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Abstract 

Digital technologies in, on, and around bicycles and cyclists are gaining ground. Collectively called Smart Cycling 
Technologies (SCTs), it is important to evaluate their impact on subjective cycling experiences. Future evaluations can 
inform the design of SCTs, which in turn can help to realize the abundant benefits of cycling. Wearable body sensors 
and advanced driver assistance systems are increasingly studied in other domains, however evaluation methods inte-
grating such sensors and systems in the field of cycling research were under-reviewed and under-conceptualized. This 
paper therefore presents a systematic literature review and conceptual framework to support the use of body sensors 
in evaluations of the impact of SCTs on perceptions, emotions, feelings, affect, and more, during outdoor bicycle 
rides. The literature review (n = 40) showed that there is scarce research on this specific use of body sensors. Moreover, 
existing research designs are typically not tailored to determine impact of SCTs on cycling experience at large scale. 
Most studies had small sample sizes and explored limited sensors in chest belts and wristbands for evaluating stress 
response. The evaluation framework helps to overcome these limitations, by synthesizing crucial factors and methods 
for future evaluations in four categories: (1) experiences with SCTs, (2) experience measurements, (3) causal analysis, 
(4) confounding variables. The framework also identifies which types of sensors fit well to which types of experiences 
and SCTs. The seven directions for future research include, for example, experiences of psychological flow, sensors 
in e-textiles, and cycling with biofeedback. Future interactions between cyclists and SCTs will likely resemble a col-
laboration between humans and artificial intelligence. Altogether, this paper helps to understand if future support 
systems for cyclists truly make cycling safer and more attractive.
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1 Introduction
1.1  Importance of evaluating experiences with smart 

cycling technologies
Cycling is recognized as a sustainable mode of trans-
portation, offering environmental, social, and economic 
benefits [20]. To promote cycling, it is important to 
understand how cycling experiences can be improved 
and evaluated. Literature shows that subjective experi-
ences of riding bicycles influence travel behaviour and 
wellbeing significantly [31, 54, 81, 121]. Enjoyable and 
social experiences motivate individuals to cycle more 
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frequently and for longer distances while feelings of 
unsafety discourage people from cycling [14, 74].

In the transportation literature, there is a significant 
body of research on the relevance and impact of cycling 
infrastructure and built environment on cycling experi-
ences [54, 56]. However, much less is known about the 
impact of Smart Cycling Technologies (SCTs) on cycling 
experiences. Research on SCTs is growing, and these 
technologies are increasingly impacting cycling experi-
ences [11, 64, 86]. SCTs can be considered as the equiva-
lent of Advanced Driver Assistance Systems (ADAS) for 
motorized vehicles [10, 92]. SCTs often utilize Artificial 
Intelligence and Internet of Things features for “smart” 
and “connected” features. Examples of SCTs are systems 
for route planning, speed adaptation, collision avoidance, 
and e-bike charging. This paper adopts the term “smart 
cycling technologies” without delving into termino-
logical debate. Several conceptualizations of SCTs exist 
already [11, 64, 86]. Evaluating (that is, to measure and 
understand) the impact of SCTs on cycling experiences is 
essential as these evaluations inform the design of SCTs. 
Improving the design of SCTs can improve cycling expe-
riences, which in turn can help to make cycling safer and 
more attractive.

1.2  Measuring cycling experiences
In various academic and commercial domains including 
tourism, marketing, and videogaming, there is an increas-
ing interest in using data from wearable sensors for ana-
lysing subjective experiences [6, 50, 60, 98]. For example, 
theme park visitors have been equipped with smart-
watches to collect physiological data during rollercoaster 
rides [8], and the effects of various types of marketing 

messages on EEG readings have been explored [95]. Such 
research is motivated by insights from a research domain 
called affective computing, which deals with digital sys-
tems that can recognize and adapt to human emotions 
[118, 119, 135].

Also in cycling experience research, there is an increas-
ing interest in sensor systems for understanding what 
people experience on a perceptual, affective, and emo-
tional level while riding bicycles [14, 74]. The key argu-
ment for using such sensors is that they can offer more 
objective, continuous, and real-time insights than tradi-
tional methods such as surveys, interviews, or crash sta-
tistics [107]. The use of wearable sensors on the human 
body is a natural extension of using sensors within instru-
mented bicycles, which already occurs frequently [47].

To distinguish between wearable sensors that do and 
do not measure aspects of the human body, this review 
adopts the term “body sensor”. Body sensors are placed 
directly at or in the human body and are increasingly 
integrated into body sensor networks [72], which are 
illustrated in Fig. 1. Body sensors can measure processes 
related to, for example, physiology, neurology, cogni-
tion, or movement. Examples of measurable variables 
are heart rate, electrical activity in the brain, and move-
ment of body parts. Despite advancements in measuring 
cycling experiences with body sensors, there are knowl-
edge gaps, which will be explained next.

1.3  Knowledge gaps, aims, and scope
In this context, the knowledge gaps are as follows. Exist-
ing and relevant reviews focused on sensors in bicycles 
to analyse cycling behaviour [47], links between body 
sensor data and stress response during cycling [14, 74], 

Fig. 1 Overview of a potential architecture of a body sensor network. Reprinted from [72]. Abbreviations are explained in Table 1
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and the usage of textual and visual methods to examine 
cycling in urban environments [76]. However, these stud-
ies do not review cycling with SCTs, and do not review 
the use of body sensors in evaluations of SCTs. Context- 
and subject-level variables that influence both the cycling 
experience and the functioning of a SCT (called con-
founding variables in this paper) are acknowledged to be 
important, but how studies control for them is not well 
reviewed. Altogether, body sensors are used to evaluate 
cycling experiences in general, but knowledge is missing 
about the specific use of body sensors in evaluations of 
the impact of SCTs on cycling experience.

This paper addresses this knowledge gap by pursu-
ing two primary aims. This paper aims first to conduct 
a comprehensive and systematic literature review on the 
use of body sensors in evaluations of cycling experiences, 
providing valuable insights into the existing state of 
research. Second, the paper aims to develop and present 
a conceptual framework that shows which factors and 
methods are important in future studies that use body 
sensor data to evaluate the impact of SCTs on cycling 
experiences. This framework will be based on an inte-
gration of review results, focusing on research on SCTs, 
experiences, and sensor systems.

The scope for these two aims includes experiences of 
private individuals who ride on fully or partially human-
powered bicycles. This paper focuses specifically on 
in-the-moment experiences perceived while cycling, 
acknowledging that experiences as a whole also include 
antecedents and consequences [50]. The scope is lim-
ited to outdoor and naturalistic cycling. Stronger inves-
tigations of outdoor cycling are necessary because many 
other studies with body sensors were conducted under 
lab conditions [118]. Also, outdoor investigations are 
necessary to complement simulations, lab tests and vir-
tual reality setups [70, 100, 103]. Additionally, this review 
focuses on factors relating to Human–Computer Interac-
tion during experiences with SCTs.

