1109/ EMR. 2019. 29515 59

 40. Famurewa, S. M., Zhang, L., & Asplund, M. (2017). Maintenance analyt-
ics for railway infrastructure decision support. Journal of Quality in 
Maintenance Engineering, 23(3), 310–325. https:// doi. org/ 10. 1108/ 
JQME- 11- 2016- 0059

 41. Mohammadi, A., & El-Diraby, T. (2021). Toward user-oriented asset man-
agement for urban railway systems. Sustainable Cities and Society. https:// 
doi. org/ 10. 1016/j. scs. 2021. 102903

 42. Monsuur, F., Enoch, M., Quddus, M., & Meek, S. (2021). Modelling the 
impact of rail delays on passenger satisfaction. Transportation Research 
Part A: Policy and Practice, 152, 19–35. https:// doi. org/ 10. 1016/j. tra. 2021. 08. 
002

 43. Consilvio, A., Calabrò, L., Febbraro, Di., & A., Sacco, N. (2021). A multimodal 
solution approach for mitigating the impact of planned maintenance on 
metro rail attractiveness. EURO Journal on Transportation and Logistics, 10, 
100047. https:// doi. org/ 10. 1016/j. ejtl. 2021. 100047

 44. Ni, M., He, Q., & Gao, J. (2016). Forecasting the subway passenger flow 
under event occurrences with social media. IEEE Transactions on Intelligent 
Transportation Systems. https:// doi. org/ 10. 1109/ TITS. 2016. 26116 44

 45. Xue, R., Sun, D. J., & Chen, S. (2015). Short-term bus passenger demand 
prediction based on time series model and interactive multiple model 
approach. Discrete Dynamics in Nature and Society. https:// doi. org/ 10. 
1155/ 2015/ 682390

 46. Zhang, J., Shen, D., Tu, L., Zhang, F., Xu, C., Wang, Y., Tian, C., Li, X., Huang, 
B., & Li, Z. (2017). A real-time passenger flow estimation and prediction 
method for urban bus transit systems. IEEE Transactions on Intelligent 
Transportation Systems, 18(11), 3168–3178. https:// doi. org/ 10. 1109/ TITS. 
2017. 26868 77

 47. Liu, Y., Liu, Z., & Jia, R. (2019). DeepPF: A deep learning based architecture 
for metro passenger flow prediction. Transportation Research Part C: 
Emerging Technologies. https:// doi. org/ 10. 1016/j. trc. 2019. 01. 027

 48. Liu, L., & Chen, R.-C. (2017). A novel passenger flow prediction model 
using deep learning methods. Transportation Research Part C: Emerging 
Technologies. https:// doi. org/ 10. 1016/j. trc. 2017. 08. 001

 49. Wang, J., Zhang, Y., Wei, Y., Hu, Y., Piao, X., & Yin, B. (2021). Metro passenger 
flow prediction via dynamic hypergraph convolution networks. IEEE 
Transactions on Intelligent Transportation Systems, 22(12), 7891–7903. 
https:// doi. org/ 10. 1109/ TITS. 2021. 30727 43

 50. Baek, J., & Sohn, K. (2016). Deep-learning architectures to forecast bus 
ridership at the stop and stop-to-stop levels for dense and crowded bus 
networks. Applied Artificial Intelligence, 30(9), 861–885. https:// doi. org/ 10. 
1080/ 08839 514. 2016. 12772 91

 51. Samaras, P., Fachantidis, A., Tsoumakas, G., & Vlahavas, I. (2015). A predic-
tion model of passenger demand using AVL and APC data from a bus 
fleet. In Proceedings of the 19th panhellenic conference on informatics (pp. 
129–134). https:// doi. org/ 10. 1145/ 28019 48. 28019 84

 52. Ding, C., Wang, D., Ma, X., & Li, H. (2016). Predicting short-term subway 
ridership and prioritizing its influential factors using gradient boosting 
decision trees. Sustainability, 8(11), 1100. https:// doi. org/ 10. 3390/ su811 
1100

 53. Vandewiele, G., Colpaert, P., Janssens, O., Van Herwegen, J., Verborgh, R., 
Mannens, E., Ongenae, F., & De Turck, F. (2017). Predicting train occupan-
cies based on query logs and external data sources. In Proceedings of the 
26th International conference on world wide web companion - WWW ’17 
Companion (pp. 1469–1474). https:// doi. org/ 10. 1145/ 30410 21. 30516 99

