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Abstract 

Georeferenced messages on social media represent a powerful data source to gain a different perspective for estimat‑
ing mobility behaviour, which is still mainly based on travel surveys. These data are openly available, yet few stud‑
ies have explored their potential. This paper assesses the feasibility of large-scale Twitter data as a proxy of human 
mobility behaviour to complement traditional travel surveys, and for calibration and validation of transport models. 
Almost 12 million Tweets from more than 90,000 users were further analysed to detect the trip patterns at municipal‑
ity level in Norway from 2012 to 2022. Results showed that the mobility patterns changed between 2014 and 2019 
for the travel survey, as for 2019 most of the reported trips were short and concentrated in the densely populated 
areas of the country, where most respondents lived, triggering a lack of information for certain areas. In contrast, Twit‑
ter data presented a more stable data source along both years with similar population distribution and average trip 
length. Although Twitter data have limitations in relation to the socio-demographic information of the users, it could 
complement the travel survey given the broader spatial and temporal distribution of this large-scale data.
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1  Introduction
Global climate change is one of the world’s greatest chal-
lenges to achieve sustainable goals, where transporta-
tion accounts for a fourth of the total CO2 emissions [2], 
therefore transforming this industry plays a significant 
role. Diverse transport policies need to be assessed for 
their effectiveness, sustainability, and feasibility before 
being implemented in real-life. Estimating mobility 
behaviour is crucial for developing tools and simulation 
environments which enable decision-makers to properly 
assess the policies in advance to their implementation. 
Nevertheless, transport user behaviour is complex and 
could rapidly adapt to different trends, such as the pan-
demic [24].

Traditional methods for capturing these behaviours 
are travel surveys and travel diaries, which face several 
challenges and potential data inaccuracies which can 
impact the performance of transport models [38], as 
data might not reflect the real behaviour of the popula-
tion [82]. These methods have major challenges such as 
low response and completion rate [79, 93], or underesti-
mation of short trips [13, 94]. Some of the reasons might 
be associated with the survey duration, forgetfulness of 
respondents, selective omission of some trips, or incor-
rect understanding of trip or activity definitions [12, 
38, 79, 94], as well as difficulties to reach the potential 
respondents and their unwillingness to participate, which 
could be linked to the increasing screening of marketing 
calls [86].

New technologies and other data sources may not only 
improve the quality and quantity of the data collected by 
traditional travel survey methods, but also increase the 
variety of the data, as well as provide data over a longer 
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period [16, 96]. Social media platforms such as Twit-
ter and Instagram have emerged as significant sources 
of location-based information due to their geo-tagging 
capabilities for user posts. Although this data is presently 
available for research, its future accessibility is uncertain 
due to proprietary business strategies and general data 
protection regulations. Additionally, the data relies on 
user-generated posts, which may not represent all demo-
graphic groups and can be challenging to use for identify-
ing individual trips. Nonetheless, Twitter has become a 
popular dataset for researchers, being a source for behav-
iour analysis, opinion mining, trend tracking [92], and 
sentiment analysis [32]. Twitter has previously been used 
to analyse population density, for example estimating 
the population distribution throughout the day [20] or 
in relation to the land use [30, 47]. Luo et al. [59] related 
the spaciotemporal features to demographic information, 
and Shelton et al. [72] observed the socio-spatial inequal-
ities within users. Twitter data was also used to comple-
ment other data sources to predict large-scale human 
mobility [83].

Several countries are currently encountering difficul-
ties with their traditional travel surveys, and there has 
been limited research on the use of Twitter data as a 
complementary source of information. This paper aims 
to bridge this gap by exploring the potential feasibility 
and reliability of leveraging large-scale Twitter data to 
analyse human mobility patterns. Over 12 million geo-
referenced Tweets from Norway, spanning from 2012 to 
2022, were analysed to estimate origin–destination (OD) 
trips between municipalities. These estimates were then 
compared with data from traditional Norwegian travel 
surveys to assess the potential of Twitter data as a supple-
mentary resource for traditional travel surveys, contrib-
uting with valuable insights into the integration of social 
media data with traditional transportation research 
methodologies.