1.4  Scientific contribution and paper outline
This paper contributes significantly to existing literature. 
Firstly, the evaluation framework accommodates evalua-
tions of diverse experiences and SCTs. Accommodating a 
diversity of experiences and SCTs is significant and valu-
able, because earlier evaluations of cycling experience 
focused typically on a single SCT [9, 26, 38, 139] or on 
negative experiences of stress and discomfort [14, 74]. 
Secondly, recent studies show that research domains of 
transportation and human–computer interaction are not 
well-connected, meaning that there is little interdiscipli-
nary research that combines knowledge from both these 
fields [28, 102]. This paper contributes to tightening the 
integration of these research domains. Closer integration 

helps to move beyond measurement and mapping of 
cycling stress [71], towards a better understanding of 
using body sensors for understanding the experiences 
that result specifically from cycling with SCTs. Further-
more, this paper reviews and reinforces recent findings 
in the emerging research area of using body sensor data 
for real-time Human‒Computer interaction with SCTs 
that increasingly use Artificial Intelligence. This research 
area holds both academic and commercial potential [3]. 
Finally, the paper provides recommendations for future 
research, needed to implement the conceptual frame-
work in practice.

The paper is structured as follows: Sect. 2 outlines the 
approach for the systematic literature review. Section  3 
presents a summary of the review results. In Sect.  4, a 
conceptual framework for evaluations is proposed based 
on the integration of review findings and domain knowl-
edge. Section  5 presents a research agenda, and Sect  6 
concludes the paper.

2  Literature review methodology
The approach for the systematic literature review is based 
on the PRISMA method (Preferred Reporting Items for 
Systematic reviews and Meta-Analyses [91]) for search-
ing, screening, and selecting the literature that is to be 
included in the review. This method ensures reproduc-
ibility, transparency, and extended reach into the lit-
erature, which overcomes omissions in many previous 
reviews that did not describe the methodology used 
[136]. Figure 2 visualizes the PRISMA search and selec-
tion process. The next sections describe the search query, 
databases, selection criteria, and search results.

2.1  Search query and databases
The query used for the definitive search consists of three 
parts: (1) keywords related to the bicycle, (2) keywords 
related to experience, and (3) terms related to evaluation 
of experience. These keywords were chosen based on a 
trade-off between broadness and specificity of search 
keywords. Keywords should be broad enough to capture 
diverse types of quantitative measurements of subjec-
tive experiences while riding bicycles. Keywords should 
also be focused enough to leave out most of irrelevant 
literature. For example, many results concerned stud-
ies about cyclical processes in chemistry. Furthermore, 
the choice of broad keywords was motivated by initial 
literature reading and searching which revealed a lack 
of standardization in definitions for experiences and 
SCTs [11, 63]. The query was employed in December 
2022 in the Scopus, Web of Science (WoS), Transpor-
tation Research International Documentation (TRID), 
and Google Scholar (GS) databases. These databases 
were chosen because they offer extensive access to the 
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literature. The query is slightly adjusted to accommo-
date the different search engines and follows the follow-
ing structure. Attachment 1 displays the full query for all 
four databases.

• ("bike" OR bicycl* OR "biking" OR “cycling” OR 
"cyclist") AND ("experience" OR "emotion" OR "per-
ception") AND (evaluat* OR measur* OR quantif* 
OR determin* OR "assess" OR "impact")

The results for the Scopus search engine were lim-
ited to relevant research domains and to the publica-
tion years 2005 and later. The choice for 2005 and later 
aligns with [64], who found that before 2005, no rele-
vant studies on SCTs were found. For Google Scholar, 
the first 300 hits were screened as recommended in 
[53]. Snowballing through publication lists of the 
“Cycling@CHI” and “Cycling@MobileHCI” communi-
ties was conducted [25, 109]. These communities are 
working groups associated with academic conferences 
(CHI being the Conference on Human Factors in Com-
puting Systems), with participants active in the field of 
Human–Computer Interaction (commonly abbreviated 
as HCI) design for cyclists.

2.2  Inclusion and exclusion criteria
The following inclusion criteria were developed and used 
to screen the results from the search engines. All studies 
that did not meet these criteria were excluded:

• Document types: only publications in the form of 
academic journal articles, academic conference arti-
cles, book chapters, or grey literature (literature that 
is not formally published in peer-reviewed academic 
journals, conferences, or books).

• Bicycle types: only regular bicycles, instrumented 
bicycles, e-bicycles, or speed pedelecs.

• Research designs: only field studies, with 1 or more 
human participants, in which body sensors measured 
outdoor cycling experiences.

• Population: only nonprofessional, healthy, and pri-
vate individuals aged 18 or older.

• Language: only articles in English or Dutch language.
• Publication date: 2005 or later.

2.3  Selection and data extraction
Employing the search query in Scopus, WoS, and TRID 
resulted in a total of 7133 results. Since each search 

Fig. 2 Flowchart depicting the systematic search and screening process
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engine differs in which topics are covered most, the num-
ber of results per search engine is different [19, 94]. After 
deduplication, 5216 articles were screened. The first 
author of this review conducted all screening and selec-
tion. The selection included only papers that met the 
selection criteria. The first screening was based on the 
title and abstract. Then, a full text review was conducted.

Snowballing through reference lists of selected articles 
was conducted. One paper was added manually to the 
selection, since this paper is relevant to the review yet 
does not mention “bicycling” or any similar terms in the 
title, abstract, and keywords [71].

For all selected papers, the following data points were 
extracted: type of experience, type of sensor, position 
of sensor, number of sensors, route choice, number of 
participants, location of the study, whether an SCT was 
evaluated, approach for determining causes for experi-
ences if applicable, statistical analysis approach, contex-
tual variables, and subject level variables. Approaches for 
determining causation were extracted by scanning the 
papers for words such as “effect”, and “cause”, “influence”, 
“impact”, “related”, “correlated”, “coefficient”, and “linked”.

2.4  Search results
The search process led to a selection of 40 papers that 
explicitly and specifically cover the use of body sensors 
in evaluations of bicycling experience. Twenty-two of the 
selected studies focused on statistical analysis of causes 
for changes in cycling experiences; 18 studies did not. 
Causes originated mostly from the built environment and 
traffic system. For example, road crowdedness, landscape 
type, overtaking distance, road layout, intersection type, 
and so forth. Seven of the 40 papers evaluate experiences 
with SCTs.

The selected papers are of the following types: 30 
journal papers, nine conference papers, and one grey 
literature article. The geographical spread over global 
continents is strongly biased towards Western European 
countries. Twenty studies were conducted in Europe, 13 
in North America, one in South America, two in Asia, 
and three in Australia. One study collected data in both 
North America and Europe.