 54. Gallo, F., Sacco, N., & Corman, F. (2023). Network-wide public transport 
occupancy prediction framework with multiple line interactions. IEEE 
Open Journal of Intelligent Transportation Systems. https:// doi. org/ 10. 1109/ 
OJITS. 2023. 33314 47

 55. Jenelius, E. (2020). Data-driven metro train crowding prediction based on 
real-time load data. IEEE Transactions on Intelligent Transportation Systems, 
21(6), 2254–2265. https:// doi. org/ 10. 1109/ TITS. 2019. 29147 29

 56. Więcek, P., Kubek, D., Aleksandrowicz, J., & Stróżek, A. (2019). Framework 
for onboard bus comfort level predictions using the markov chain con-
cept. Symmetry, 11(6), 755. https:// doi. org/ 10. 3390/ sym11 060755

 57. Thaduri, A., Galar, D., & Kumar, U. (2015). Railway assets: A potential 
domain for big data analytics. Procedia Computer Science, 53, 457–467. 
https:// doi. org/ 10. 1016/j. procs. 2015. 07. 323

 58. Pipe, K., & Culkin, B. (2016). An automated data-driven toolset for predic-
tive analytics. In 7th IET Conference on railway condition monitoring 2016 
(RCM 2016). https:// doi. org/ 10. 1049/ cp. 2016. 1188

 59. Oliveira D. F.N. et al. (2019). Evaluating unsupervised anomaly detection 
models to detect faults in heavy haul railway operations. In 2019 18th 
IEEE international conference on machine learning and applications (ICMLA), 
Boca Raton, FL, USA, 2019 (pp. 1016–1022). https:// doi. org/ 10. 1109/ ICMLA. 
2019. 00172

 60. Li, Z., & He, Q. (2015). Prediction of railcar remaining useful life by multiple 
data source fusion. IEEE Transactions on Intelligent Transportation Systems, 
16(4), 2226–2235. https:// doi. org/ 10. 1109/ TITS. 2015. 24004 24

 61. Niu, M., Wang, Y., Song, K., Wang, Q., Zhao, Y., & Yan, Y. (2021). An adaptive 
pyramid graph and variation residual-based anomaly detection network 
for rail surface defects. IEEE Transactions on Instrumentation and Measure-
ment, 70, 1–13. https:// doi. org/ 10. 1109/ TIM. 2021. 31259 87

 62. Shim, J., Koo, J., Park, Y., & Kim, J. (2022). Anomaly detection method in 
railway using signal processing and deep learning. Appled Science, 12, 
12901. https:// doi. org/ 10. 3390/ app12 24129 01

 63. Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., & Hampapur, A. (2014). 
Improving rail network velocity: A machine learning approach to predic-
tive maintenance. Transportation Research Part C: Emerging Technologies, 
45, 17–26. https:// doi. org/ 10. 1016/j. trc. 2014. 04. 013

 64. Shangpeng, S., & Zhao, H. (2013). Fault diagnosis in railway track circuits 
using support vector machines. In 2013 12th International conference on 
machine learning and applications (ICMLA), 2. IEEE.

 65. Bouman, R., Bukhsh, Z., & Heskes, T. (2023). Unsupervised anomaly detec-
tion algorithms on real-world data: How many do we need? 2305.00735, 
arXiv, cs.LG.

 66. Wan, T. H., Tsang, C. W., Hui, K., & Chung, E. (2023). Anomaly detection 
of train wheels utilizing short-time Fourier transform and unsupervised 