A more detailed literature review is included in Sect. 2. 
The methodology, including data sources, processing, 
and analysing is described in Sect. 3. The results are gath-
ered in Sect.  4, followed by the discussion and implica-
tions in Sect. 5. Finally, a short summary with the main 
conclusions is in Sect. 6.

2 � Literature review
In the last years, the drawbacks of traditional travel sur-
veys have become more evident, highlighting the need 
to seek alternative data sources for understanding travel 
behaviour [71]. Traditional surveys, typically based on 
self-reported data gathered through telephone or com-
puter-assisted interviews, encounter numerous issues 
such as decreasing response rates, recall bias, and high 
costs [82]. Integrating other data sources with traditional 

surveys can enhance the overall quality and depth of 
travel behaviour research, leading to better-informed 
transportation planning and policy decisions, but the 
challenge lies in digitalizing and consolidating data from 
multiple sources for effective exploitation. Liu et al. [52, 
53] emphasised that big data must be carefully used due 
to challenges related to unrepresentativeness, inconsist-
ency, and unreliability. Several big data sources could be 
further explored, Li et al. [50] divided in three main types 
depending on the generation of the data, from transac-
tions, from devices, or from users.

Transactions data, which could be web search data, or 
bank transactions, is limited for travel behaviour due to 
privacy policies. However, electronic fare payment sys-
tems in public transportation might be used for estimat-
ing travel behaviour [5]. An assumption needed is that a 
single card is used by a unique person, which might not 
be the case, this was only tested by Chu and Chapleau 
[18]. Hussain et al. [43] used these data for estimating OD 
matrixes, although some shortcomings were stated that 
could be overcome with the integration of several data 
sources. Unlike traditional travel surveys, it is challenged 
to obtain sociodemographic data from transactions data, 
as well as reliable data on travel demand for different 
transport modes. Nevertheless, it could be explored the 
suitability for model calibration.

There are several device data that has been explored to 
complement traditional travel surveys, such as data gen-
erated by Global Positioning System satellites (GPS), sen-
sors, smartphones, or mobile roaming data.

GPS-based surveys might have a potential to replace or 
supplement traditional methods [16], which may enable 
large scale surveys at lower cost [9], and provide a more 
flexible method to capture rapid behaviour changes [38]. 
GPS-positioning captured with higher precision spa-
tial–temporal movements of travellers [13], which reduce 
underreporting short trips as in traditional travel diaries 
[64, 73]. Rasmussen et al. [69] derived with high accuracy 
other trip attributes such as trip purpose. Nevertheless, 
people may forget to carry the device and there might 
be signal losses due to obstructions between the device 
and the satellites, in undergrounds for instance. Moreo-
ver, the travel attributes depend to a larger extent on the 
post-processing [76], although the potential assumptions 
might be validated by recall surveys [54].

Other data types are automatic vehicle location, auto-
matic passenger counting and traffic counts. Automatic 
vehicle location uses GPS to record the position of the 
vehicles in the network in real time [58]. The vehicles 
tracked could be from private owners, companies with 
freight vehicles, to public transport companies. This data 
is not linked to a person, however, Chapleau et  al. [15] 
highlighted that it could complement traditional travel 
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surveys, especially in the context of estimating public 
transportation demand. Within this setting, automatic 
passenger counting is also a data source to be considered, 
this sensor technology counts the number of passengers, 
mainly boarding and alighting at each stop. Nonetheless, 
sociodemographic information is also disregarded [31], 
thus these data could be more useful for model calibra-
tion purposes rather than as complement to traditional 
travel surveys.

Traffic counts data refer to the number of vehicles, 
which could be length aggragated, passing a point dur-
ing a specified period of time. The technology to capture 
these data could be sensors or video recordings. This data 
has several limitations when compared to travel surveys, 
as it does not refer to a unique person and the complete 
trip patterns are not known, as data is only associated to 
a point. Despite numerous studies have concentrated on 
optimizing the placement of traffic counts to estimate 
origin–destination (OD) patterns, such as Fu et al. [28], 
the topic is still open to further research. Nevertheless, 
its used for model calibration is widely recognised [42].