3  Results from analysis of selected literature
This chapter presents the results from the literature 
review, addressing the first aim of the paper. The results 
will be presented in terms of experiences and sensors, 
route choice and participant samples, sensor-based 
evaluations of experiences with SCTs, data validation 
and analysis approaches, and confounding variables. Fig-
ures  3, 4, 5, 6, 7 and 8 distinguish between evaluations 
with and without SCTs. The SCTs that were evaluated, 
are described in Sect.  3.3. Table  1 summarizes the data 
that was extracted during the review process. To keep the 
table readable, only selected data is included in this table. 
A supplementary file provided as attachment to this 
paper contains an extensive table with all data extractions 
from all selected papers.

3.1  Experiences and sensors
Figure  3 shows a categorization of types of experi-
ences that were evaluated in selected studies. Nega-
tive types of experiences are undesirable by cyclists, for 
example, stress and anxiety. Mixed types of experiences 
can be negative, neutral, or positive for cyclists. Atten-
tion, arousal, and risk perception are examples of mixed 
experiences. Positive types of experiences are desir-
able by cyclists, for example, happiness and comfort. It is 
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remarkable that studies without an SCT focus mostly on 
negative experiences, yet those with a SCT focus more on 
mixed experiences. Two studies did not specify exactly 
which type of cycling experience was evaluated [35, 106], 
indicating a drawback in the description of the study 
design.

Figure  4 shows the types of sensors that have been 
used in the selected literature. It is remarkable that 
some studies use one sensor to study multiple types of 
experiences, while other studies use multiple sensors 
to study one type of experience. Some types of expe-
riences have been studied with multiple types of sen-
sors, e.g., attention was studied both by EEG and ET. 
The following sensors have not yet been investigated in 

existing reviews: EEG, ET, EMG, gyroscope, and Hall 
effect sensors [14, 74]. Some studies did not specify 
which exact type of sensors was used. For example, 
Pejhan et al. [93] mentioned that HR was measured but 
did not specify whether a ECG or PPG sensor was used. 
This lack of specification indicates a drawback in the 
reporting because it limits comparisons across studies.

Nearly half of the studies utilized ECG, ST, and PPG 
sensors to measure stress and risk perception. Notably, 
this finding remains consistent even after considering 
studies that were not included in previous reviews [14, 
74]. The Hall effect sensor used in one study is a sensor 
that measures movement via movement of a magnet. 
This sensor will not be explored nor discussed in this 
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paper, because it was not encountered anywhere else in 
cycling experience literature, and body posture can be 
detected with gyroscopes in more detailed ways.

Regarding the positioning of sensors, Fig. 5 shows that 
sensor positioning correlates to the type of sensors used. 
The Empatica E4 wristband and Polar H7 chest belt are 
relatively often used to capture PPG, EDA, ST, and ECG 
signals. A minority of studies used sensors at multiple 
places on the body.

3.2  Route choice and participant samples
The research design of the reviewed studies will be 
described in terms of route choice, sample sizes, and 
recruitment strategies. In most studies, participants 
followed a predefined route in a controlled study design 
(Fig. 6). Variation was created by choosing a route that 
includes route segments with multiple characteristics. 
The studies that used a so-called “in the wild” approach 
enabled participants to choose freely wherever they 
wanted to cycle.

Figure  7 visualizes the number of participants per 
study. The number of study participants is relatively 
low across all studies, which limits statistical power 
in quantitative analysis. The column “unspecified” 
includes studies that did not describe the sample size. 
It is a drawback that the sample size was not described, 
because it limits comparisons in meta reviews. It is not 
clear why these studies did not describe the sample 
size. These studies were, nevertheless, selected for the 
literature review because they met the inclusion crit-
erium of having 1 or more human participants.

The participant recruitment strategies reveal more 
drawbacks. None of the studies used probability sampling 
for selecting participants, limiting representativeness 
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of the population at large. Twenty-one studies did not 
describe the recruitment strategy, complicating com-
parisons across studies. It is not clear why these studies 
did not describe the recruitment strategy. Twelve stud-
ies used a convenience sample, meaning that participants 
were selected without randomization and based on ease 
of access and availability to the research team. Partici-
pants were mostly found via personal networks, email 
lists, and advertisement boards, introducing potential 
self-selection bias. The five studies that used a purposive 
sample selected participants because they had character-
istics that were required in the study. For example, one 
study aimed to compare young and elderly cyclists and 
selected participants accordingly [80].

3.3  Studies with body sensors and SCTs
This review found that seven studies used body sensors 
in an evaluation of experiences with a SCT. These stud-
ies focus on a single prototype with a small number of 
participants (between 9 and 37), and they do not use an 
existing typology to describe the evaluated SCTs. The 
seven studies examined different SCTs and used different 
research designs to measure user experiences. The stud-
ies can be categorized in three groups as follows.

Firstly, three studies evaluated experiences with an SCT 
using body sensor measurements as real-time input for 
human–computer interaction while these studies did not 
use body measurements as input for expert evaluation of 
the resulting experience. The resulting experiences were 
analysed via interviews and grounded theory methodol-
ogy. Two SCTs adjust the motor support level to improve 
rider engagement and safety [4, 5]. One SCT communi-
cates heartbeat rates visually and in real time via a helmet 
to support social engagement among cyclists [133].
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Secondly, three studies evaluated experiences with 
an SCT that used real-time measurements, and these 
studies also used the measurements as input for expert 
evaluation and quantitative analysis of the resulting expe-
riences. One study uses tactile feedback on the feet to 
support finding the right cadence [13]. Another study 
adjusts motor support to fitness levels [30]. The third 
study measures muscle fatigue to tailor motor support 
for reducing fatigue [69].

Thirdly, in one study the body measurements were 
input for the expert evaluation of cycling with an SCT 
while the SCT itself did not use data from the body sen-
sors in real time [127]. The SCT in this study is an always-
on bicycle light to improve cycling safety.

3.4  Data validation and analysis approaches
Next, the approaches for validating and analysing data in 
selected studies will be reviewed. Validation and analy-
sis are challenging, as they raise fundamental questions 
about labelling sensor data, establishing the certainty of 
participants’ experiences, and determining if those expe-
riences were caused by the studied phenomenon. Addi-
tionally, identifying reliable patterns that indicate specific 
types of experiences is crucial.

To validate physiological data related to the stress 
response, studies by Kyriakou et  al. [71], Teixeira et  al. 
[125], and Zeile et  al. [145] serve as exemplary illustra-
tions. These studies collected labels for sensor data by 
utilizing an experience sampling method, in which par-
ticipants provided self-reports through button presses on 
a handlebar smartphone. The ratings provided insights 
into the intensity of the stress response during the ride. 
Comparisons were made between these ratings and data 
from HR, ST, and EDA sensors to identify frequent data 

patterns associated with high and low stress intensity. 
This approach helped establish links between specific 
data patterns and levels of stress response.