https://doi.org/10.3390/s21175739
https://doi.org/10.1016/j.trc.2014.04.013
https://doi.org/10.1109/ICISS55894.2022.9915046
https://doi.org/10.1109/ICISS55894.2022.9915046
https://doi.org/10.1109/EMR.2023.3262282
https://doi.org/10.1016/j.cie.2019.106024
https://projects.rail-research.europa.eu/eurail-fp3/
http://www.in2dreams.eu/Page.aspx?CAT=DELIVERABLES&IdPage=917d8011-8d9f-4df1-9bb4-5a1d8743efed
http://www.in2dreams.eu/Page.aspx?CAT=DELIVERABLES&IdPage=917d8011-8d9f-4df1-9bb4-5a1d8743efed
http://www.in2dreams.eu/Page.aspx?CAT=DELIVERABLES&IdPage=917d8011-8d9f-4df1-9bb4-5a1d8743efed
https://daydreams-project.eu/Page.aspx?CAT=DELIVERABLES&IdPage=10064474-222d-4270-a7ba-98aa2ff04422
https://daydreams-project.eu/Page.aspx?CAT=DELIVERABLES&IdPage=10064474-222d-4270-a7ba-98aa2ff04422
https://doi.org/10.13140/RG.2.2.15604.07049
https://doi.org/10.13140/RG.2.2.15604.07049
https://rails-project.eu/downloads/deliverables/
https://rails-project.eu/downloads/deliverables/
https://doi.org/10.1109/ICIRT.2018.8641655
https://doi.org/10.1016/j.ifacol.2016.11.037
https://doi.org/10.1109/EMR.2019.2951559
https://doi.org/10.1108/JQME-11-2016-0059
https://doi.org/10.1108/JQME-11-2016-0059
https://doi.org/10.1016/j.scs.2021.102903
https://doi.org/10.1016/j.scs.2021.102903
https://doi.org/10.1016/j.tra.2021.08.002
https://doi.org/10.1016/j.tra.2021.08.002
https://doi.org/10.1016/j.ejtl.2021.100047
https://doi.org/10.1109/TITS.2016.2611644
https://doi.org/10.1155/2015/682390
https://doi.org/10.1155/2015/682390
https://doi.org/10.1109/TITS.2017.2686877
https://doi.org/10.1109/TITS.2017.2686877
https://doi.org/10.1016/j.trc.2019.01.027
https://doi.org/10.1016/j.trc.2017.08.001
https://doi.org/10.1109/TITS.2021.3072743
https://doi.org/10.1080/08839514.2016.1277291
https://doi.org/10.1080/08839514.2016.1277291
https://doi.org/10.1145/2801948.2801984
https://doi.org/10.3390/su8111100
https://doi.org/10.3390/su8111100
https://doi.org/10.1145/3041021.3051699
https://doi.org/10.1109/OJITS.2023.3331447
https://doi.org/10.1109/OJITS.2023.3331447
https://doi.org/10.1109/TITS.2019.2914729
https://doi.org/10.3390/sym11060755
https://doi.org/10.1016/j.procs.2015.07.323
https://doi.org/10.1049/cp.2016.1188
https://doi.org/10.1109/ICMLA.2019.00172
https://doi.org/10.1109/ICMLA.2019.00172
https://doi.org/10.1109/TITS.2015.2400424
https://doi.org/10.1109/TIM.2021.3125987
https://doi.org/10.3390/app122412901
https://doi.org/10.1016/j.trc.2014.04.013


Page 23 of 23Consilvio et al. European Transport Research Review            (2024) 16:6  

learning algorithms. Engineering Applications of Artificial Intelligence. 
https:// doi. org/ 10. 1016/j. engap pai. 2023. 106037

 67. Consilvio, A., Febbraro, A. D., & Sacco, N. (2020). A rolling-horizon 
approach for predictive maintenance planning to reduce the risk of rail 
service disruptions. IEEE Transactions on Reliability. https:// doi. org/ 10. 
1109/ TR. 2020. 30075 04

 68. Khalouli, S., Benmansour, R., & Hanafi, S. (2016). An ant colony algorithm 
based on opportunities for scheduling the preventive railway mainte-
nance. In 2016 international conference on control, decision and information 
technologies (CoDIT) (pp. 594–599). https:// doi. org/ 10. 1109/ CoDIT. 2016. 
75936 29

 69. Macedo, R., Benmansour, R., Artiba, A., Mladenović, N., & Urošević, D. 
(2017). Scheduling preventive railway maintenance activities with 
resource constraints. Electronic Notes in Discrete Mathematics, 58, 215–222. 
https:// doi. org/ 10. 1016/j. endm. 2017. 03. 028

 70. Soh, S. S., Radzi, Nor. H. M., & Haron, H. (2012). Review on scheduling 
techniques of preventive maintenance activities of railway. In 2012 Fourth 
international conference on computational intelligence, modelling and 
simulation (pp. 310–315). https:// doi. org/ 10. 1109/ CIMSim. 2012. 56

 71. Zhao, J., Chan, A. H. C., & Burrow, M. P. N. (2009). A genetic-algorithm-
based approach for scheduling the renewal of railway track components. 
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail 
and Rapid Transit, 223(6), 533–541.