Bluetooth technology, by fixed or mobile sensors, might 
be used to get insights into travel behaviour, some exam-
ples are Mei et al. [61] who used these data for estimating 
travel times,Abedi et al. [1] that estimated space-tempo-
ral movements of cyclist and pedestrians in combination 
to other data sources,or Yang and Wu [97] who estimated 
travel mode, although presenting some limitations. The 
lack of personal information, the trip patterns, and the 
transport mode reduce its used for travel demand esti-
mations or in combination to travel surveys, being more 
significant for specific model calibrations.

Today’s technology allows collecting travel data using 
smartphones. A rich data set can be derived and com-
puted from multiple built-in sensors, such as motion 
sensors (accelerometer, gravity sensor and gyroscope), 
environmental sensors (barometer, photometer and ther-
mometer) and position sensors (GPS and magnetometer) 
[6]. The smartphone applications may be divided in two 
main types, active or passive. The former requires that 
the user interacts, i.e. to select the start and end of the 
trips, as well as the mode, and potentially the purpose. A 
limitation is that users forget to activate and deactivate 
the application before and after the trip [96], as well as 
being more time consuming. The passive application does 
not require interaction, as it runs in the background of 
the phone. A set of algorithms automatically detect trips 
and modes [9, 16]. Ferrer and Ruiz [26] detected travel 
modes by using raw accelerometer data, with over 89% 
match for all modes. Alexander et al. [3, 4] showed repre-
sentative results for daily origin–destination matrices by 
purpose. An advantage is that it is possible to overcome 
loss of GPS-signal in urban or indoor areas with use of 

accelerometer sensor or connection to Wi-Fi access 
points [26, 51], but as a result of an increased sensor 
usage, high battery power consumption is a disadvantage 
[51, 96]. Discussions at different countries are being held 
to assess the potential of replacing the data collection of 
traditional travel surveys by smartphone applications, 
however there are concerns related to lack of stand-
ardization and reproducibility [7]. Additionally, passive 
tracking of people’s behaviour also introduces privacy 
concerns that may set restrictions for the survey design. 
There is also scepticism among certain type of people to 
participate which might lead to bias representativity [81].

Another example of data source is cellular network sig-
nalling which might provide more information in terms 
of sample variety and duration. By using CDR-data there 
is no need for users to do anything, thus it is the most 
battery efficient method. It is based on cell tower triangu-
lation from call detail records (CDR) from any telephone 
type [34]. Previous research showed the possibility to 
identify movements (origin–destination) [27, 85], trans-
port modes with a precision between 80 and 97% [96], 
and activities [10] to serve directly into transport mod-
els. Bachir et al. [8] estimated travel mode and OD trips, 
which were validated by traditional travel surveys. On the 
other hand, Šulíková et al. [80] explored this data source 
to complement data from the Slovakian traditional travel 
survey for transport modelling purposes, however several 
challenges disregard this option. Individual trips cannot 
be tracked according to the European General Data Pro-
tection Regulation (GDPR), in addition at national level 
some countries might have more strict rules, in Norway 
each mobile ID are renamed every day, making very dif-
ficult to detect work or residential locations [23]. Moreo-
ver, the location precision depends on the tower density, 
being less suitable for rural areas [51].

In relation to user generated data, this could be online 
photo data, or online textual data. Peoples’ movements 
can be extracted from their photo post on Flick [11], 
this platform is especially interesting for tourist behav-
iour [95], including visiting places, crowded areas, or 
trajectories [22, 40, 55, 99]. Instagram was also used to 
identify the most visited places [35], however this data is 
not openly available longer which reduces their research 
interest. Similarly, Panoramio was scarcely explored 
when it was active [44].