However, for other types of sensors and experiences, 
there is a lack of robust knowledge regarding ground-
truthing processes. In the case of EEG data, studies have 
attempted to identify which patterns in electrical brain 
activity correspond to which environmental and behav-
ioural conditions [99, 111, 112, 146]. These three studies 
are however too different in research design to draw con-
clusions about which data patterns can serve as ground 
truths. Studies employing eye tracking, muscle activ-
ity data, or body balance data did not explicitly discuss 
ground truths, making it challenging to present findings 
in this regard.

Figure 8 visualizes the data analysis approaches in the 
selected studies. Notably, most studies that evaluated 
experiences with an SCT did not do so with quantitative 
analysis of measurements of experiences. Three stud-
ies utilized grounded theory methodology to analyse the 
resulting experiences with SCTs using body sensor data.

Most studies that drew conclusions about reasons for 
experiences employed data triangulation from various 
sources, such as body sensors, camera recordings, self-
reports, and surveys. Of these studies, eleven controlled 
statistically for confounders, while seven discussed con-
founding without statistical control of the confounding 
variables. Two studies did not triangulate data and used 
only data from body sensors to infer causation from sta-
tistical correlations between variables of interest. Nine 
studies did not analyse causation; these studies consist-
ently used framing such as “links,” “relations,” and “asso-
ciations.” One study lacked clarity regarding its data 
analysis approach.
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Statistical data analysis techniques used most fre-
quently include ANOVA and regression models (logistic, 
linear, and multilevel modelling). Eight studies employed 
rule-based decision processes or thematic analysis, which 
will not be discussed further. Eye tracking studies utilized 

proprietary software associated with the eye track-
ing devices, while one study employed propensity score 
matching, commonly used for analysing time series data 
in observational studies.

Table 1 A summary of key characteristics of selected studies

Author Experience and measurement Analysis

Experience 
type

Sensor type SCT 
evaluated

Statistical 
method

Causal inferences from 
mixed method triangulation

Only 
statistical 
correlations

Grounded 
theory

Unclear

Confounders 
statistically 
analysed

Confounders 
only 
discussed

von Stülp-
nagel [132]

Risk percep-
tion

ET Linear mixed 
model

v

Doorley et al. 
[33]

Risk percep-
tion

ECG ANOVA v

Millar et al. 
[80]

Arousal EDA Multilevel 
regression

v

Pejhan et al. 
[93]

Anxiety ECG or PPG 
(not specified)

ANOVA v

Fitch et al. [43] Stress ECG Multilevel 
regression

v

Venkatacha-
lapathy et al. 
[127]

Stress EDA v Linear mixed 
model

v

Teixeira et al. 
[125]

Stress EDA Multilevel 
regression

v

Yang et al. 
[141]

Stress EDA Propensity 
score match-
ing and linear 
mixed model

v

Zeile et al. 
[145]

Stress PPG, ST, ECG Rule-based 
process

v



Page 10 of 23Boot et al. European Transport Research Review           (2024) 16:13 

Table 1 (continued)

Author Experience and measurement Analysis

Experience 
type

Sensor type SCT 
evaluated

Statistical 
method

Causal inferences from 
mixed method triangulation

Only 
statistical 
correlations

Grounded 
theory

Unclear

Confounders 
statistically 
analysed

Confounders 
only 
discussed

Nuñez et al. 
[88]

Stress EDA, ST Logistic 
regression

v

Caviedes 
and Figliozzi 
[21]

Stress EDA Random 
effect model

v

Vieira et al. 
[130]

Stress ECG k-Nearest 
neighbours

v

Rybarczyk 
et al. [106]

Unspecified PPG Local regres-
sion model

v

Berger and  
Dörrzapf [12]

Stress EDA, ET (sepa-
rate parts)

Not specified v

Zink et al. 
[146]

Mental work-
load

EEG ANOVA v

Mantuano 
et al. [78]

Attention ET Eye tracking 
software

v

Scanlon et al. 
[112]

Attentiveness, 
task effort

EEG T tests v

Robles et al. 
[99]

Attention, 
excitement, 
task effort, 
task difficulty

EEG ANOVA v

Hale et al. [55] Risk percep-
tion

ECG T tests v

Gadsby et al. 
[46]

Comfort ET Eye tracking 
software, 
ANOVA

v

Fyhri and Phil-
lips [45]

Risk percep-
tion

ECG ANOVA v

Liu and Figli-
ozzi [75]

Stress EDA ANOVA v

Feizi et al. [41] Comfort Hall effect Z tests 
and ordered 
probit model

v

De La Iglesia 
et al. [30]

Exercise ECG or PPG 
(not specified)

v Descriptive 
statistics

v

Resch et al. 
[96]

Stress PPG, ST, ECG Rule-based 
process

v

Ryerson et al. 
[107]

Mental work-
load

ET Eye tracking 
software, 
ANOVA

v

Scanlon et al. 
[112]

Mental dis-
traction

EEG T tests v

Dastageeri 
et al. [29]

Happy or Fear PPG, ST, ECG Multilayer 
perceptron 
classifier 
and decision 
tree

v

Werner et al. 
[137]

Stress EDA, ST Rule-based 
process

v

Kyriakou et al. 
[71]

Stress EDA, ST Rule-based 
process

v
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3.5  Confounding variables
A consistent finding across studies is that confounding 
variables are acknowledged to be important, but only a 
few studies control for them statistically, and even then, 
only a limited set is controlled. Three different and 
important types of confounding variables emerge from 
the review: (1) infrastructure and spatial environment, 
(2) participants as research subjects, and (3) weather.

Regarding the infrastructure and spatial environ-
ment, most studies used a subset of variables relating 
to noise, road width, traffic volume, surface type, land 
cover type, and intersection type. 18 out of 40 studies 
did not mention if and how variables in this category 
were analysed. Regarding subject-level variables, stud-
ies collected mostly sociodemographic data such as age, 
gender, height, weight, years and level of cycling experi-
ence, and attitudes about safety and comfort. Thirteen 
out of 40 studies did not mention subject-level variables. 
Regarding the weather, even fewer studies controlled for 
weather variables: 24 out of 40 studies did not control nor 
discuss weather variables. The studies that did mention 

weather mentioned mostly wind and temperature ranges. 
A few studies mentioned that data collection took place 
in same-weather conditions. Most of the studies that 
mentioned weather mentioned it only in the discussion 
section.

4  Conceptual framework for evaluations
This section now presents and discusses the conceptual 
framework, addressing the second aim of the paper. The 
framework is developed by integrating the review of 
selected literature in Sect. 3 with domain knowledge.

The key principle for the framework is that evaluations 
should triangulate data from multiple sources to deter-
mine which changes in experiences can be attributed to 
the use of SCTs. This data triangulation should include 
quantitative data analysis and statistical control for con-
founding variables. Figure  9 visualizes the framework 
with factors in blue and methods in yellow, grouped into 
four categories: experiences with SCTs, experience meas-
urements, confounding variables, and causal analysis. 
The next sections explain each of the categories.