 72. Quiroga, L. M., & Schnieder, E. (2010). A heuristic approach to railway track 
maintenance scheduling. WIT Transactions on the Built Environment, 114, 
687–699. https:// doi. org/ 10. 2495/ CR100 631

 73. Lopes Gerum, P. C., Altay, A., & Baykal-Gürsoy. (2019). Data-driven predic-
tive maintenance scheduling policies for railways. Transportation Research 
Part C: Emerging Technologies. https:// doi. org/ 10. 1016/j. trc. 2019. 07. 020

 74. El Hamshary, O., Abouhamad, M., & Marzouk, M. (2022). Integrated main-
tenance planning approach to optimize budget allocation for subway 
operating systems. Tunnelling and Underground Space Technology. https:// 
doi. org/ 10. 1016/j. tust. 2021. 104322

 75. Chang, Y., Liu, R., & Tang, Y. (2023). Segment-condition-based railway track 
maintenance schedule optimization. Computer-Aided Civil and Infrastruc-
ture Engineering, 38, 160–193. https:// doi. org/ 10. 1111/ mice. 12824

 76. Mira, L., Andrade, A. R., & Castilho Gomes, M. (2020). Maintenance sched-
uling within rolling stock planning in railway operations under uncertain 
maintenance durations. Journal of Rail Transport Planning & Management. 
https:// doi. org/ 10. 1016/j. jrtpm. 2020. 100177

 77. Carretero, J., Pérez, J. M., & Garcı́a-Carballeira, F., Calderón, A., Fernández, J., 
Garcı́a, J. D., Lozano, A., Cardona, L., Cotaina, N., & Prete, P. (2003). Applying 
RCM in large scale systems: A case study with railway networks. Reliability 
Engineering & System Safety, 82(3), 257–273. https:// doi. org/ 10. 1016/ 
S0951- 8320(03) 00167-4

 78. Pinedo, M., L. (2012). Scheduling, theory, algorithms, and systems. 
Springer New York, NY. https:// doi. org/ 10. 1007/ 978-1- 4614- 2361-4

 79. Gilks, W. R., Richardson, S., & Spiegelhalter, D. (Eds.). (1995). Markov Chain 
Monte Carlo in Practice (1st ed.). Chapman and Hall/CRC., 1–512. https:// 
doi. org/ 10. 1201/ b14835

 80. Gamerman D. & Lopes H. F. (2006). Markov chain monte carlo: stochastic 
simulation for bayesian inference (2nd ed.). Chapman and Hall/CRC, 
1–342. https:// doi. org/ 10. 1201/ 97814 82296 426

 81. Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statisti-
cian, 37–45, 2018.

 82. Liu, D. C., & Nocedal, J. (1989). On the limited memory method for large 
scale optimization. Mathematical Programming B., 45(3), 503–528.

 83. Schölkopf, B., Burges, C. J. C., & Smola, A. J. (1999). Introduction to support 
vector learning. Advances in kernel methods. MIT Press, 327–352.

 84. Scholkopf, B., & Smola, A. J. (2002). Support vector machines and kernel 
algorithms. MIT Press, 1119–1125.

 85. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 
20, 273–297. https:// doi. org/ 10. 1007/ BF009 94018

 86. Garrone, A., et al. (2023). Simple non regressive informed machine learn-
ing model for prescriptive maintenance of track circuits in a subway 
environment. In: Valle, M., et al. Advances in system-integrated intelligence. 
SYSINT 2022. Lecture Notes in Networks and Systems, 546. Springer, Cham. 
https:// doi. org/ 10. 1007/ 978-3- 031- 16281-7_8

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.engappai.2023.106037
https://doi.org/10.1109/TR.2020.3007504
https://doi.org/10.1109/TR.2020.3007504
https://doi.org/10.1109/CoDIT.2016.7593629
https://doi.org/10.1109/CoDIT.2016.7593629
https://doi.org/10.1016/j.endm.2017.03.028
https://doi.org/10.1109/CIMSim.2012.56
https://doi.org/10.2495/CR100631
https://doi.org/10.1016/j.trc.2019.07.020
https://doi.org/10.1016/j.tust.2021.104322
https://doi.org/10.1016/j.tust.2021.104322
https://doi.org/10.1111/mice.12824
https://doi.org/10.1016/j.jrtpm.2020.100177
https://doi.org/10.1016/S0951-8320(03)00167-4
https://doi.org/10.1016/S0951-8320(03)00167-4
https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.1201/b14835
https://doi.org/10.1201/b14835
https://doi.org/10.1201/9781482296426
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/978-3-031-16281-7_8

	A data-driven prioritisation framework to mitigate maintenance impact on passengers during metro line operation
	Abstract 
	1 Introduction
	2 Literature review
	2.1 Passenger flow prediction
	2.2 Rail assets status evaluation
	2.3 Maintenance planning and decision support

	3 Methodology
	3.1 Asset criticality in terms of impact on passengers
	3.2 Asset status evaluation and suggestion of interventions
	3.3 Asset ordering and intervention prioritisation

	4 Case study and results
	5 Conclusions
	Acknowledgements
	References