Georeferenced Tweets represent a powerful and 
high-quality data source to gain a new perspective for 
estimating mobility patterns [36], being also valuable 
for continuous monitoring and trend detections [98]. 
These could be place-referenced or coordinate-refer-
enced  Tweets,the former represents different levels at 
municipality, city or town, or neighbourhood, whilst the 
latter could have a precision down to 5 m under open sky 



Page 4 of 15Díez‑Gutiérrez et al. European Transport Research Review           (2024) 16:49 

[89]. The granularity of the Tweets allows to observe not 
only residence and work locations but also visited places 
or specific routes [47]. Lenormand et  al. [49] compared 
the spaciotemporal distribution of people and individual 
mobility patterns using data from Twitter, cell phones, 
and census and concluded that the three data sources are 
feasibly interchangeable. Some work by Kurkcu et al. [46] 
and Lee et  al. [48] comparing the mobility patterns to 
travel surveys also confirmed their similarities. Some of 
the previous research on mobility patterns from Twitter 
data estimated: origin–destination mobility flows [29], 
Jiajun [52, 53], next position in human trajectories [21], 
traffic events [68], preferred visited places [45], tourist 
flows [19], mobility patterns and dynamics in retail loca-
tions [57], mobility patterns between residence locations 
and public spaces in a medium-size city [70], differences 
of mobility patterns between visitors and residents [56], 
commuting patterns [60, 65], mobility dynamics before 
and after the pandemic [41, 74, 98].

Recent literature highlights the potential of georef-
erenced Tweets for analysing travel behaviour, yet few 
studies have investigated this data as a complement to 
traditional travel surveys. This paper aims to address this 
gap by exploring the feasibility of integrating user-gener-
ated data with conventional travel surveys to enhance the 
estimation of travel behaviour and improve the develop-
ment of transport models.

3 � Data
The geographical focus of this research was Norway. 
Although Twitter data is globally accessible, data pertain-
ing to national travel surveys is restricted due to general 
data protection regulations. For this study, data from the 
Norwegian Travel Survey was made available. In this sec-
tion, the two datasets used in this research are further 
described, namely, the National Travel Survey is Sect. 3.1, 
and the Twitter data in Sect. 3.2, including the data col-
lection and cleaning processing.

3.1 � National travel survey
The transport pattern data in Norway is mainly collected 
through computer assisted telephone interviews (CATI). 
The survey is distributed among a representative popula-
tion sample in terms of sociodemographic features every 
4 years. Since 1985, the response rate has dropped from 
77 to 20% [37]. Wilson [93] found similar decreasing 
response rates in the traditional data collection methods 
in other national household surveys. The total number 
of respondents for the national travel survey for 2014 
and 2019 were 61,314 and 88,548, respectively Hjorthol 
et al. [37], Grue et al. [33]. The next Norwegian national 
travel survey will probably be performed on CATI and 
computer-assisted web interviews (CAWI), introducing 

new challenges. This makes it more important that par-
ticipants understand the definitions by written expla-
nations, as there is no interaction with the interviewer. 
Despite that, Christiansen et al. [17] found an increase in 
the short trips reported with this method. However, the 
low response rate, amongst other limitations, may not be 
overcome using this method.

The information collected through the travel survey is 
divided into 8 sections: (1) residence location, (2) access 
to different transport modes, (3) job/study information, 
(4) short trips, (5) long trips, (6) commuting trips, (7) 
family structure and home options regarding parking and 
public transport availability, and (8) sociodemographic 
information.

Each respondent must describe all the short trips (less 
than 100 km) performed the day before to the interview, 
including origin, destination, purpose, transport mode, 
number of people travelling together, access to car, and 
public transport card. In addition, the frequency of the 
weekly use of the different transport modes for the sea-
son. For long trips (over 100  km or to and from out of 
the country), each respondent states the number of these 
trips for the last 30  days. The most recent long trip is 
described with more details, including day of the week, 
purpose, transport mode, origin, destination, number of 
people travelling together, number of days overnighting, 
type of accommodation, payer of the trip, frequency of 
long trips due to work, and some characteristics of these 
trips [33, 37].

3.2 � Twitter data
The Twitter streaming Application Programming Inter-
face (API) [87] was used to collect all georeferenced 
Tweets posted in Norway from 2012 (the earliest avail-
able Tweets in the API) to 2022. This period was selected 
in order to obtain information from several days to com-
pensate for the potential spatial sparsity of the sample 
[39].

The total dataset from January 2012 to December 2022 
consisted of 12,727,651 Tweets generated by 224,096 
unique users. The characteristics of the extracted data are 
as shown in Table 1.