ECG electrocardiogram, PPG photoplethysmogram, ECG and PPG sensors were used to measure heartbeat and heartbeat variability rates. EDA electrodermal activity, 
EMG electromyography, ET eye tracking, ANOVA analysis of variance

Author Experience and measurement Analysis

Experience 
type

Sensor type SCT 
evaluated

Statistical 
method

Causal inferences from 
mixed method triangulation

Only 
statistical 
correlations

Grounded 
theory

Unclear

Confounders 
statistically 
analysed

Confounders 
only 
discussed

Ducao et al. 
[35]

Unspecified EEG, ECG Unspecified v

Kiryu 
and Mina-
gawa [69]

Muscle 
fatigue

EMG v Regression 
model

v

Gorgul et al. 
[51]

Stress ECG or PPG 
(not speci-
fied), EDA

Getis-Ord Gi 
statistic

v

Mussgnug 
et al. [84]

Unspecified ET Unspecified v

Zeile et al. 
[144]

Stress PPG, ST, ECG Rule-based 
process

v

Hughey et al. 
[58]

Perceived 
exertion

HR T tests v

Andres et al. 
[4]

Integrated 
Exertion

Gyroscope v Thematic 
analysis

v

Walmink et al. 
[133]

Social Exer-
tion

ECG v Thematic 
analysis

v

Andres et al. 
[5]

Peripheral 
vision

EEG v Thematic 
analysis

v

Bial et al. [13] Ease, comfort ECG v ANOVA v

Table 1 (continued)
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4.1  Cyclist experiences with SCTs
Determining the specific type(s) of experiences to be 
evaluated in conjunction with SCTs is a challenging 
endeavour. The field of research on conceptualizations of 
experience is continuously evolving, necessitating careful 
consideration and definition of the relevant dimensions 
and aspects to be assessed. Furthermore, the emer-
gence of novel and advanced systems, particularly those 
employing Artificial Intelligence and physical interven-
tion, is predicted to have profound effects on sensorial, 
perceptual, cognitive, and affective processes [48].

The types of experiences that have been evaluated in 
the selected studies (see Sect. 3.1) represent only a small 
subset of the diverse range of experiences that cyclists 
can have. Existing research has predominantly focused 

on negative experiences associated with stress, anxiety, 
and risk perception. It is important to recognize that 
cyclists encounter a much broader spectrum of experi-
ences which is worth exploring in future research. Table 2 
summarizes existing conceptualizations of cycling expe-
riences, and this table guides choices in future evalua-
tions about which types of experiences to focus on.

An important limitation in the selected studies is the 
small number of participants—too small for under-
standing causation and variation between types of 
experiences. These small numbers means that future 
studies are recommended to increase sample sizes and 
to use knowledge about choosing appropriate sample 
sizes [36].

Fig. 9 A conceptualization of evaluations of the impact of SCTs on cycling experience
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Regarding SCT factors, until now, only a limited set 
of SCT design factors has been evaluated with body 
sensor data. The SCTs evaluated with body sensor 
data thus far were positioned in the bicycle and on the 
cyclist but not yet on vehicles or in the infrastructure. 
Table  3 summarizes additional factors in SCTs that 
warrant evaluation.

The limited set of SCTs evaluated so far means that 
more attention should be given to research that inves-
tigates experiences in which SCTs utilize real-time 
measurements of user experiences for Human–Com-
puter Interaction and decision-making purposes. The 
following quote captures this way of using experience 
data effectively: “The wearable Human–Machine Inter-
face acts as a direct communication path between 
humans and machines, which involves obtaining physi-
cal or electrophysiological signals from consumers and 
further driving the machine to perform specific func-
tions accordingly.” [142]. Studies show that this is an 
upcoming trend [4, 5, 69]. A recent dissertation, yet to 
be replicated, argued that SCTs that act on experience 
measurements lead to specific types of experiences [3]. 
Using experience data for the control of SCTs aligns 
with recent findings that neurological data in Brain-
Computer Interfaces can control, for example, robots 
and prosthetic arms [15, 97]. Generally, it is recom-
mended to study the implications of novel, future, and 

highly advanced forms of Human–Computer Interac-
tion [40, 48, 82, 83].

It is important to acknowledge that cycling experi-
ences have consequences, for example, on subjective 
wellbeing, self-identity, and travel behaviour. For exam-
ple, malfunctioning or suboptimal design causes frus-
tration, which impacts mood, which in turn impacts 
subjective wellbeing. Also, it has been argued that 
experiences with future autonomous and intelligent 
systems lead to changes in one’s identity and perception 
of self [48]. Because the focus of this paper is on evalu-
ating experiences with SCTs, these consequences will 
not be discussed further but are an important avenue 
for future research.

4.2  Experience measurements
The previous section explained the types of SCTs and 
cycling experiences that can and should be evaluated. 
Now, it becomes important to understand which types 
of sensors link well to types of SCTs and cycling experi-
ences, because different data and methods are relevant 
for different types of experiences.

Complementing the conceptual framework in Figs.  9 
and 10 provides more detail on which types of SCTs, 
cycling experiences, and body sensors can be linked. Spe-
cific links between SCTs, experiences, and sensors are 

Table 2 Conceptualizations of cycling experiences

Author Identified types of experiences

Liu et al. [76] Spatial, e.g., relationship to place, remembering mental maps; Social, e.g., interaction with other people; Sensory, e.g., smell, vision, 
sounds, feel of the bicycle and road

Hagen et al. [54] Safety and Reliability; Speed; Comfort; Ease; Quality time

Keuning [65] Psychological flow during cycling. Flow is characterized by effort-less control, total absorption in the ride, a belief in one’s abilities, 
and more [23]

Rundio et al. [105] Experiences of personal transformation, e.g., identity change in case of an elderly person losing the ability to cycle. Extraordinary 
experiences, e.g., experiences of mindset and habit changes after a 10.000 km cycling journey

Andres [3] SCTs as thrillers, partners, detractors, and assistants, which result in 12 different types of cycling experiences. E.g., SCTs as thrillers 
lead to experiences of competition, SCTs as detractors lead to experiences of discouragement

Kalra et al. [63] Perceived safety, perceived comfort, aggression, anxiety, risk perception, emotional stress, conflicts, threats

Table 3 Conceptualizations of SCTs

Author Factors in SCTs Examples

Kapousizis et al. [64] Six levels of smartness in SCTs Only passive warnings, full government intervention

Oliveira et al. [89] Integrations with other intelligent transport systems Green wave systems where both cars and cyclists are involved

Nikolaeva et al. [86] Seven different aims of SCTs Navigating the spatial environment, improving the relationship 
between the cyclist and the bike

Berge et al. [11] 14 different factors that describe the human–com-
puter interaction in SCTs

Positioning: on-bike, on cyclist, on infrastructure, or on other road users. 
Communication modality: visual, auditory, motion

Andres [3] Four roles of SCTs SCTs as partners, thrillers, detractors, assistants



Page 14 of 23Boot et al. European Transport Research Review           (2024) 16:13 

explained in the next paragraph but were not visualized 
in Fig.  10 because that would make the figure incom-
prehensible. Figure  10 has been derived from analysis 
of both the literature selected via the systematic search 
process in this review, and literature found in adjacent 
fields (that is, the wider body of research on cycling expe-
riences, SCTs, and sensor technology). The figure distin-
guishes between findings from both sources of literature. 
An arrow from body sensors to SCTs is included, to rep-
resent the trend that SCTs increasingly use body sensor 
data as real-time input.

The following links emerged from the review and lit-
erature analysis process:

• Although data from HR, HRV, GSR, and ST sensors 
has weak links to perceived stress [74], once these 
links are strengthened it is expected that these sen-
sor types will be useful to study SCTs that aim to 
improve stress, comfort, and perceived safety during 
cycling.

• ET can help to evaluate the impact of visual stimuli 
from SCTs. Existing literature confirms the value of 
ET for investigating links between visual stimuli and 
attention and distraction during experiences [49, 79].

• EEG readings may fit well to understanding impacts 
of SCTs on cognitive and mental aspects of cycling 
experiences, even though it may seem that measur-
ing EEG signals during cycling is unfeasible due to 
technical challenges and errors induced by move-

ment. Studies succeeded in capturing cognitive and 
mental factors during cycling via EEG readings [5, 
146]. The advent of low-cost, wireless, lightweight, 
portable EEG devices is also promising for cycling 
research [44, 110]. Research has already shown high 
prediction accuracy for deriving emotions from EEG 
data [134].

• To date, only one of the 40 selected articles used 
EMG to measure muscle fatigue. Nevertheless, litera-
ture shows that EMG has received increasing atten-
tion in experience research [124, 143]. EMG may be 
suitable to understand how SCTs impact tiredness 
and fatigue during cycling.

Next to these described links, it is important to be 
aware that this list of links is only intended to pro-
vide starting points and is not intended to be an exclu-
sive or exhaustive list of all possible links. For example, 
one recent study used ET to measure stress of athletes 
in virtual reality [122], which is a link that has not been 
explored yet in the selected articles.

Due to rapid advances in sensor technology, it is chal-
lenging to list all potentially relevant sensor types. Exist-
ing reviews cover wearable sensor innovations [66, 115]. 
Notably, findings from these reviews mean that four 
trends in sensor technology are relevant:

1. Miniaturization and mainstream adoption of sensors 
like those in smartwatches [67] offer opportunities 

Fig. 10 SCTs, cycling experiences, and body sensors that should be linked in evaluations
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for large scale data collection with existing hardware. 
A commonplace example are inertial measurement 
units (often abbreviated as IMUs), which are almost 
universally included in modern-day smartphones. 
IMUs typically include a gyroscope and accelerom-
eter, to measure physical balance and acceleration. 
They have become prevalent and can measure body 
movement which links intuitively to SCTs that influ-
ence steering, braking, and accelerating [2].

2. Multi-sensor networks integrate different sensors [1, 
72, 135], enabling richer datasets via simultaneous 
measurements like HRV, EMG, and brain oxygen via 
portable infrared imaging [7, 123].

3. Implantable and ingestible sensors are rising [62, 68, 
73, 117, 142], collecting unique data despite privacy 
and ethical concerns.

4. Sensors are integrated into clothing [42, 104, 140]. 
So-called e-textiles offer opportunities for both wear-
ability and as communication devices.

Additional data sources beyond body sensors, like 
experience sampling methods, sensors in bicycles, sur-
veys, and environmental recordings, are also crucial for 
comprehensive insights. Such sources will not be further 
discussed here, since they have been reviewed extensively 
recently [27, 63, 138].

4.3  Confounding variables
Within experience research, it is common knowledge 
that factors from the context and human participants 
have a strong influence on what is experienced [103]. The 
reviewed articles show a high number of factors that have 
been included in the analysis. It is beyond the scope of 
this paper to discuss confounding factors in the evalu-
ation framework in detail because these factors have 
already been reviewed thoroughly in the literature from 
the transportation domain [14, 56]. Validated question-
naires that can be employed before or after data col-
lection with wearables have also been reviewed [114]. 
Additionally, there is a growing amount of open data 
platforms, such as OpenCycleDataHub and National Por-
tals of Road Data, which can provide possible relevant 
data about confounding variables [85, 113].

A trade-off is to be made between more controlled out-
door evaluations on the one hand and more “in the wild” 
approaches on the other hand. Controlled routes offer 
a stronger understanding of the effects of confounding 
variables, however, the experiences are less naturalistic 
and lead therefore to lower generalizability of findings. 
Studies where participants can choose freely wherever 
and whenever they want (“in the wild”) offer a great deal 
of insight into the context of experiences as they occur 
naturally, however, these studies will be subject to larger 

error terms and limitations than more controlled studies 
[70].

It is noteworthy that the selected studies did not explic-
itly address attitudes and digital skills for new technolo-
gies. These factors are important because individuals 
with higher levels of scepticism towards new technolo-
gies and/or with lower digital skills may face potential 
disadvantages [37, 77, 128]. As an illustration, it has been 
shown that designing mobile technologies for elderly 
people requires adherence to specific design guidelines 
[59]. The lack of attention for factors related to atti-
tudes and digital skills for new technologies means that 
these factors need more prominent attention in future 
evaluations.

4.4  Data analysis
To understand the impact of SCTs on cycling experi-
ence, it is necessary to have an answer to the following 
important but challenging question: which changes in 
experiences are caused by SCTs? Reviewing selected 
studies shows that the study designs in the reviewed 
studies are not always suitable to substantiate claims 
about causation. The reasons for this lack of suitability 
are relatively small sample sizes, lack of statistical con-
trol for confounding variables, and lack of data analysis 
approaches that can deal with large quantities of labelled 
and unlabelled data. Relating the review of data analysis 
approaches to knowledge about causal inferences reveals 
that the following is necessary to identify causes for 
experiences:

1. Mixed method approaches should triangulate data 
from multiple sources to find robust links between 
sensor data and experience types. Triangulation 
should include the ground-truthing of sensor data. 
Combining a body sensor system with camera 
recordings, experience sampling, and control for 
subject-level variables via pre- and post-ride surveys 
has been shown to be an effective combination [71]. 
Via this combination, “objective” sensor data can be 
cross-checked with subjective self-reports and con-
founding factors from the environment of the ride.

2. Control for the influence of confounding factors 
should be in place, preferably via statistical means. 
Studies should explicitly describe which confound-
ing factors were controlled for and which were not 
controlled but could have played a role. The study by 
Fitch et al. [43] is an excellent example of both listing 
and statistically controlling for confounding factors.