Nevertheless, some of the Tweets did not represent 
actual people using this social media properly. As already 
identified in the literature, repeated Tweets might be 
spam [36, 91]. The number of Tweets per user could also 
be an indication of potential fake accounts. Lansley and 
Longley [47] considered as a maximum 3000 Tweets in 
1 year, whilst 1000 Tweets in 2 years was set as limit in 
Osorio-Arjona and García-Palomares [65]. Simultane-
ously, a minimum number of Tweets was also consid-
ered in previous studies, although the limits vary into a 
great extent, 2,5 Tweets per day [70] or 5 Tweets during 
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a period of 2 years [65]. In relation to spatial information, 
users that did not move [65] or Tweets with uncertain 
coordinates [47] were also removed from previous stud-
ies focusing on identifying mobility patterns.

The data cleaning process for our dataset is summa-
rized in Table  2. After the process, users who still had 
more than 1500 Tweets per year (less than 0.1% of the 
total) were closely observed to identify potential fake 
accounts which could trigger unrealistic mobility pat-
terns, however, the accounts were real users.

Each tweet has a limited number of characters. Thus, 
users might need to post multiple consecutive Tweets 
to express their thoughts. The final dataset consisted of 
92,785 users.

4 � Methodology
This section describes the processing of the Twit-
ter data, including the estimation of the location of the 
tweets at municipality level (Sect.  4.1), the trip patters 
(Sect. 4.2), and the demographic information of the Twit-
ter users (Sect. 4.3). Additionally, the residence location 
of the Twitter users is validated against the data from the 
National Travel Survey (Sect. 4.4).

4.1 � User location
Coordinate-referenced Tweets provide the location of the 
user at the time the tweet is posted. There are two types 
of locations on Tweets: exact coordinates, or bounding 
box coordinates, i.e., the tweet was posted within the 
borders of a polygon area. Both types are represented in 
Fig.  1. Tweets with exact coordinates were around 60% 
until the change in the Twitter’s policy on sharing spatial 
information in 2015 [14], then around 10% after that.

Tweets’ locations were assigned to the different munic-
ipality borders for further estimation of the mobility pat-
ters. Tweets with exact coordinates were mapped to the 
municipality that contained them. In the bounding box 
cases, each nearby municipality (m) was given a match 
score for a given bounding box (bb) (score = intersec-
tion (bb, m)/union (bb, m)), then the municipality with 
the highest score was picked. Using this score instead of 
a simple overlap test solved some challenges for concave 
municipality shapes and even for municipalities that sur-
rounds others.

A random sample was taken to verify the matching 
between the bounding box and the municipality. This 
was possible as some Tweets were also place-referenced, 
which could be a town or a city, within a municipality. 
Tweets with an accuracy of less than 0.3 out of 1 were 
disregarded for the estimation of the mobility patterns, 
corresponding to 1.5% of the sample.

There are several studies applying similar but slightly 
different methods to detect the origin and destination of 
the trips. Some studies use the frequency counts to iden-
tify home or work location of the user, e.g. the most fre-
quent tweet location as ‘home’ and second most frequent 
location as ‘work [60] or a combination of frequency and 
temporal (day and night) filtering [4, 67]. In this study, 
we defined the night as between 21:00 and 07:00, and 
identified residence location at municipality level as the 
location of most of the Tweets during the nights and 
weekdays i.e. between 21:00 and 07:00 from Monday to 
Thursday. This was estimated by each year, as some users 
might have changed their residence. Only users who did 

Table 1  Characteristics of extracted data from the Twitter 
streaming API

User ID

Username

Residence location

Biographical description

Public metrics (followers, 
following, Tweets count)

Tweet ID

Language

Text

Creation time

Spacio-temporal info ID (city level)

Bounding box coordinates

Exact coordinates

Table 2  Data cleaning process in relation to number of Tweets and users (2012–2022)

Data cleaning stage Number of Tweets Number of users

0. Initial database 12.727.651 224.096

1. Tweets without coordinates 12.704.759 224.096

2. Tweets with uncertain coordinates 12.503.686 224.096

3. Manually identified bots 12.235.661 224.088

4. Users with less than 5 Tweets 12.006.844 93.286

5. Users posting always identical messages 12.006.457 93.271

6. Users posting always from the same location 11.943.537 92.785
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at least one trip in the observed year and posted Tweets 
during the night period were considered. The residence 
location was estimated for 84% and 76% of the users for 
the years 2014 and 2019, respectively.