3. Statistical and/or machine learning methods should 
be used for determining associations between fac-
tors of interest. An excellent example of an exten-
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sive approach for statistical analysis to determine 
relationships between chosen factors is the study by 
Yang et al. [141].

4. Evaluations should intensify the use of criteria for 
causality [57, 101] to facilitate reflection about the 
ways in which the findings at hand can be explained.

5. Evaluations should be aware that achieving a com-
plete understanding of all the causes for experiences 
is nearly impossible. This is because of the subjec-
tive, complex, and diverse nature of experiences. It is 
also necessary to stay aware that some types of SCTs 
may have only a marginal or negligible influence on 
cycling experiences [127]. It may be that moods, atti-
tudes, or the environment have a stronger effect on 
cycling experience than SCTs.

It is noteworthy that none of the selected studies used 
approaches such as Bayesian networks, Granger causal-
ity, and deep learning. The multilevel regression models 
that are currently used in many of the reviewed stud-
ies are not able to address, for example, raw camera and 
microphone recordings. This is noteworthy because it is 
reasonable to expect that future datasets about cycling 
experiences will increase in size and complexity. Auto-
mated data retrieval about subject- and context-level 
variables via road and weather authorities is expected to 
enrich these datasets. Additionally, the number of par-
ticipants is expected and recommended to increase. With 
complex datasets containing both labelled and unlabelled 
data from 100s, 1000s, or even more individuals, more 
advanced data analysis approaches are necessary.

Last, it is remarkable that only one of the selected stud-
ies presented or discussed optimal ranges for experi-
ence measurements. Only the study by Mantuano et  al. 
[78] reported that an equilibrium in visual attention was 
found in the combination of attention for the central tra-
jectory and lateral parts of the visual scene. For stress and 
excitement, a similar balance is expected to exist because 
it can be argued that cyclists desire to reach a middle 
ground between a too exciting and a too boring ride. 
The domain of HRV and stress response analysis pro-
vides insights for presenting and discussing such optimal 
ranges, since various norms for HRV measures are avail-
able [17, 116].

5  Discussion
This section will now briefly discuss the outcomes, limi-
tations, and recommendations of this paper.

5.1  Outcomes
The first key outcome from the paper is the system-
atic literature review. The literature review showed that 
research has focused on evaluating stress response, 

mostly using data from HR, EDA, and ST sensors in 
chest belts and wrist bands. The current review found 
only 7 sensor-based evaluations of an SCT. These stud-
ies had relatively small sample sizes, no probability 
sampling approaches, and no extensive control for con-
founders. This finding means that methods for evaluat-
ing SCTs are falling behind research in other domains 
such as affective gaming and neuromarketing [8, 50, 95, 
98]. The relatively low number of sensor-based evalua-
tions of SCTs is remarkable, considering the importance 
of subjective cycling experiences and the rise of SCTs 
[63, 89]. The findings mean that future research should 
focus on different types of experiences, including positive 
experiences, with different types of multimodal sensor 
networks. This is especially important because cyclists 
become more susceptible for positive experiences once 
basic safety conditions are met [54]. The findings also 
mean that larger-scale field trials are necessary with ran-
domly selected participants, different types of SCTs, and 
more advanced analysis tools.

The second key outcome from the paper is the con-
ceptual framework. The framework synthesizes insights 
from research on sensor systems, human–computer 
interaction, cycling experience, machine learning, and 
more. The synthesis provides crucial factors and meth-
ods for future impact evaluations, as practical a guidance 
for experts who prepare and conduct evaluations. For 
example, what experiences are to be included, and how 
are they to be measured, in a naturalistic evaluation of 
an intelligent speed adaptation (ISA) system for cyclists 
with 500 participants and multimodal sensor data? An 
ISA system can provide speed advice to cyclists and may 
in the future reduce motor assistance levels. Recent pro-
gress by the City of Amsterdam motivates an interest in 
evaluating ISA [61]. A key principle in the framework is 
that ideally, in evaluations, data from multiple sources is 
triangulated.

It is noteworthy to point out how the framework guides 
evaluation in practice. Findings in the first category of the 
framework, “experiences with SCTs”, mean that experts 
should choose which aspects of experience and SCTs to 
focus on. If we follow the example of evaluating ISA, one 
possible avenue is to understand if and how changes in 
motor support levels are linked to physiological measures 
and to psychological flow. Understanding these links can 
help to design an optimal ISA system, for example, by 
identifying how interventions help and harm flow. Such 
approach complements a more traditional approach of 
evaluating objective traffic flow in terms of throughput 
and cycling speeds [107]. Findings in the second cate-
gory, “experience measurements”, mean that new types of 
sensors integrated in new materials, positions, and form 
factors provide new avenues for understanding subjective 



Page 17 of 23Boot et al. European Transport Research Review           (2024) 16:13  

dimensions of cycling. Examples include integrating 
infrared imaging sensors into headbands [126], push 
buttons on bicycle handlebars for experience sampling 
[90], and using a combination of HRV and cadence data 
to measure psychological flow [18]. The third category 
“data analysis” provides insights on methods for moving 
from association to causation. Criteria to establish cau-
sality help to understand whether associations are strong, 
consistent, specific, biologically plausible, and so forth 
[57]. Example questions include whether the effects of 
an ISA system are reproducible in various countries and 
cultures, how patterns in sensor data match to ground 
truths from experience sampling approaches, and how 
the participant recruitment strategy influences analysis 
results. Findings in the fourth and last category, “con-
founding variables”, emphasize a need to control for other 
variables at play. Public databases can provide the data 
for such variables, for example, about aspects like road 
width, traffic volume, weather, and so forth.

Overall, it is important to acknowledge that research on 
the future of Human–Computer Interaction means that 
it is valuable to imagine future interactions with SCTs as 
a type of collaboration between humans and Artificial 
Intelligence. In such collaboration, SCTs may use real-
time body sensor data to deliver communications and 
interventions to cyclists via biofeedback mechanisms. 
Attempts to understand effects Human-AI-collaboration 
while cycling have been started [4], and continuing this 
avenue of research holds tremendous potential.

5.2  Limitations
The paper is subject to the limitation that the specific 
search query may have left out articles due to little con-
sistency in terminology in this field of research [11, 63]. 
The current review should therefore be considered an 
extensive exploration rather than a complete overview.

Another limitation is that this review excluded stud-
ies that evaluated an SCT without body sensor data. 
These studies were excluded because they did not match 
the aim of the study. Excluding these studies leaves this 
review with a relatively low number of studies that used 
body sensor data in evaluating experiences with SCT—
only seven studies have been found. Studies on SCTs 
without body sensors may provide valuable insights 
about, for example, interaction patterns, communica-
tion modalities, effect sizes, and control for confounders. 
Thus, reviewing such studies is part of the recommenda-
tions for future research.