4.2 � Trip patterns
In the Twitter data, there is no explicit information about 
trip patterns, therefore some assumptions were taken.

Using a well-known trip-extraction procedure [67, 84], 
two subsequent Tweets from the same user were consid-
ered a trip if they were posted from two different munici-
palities and were within a given time limit. A person 
might have started the real trip at one municipality but 

not posted a tweet until passing another, which would 
give a bias starting point, the same could happen at the 
destination, however, the likelihood of this was assumed 
to be low. In this study, the time limit was set to 12  h 
to allow the long trips that are possible within Norway. 
Terroso-Saenz et al. [84] assumed this limit to be 24 h in 
Spain.

The average number of trips per user per day was esti-
mated as the total number of trips per studied period 
by the total number or users travelling per day in such 
period. Only Twitter users that travelled were included 
in the estimation, i.e. non-trips users where disregarded. 
The average trip distance was estimated based on the 

Fig. 1  Example of georeferenced Tweets, exact and bounding box coordinate (background map source: OpenStreetMap)
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distance between the centroids of the origin and destina-
tion municipalities per trip.

4.3 � Demographic information
In addition, the biography description of each user was 
analysed to identify the gender of the user. Although, 
there are methods in the literature utilizing deep neu-
ral networks or traditional machine learning to identify 
demographic aspects of Twitter users, these methods 
require semantic analysis of the tweet texts [75, 90], 
which is beyond the scope of this paper. Using a word 
detection method in the bio description of the users and 
a manual quality check, the gender of about six percent 
of the users was identified (within this share 56% were 
men and 44% were women). Yet, the lack of more detailed 
demographic information is a challenge to ensure the 
representativity. Nevertheless, the use of Twitter in Nor-
way is spread among the age groups: 41% 18–29  years 
old, 31% 30–19  years old, 31% 40–49  years old, 27% 
50–59  years old, and 12% more than 60  years old, with 
about 1.1 million Twitter users in 2021 [78].

4.4 � Validation
To validate the sample, the residence location of the users 
to the population census and to the stated residence loca-
tion in the travel survey for the years 2014 and 2019 was 
compared. This method was previously recognised in 
some studies [66, 70], whilst other studies compare the 
density distribution of Tweets to population to assess 
their validity [25], Jiajun [52, 53].

To make the population distribution comparable, 
the respondents or the users in each municipality were 

divided by the total number of respondents or by the 
total number of users. Figures  2 and 3 represent these 
distributions, as well as the sample number and the num-
ber of municipalities included.

Validation estimations show that the residence location 
distribution of the users resembles the population distri-
bution from the census, data for 2014 covered 360 out of 
422 municipalities, where more than 97% of the popula-
tion lives. In 2019, there were less Twitter data, probably 
due to the sharing information policy [88], but still the 
estimated residence locations included 301 municipali-
ties, where more than 92% of the census population lives, 
covering more territory than the national travel survey.

5 � Results
In this paper the origin–destination (OD) trips between 
municipalities from the travel survey and from the Twit-
ter data for the years 2014 and 2019 were estimated to 
assess if social media data could complement traditional 
data collection methods. It is important to acknowledge 
the disparity in trip definitions between the two data 
sources, rendering a direct comparison inappropriate.

Trips from the travel survey were already reported 
in the data by respondents, both short and long trips 
between different municipalities were considered. Trips 
from the Twitter data were estimated as previously 
described in Sect. 4.1. The number of OD trips between 
municipalities, the number of persons performing these 
trips, and the average distance of the trips, are described 
in Table 3. Figures 4 and 5 visually represent the OD trips 
and the distance distribution with respect to the number 
of trips for 2014 and 2019 respectively.