5.3  Research directions
Seven recommendations for future research emerge from 
the literature review and conceptual framework. The first 
recommendation is to validate the conceptual framework 

in practice, to validate whether the framework captures 
all necessary and relevant factors and methods. The 
framework can then help to develop knowledge about 
which factors in SCTs that are most and least effective in 
supporting subjective experiences.

The second recommendation is to broaden to perspec-
tive on cycling experiences, to include more positive, 
diverse, and nuanced aspects of cycling experience. For 
example, experiences of shared flow, transformational 
experiences, and changes in self-perception. Reference 
lists are desired, to know which measurement values 
point to “optimal” experiences with SCTs, analogous to a 
list of normal values for heart rate variability [87].

The third recommendation is to utilize advancements 
in multimodal body sensor networks. This utilization 
should include interdisciplinary efforts that include 
knowledge from affective computing [108, 114], sensors 
inside the human body and in e-textiles [129, 140], and 
multi-sensor networks [7, 16, 52].

The fourth recommendation is to tailor computational 
methods for causal analysis to large and unstructured 
datasets about cycling experience. Analyses of cycling 
experience data would benefit from advancements in 
sensor fusion, deep learning, and neural networks [135]. 
Close attention should be paid to statistical control 
for confounding variables. Automating the retrieval of 
weather, traffic, and spatial data [138] is expected to help 
in this regard. Attitudes and skills related to new tech-
nologies need more attention [37]. Validated rating scales 
should be used more often to establish questionnaires for 
self-reports and sociodemographic data [114].

The fifth recommendation is to improve consistency 
in reporting. Although it sounds trivial, to allow bet-
ter comparison of results, future research papers should 
better describe and justify research design aspects such 
as experience type, sample sizes, sensor types, bicycle 
types, confounding variables, route choice, and so forth. 
Also, considering the wide variety of terminology used 
to describe types of cycling experience, the theoretical 
grounding and consistency of key terminology for cycling 
experiences and SCTs should be strengthened.

The sixth recommendation for further research is to 
widen the scope of the review. For example, evaluations 
of SCTs without body sensors and commercial frame-
works for measuring cyclist emotions [24, 34, 120, 131] 
could be included.

The seventh and last recommendation relates to SCTs 
that are increasing in smartness level [64]. Such sys-
tems are increasingly using body sensors in real time 
and are also increasingly intervening physically in the 
ride [22, 32]. Therefore, SCTs that intervene physically, 
with autonomy and intelligence, and with biofeedback 
systems should be investigated more closely. In this 
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regard, cycling experience research may benefit from 
alignment with the field of “Human–Computer Inte-
gration” [39, 48, 82].

6  Conclusions
To conclude, this paper fits to a need to promote cycling 
and to evaluate how cycling can be made safer and 
more attractive. Numerous types of SCTs are emerging 
and it is important to have robust methods to estab-
lish whether applications like green wave systems, ISA, 
and collision avoidance systems truly improve cyclist 
perceptions, emotions, and feelings. That is necessary, 
because such subjective dimensions influence deci-
sions to start and keep cycling. Sensor-based methods 
to evaluate impacts on these subjective dimensions 
had not been well investigated in cycling experience 
research. To contribute to this context, this paper set 
out to conduct a systematic review and to develop and 
present a conceptual framework, both to guide future 
sensor-based evaluations of the impact of SCTs on 
cycling experience.

Regarding the aim to conduct a systematic literature 
review, it is concluded that most of the reviewed studies 
(n = 40) do not use a research design that is readily avail-
able for large-scale naturalistic evaluations of experiences 
with SCTs. Exploratory studies with non-random sam-
pling and a lack of strong control for contextual variables 
limit understanding cause-effect relationships. Neverthe-
less, some studies provide useful insights, for example 
the studies that used experience sampling for collecting 
ground truths for sensor data. To deal with these draw-
backs and opportunities, this study developed the con-
ceptual framework for future evaluations.

Regarding the aim to present and develop a conceptual 
framework for future impact evaluations, it is concluded 
that the key principle for future evaluations is that data 
from multiple sources should be triangulated. Triangu-
lation is important to future evaluations, to distinguish 
between effects of SCTs and effects of other context- and 
subject-level variables. For example, emotions during 
a bike ride could be due to an intervention by a SCT, a 
disturbing phone call, or an aggressive car driver. Con-
founding variables should be statistically controlled, to 
enrich the understanding of cause-effect relationships. 
Especially studies with SCTs that use biofeedback and 
collaboration between cyclists and artificial intelligence 
are worthy of future research.

Altogether, this paper provides important guidance 
for future evaluations of the impact of SCTs on cycling 
experience. These evaluations contribute to the design of 
future support systems for cyclists, thereby unlocking the 
myriad advantages associated with cycling.

7  Attachment 1: Full search query

• Scopus: ( "bike" OR bicycl* OR "biking" OR “cycling” 
OR "cyclist") AND (  "experience" OR "emotion" OR 
"perception") AND ( evaluat* OR measur* OR quan-
tif* OR determin* OR "assess" OR "impact")) AND 
PUBYEAR > 2004 AND (  LIMIT-TO  (  SUBJAREA, 
"ENGI") OR LIMIT-TO  (  SUBJAREA, "SOCI") OR 
LIMIT-TO  (  SUBJAREA, "COMP") OR LIMIT-
TO  (  SUBJAREA, "ENVI") OR LIMIT-TO  (  SUB-
JAREA, "PSYC") OR LIMIT-TO  (  SUBJAREA, 
"BUSI") OR LIMIT-TO  (  SUBJAREA, "NEUR") 
OR LIMIT-TO  (  SUBJAREA, "DECI") OR LIMIT-
TO  (  SUBJAREA, "ARTS") OR LIMIT-TO  (  SUB-
JAREA, "MULT")) AND (  LIMIT-TO  (  DOCTYPE, 
"ar") OR LIMIT-TO  (  DOCTYPE, "cp") OR LIMIT-
TO ( DOCTYPE, "ch") OR LIMIT-TO ( DOCTYPE, 
"re")) AND (  LIMIT-TO  (  LANGUAGE, "English") 
OR LIMIT-TO ( LANGUAGE, "Dutch").

• TRID: ("bike" OR bicycl* OR "biking" OR “cycling” 
OR "cyclist") AND ("experience" OR "emotion" OR 
"perception") AND (evaluat* OR measur* OR quan-
tif* OR determin* OR "assess" OR "impact").

• WoS: ("bike" OR bicycl* OR "biking" OR “cycling” OR 
"cyclist") AND ("experience" OR "emotion" OR "per-
ception") AND (evaluat* OR measur* OR quantif* 
OR determin* OR "assess" OR "impact").

• GS: ("bike" OR "bicycle" OR "cycling" OR "cyclist") 
AND ("experience" OR "emotion" OR "perception") 
AND ("evaluation" OR "measure" OR "quantify" OR 
"determin" OR "assess" OR "impact").
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