Fig. 2  Population distribution in 2014 of a census, b Travel survey, c Twitter (background maps source: OpenStreetMap)
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In 2014, almost 7500 Twitter users did more than 
45,000 OD trips, with an average trip length of 83 km. In 
the travel survey, the reported trips were not evenly dis-
tributed along the year, resulting in less information for 
some months. Even if not directly comparison should 
be made, the mobility behaviour between the large cit-
ies was similar, although there was a slight underrepre-
sentation of trips between the capital and municipalities 
50–300 km towards the west in the Twitter data.

In 2019, more than 4000 Twitter users performed more 
than 23,000 OD trips, with an average trip length of 
84 km. Even if less trips were represented, compared to 
2014, the mobility patters remained similar. On the con-
trary, the mobility behaviour reported in the travel survey 
was different between 2019 and 2014 as most of the trips 
were shorter, i.e. the average distance was less than 60 km 
and concentrated in the densely populated areas of the 
country, where most respondents lived.

Twitter data was further explored for the whole data-
set 2012–2022. In Fig. 6 the average number of OD trips 
between municipalities per user per day are displayed. 
The average was around 1.5 trips per user per day, the 

yearly variations within the studied period were lower 
than 5%, presenting a steady data source, although unable 
to correlate this metric to external trends.

In Fig. 6 the yearly distribution of the average trip dis-
tance is also shown, in this case there were three trend 
changes, which could be related to four time periods. (1) 
Prior to 2013, the trip distance remained relatively con-
stant. However, due to the limited data spanning only two 
years, statistical significance could not be determined.

(2) Between 2013 and 2017, there was a notable upward 
trend in the average trip distance, rising from 76 to 
109  km, indicating a growth of over 40%. This increase 
could potentially be attributed to a shift in trip destina-
tions to municipalities located farther away. (3) Con-
versely, from 2017 to 2020, an opposite trend emerged, 
with a decline observed in average trip distances during 
these years. (4) Starting from 2020, the trend of decreas-
ing trip distances persisted, with the lowest values along 
the period, although the decreasing trend had a less pro-
nounced decline compared to previous periods.

In Fig.  7 the monthly distribution is represented 
for the studied periods. In general, the average trip 

Fig. 3  Population distribution in 2019 of a census, b Travel survey, c Twitter (background maps source: OpenStreetMap)

Table 3  Number of persons, OD trips and average distance for both datasets

2014 2019

Travel survey Twitter Travel survey Twitter

Number of respondents/users 20,317 7428 15,721 4003

Number of OD trips 56,079 45,725 32,898 23,947

Average distance (km) 121 83 53 84



Page 9 of 15Díez‑Gutiérrez et al. European Transport Research Review           (2024) 16:49 	

distance is slightly larger in the winter (January-March) 
and summer (July–September) periods, which could be 
associated to vacation periods and more trips to cabin 
areas.

The temporal data distribution allowed to detect a 
significant trend change in September 2017, associated 
to a significant increase in the average trip distance, 
although the number of OD trips and unique users for 
the same months in previous years were similar, when 
taking the spatial distribution into account, several 
origins and destinations were more popular in Nord-
land municipality, shown in Fig. 8 with yellow borders, 
where the Lofoten islands are situated among other 
touristic areas.

6 � Discussion
Although this study only used Tweets from Norway, the 
data is available worldwide, and could be relevant for any 
other country or region. The number of georeferenced 
Tweets in Norway for a ten year period was only six 
times more than the Tweets in Australia for 1 week [63], 
and less than double than for 9  months in Spain [84], 
which is among the 20 leading countries based on Twitter 
users, still with ten and seven time less users than United 
Stated and Japan, respectively [77]. This emphasises the 
relevance for this data source in other countries.

A potential limitation of this study is the number 
of georeferenced Tweets, as an average of 1.5 trips 
between municipalities per user and per day, might be 

Fig. 4  OD trips and histogram of distance for Travel Survey and Twitter data for 2014 (background maps source: OpenStreetMap)
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Fig. 5  OD trips and histogram of distance for Travel Survey and Twitter data for 2019 (background maps source: OpenStreetMap)
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low compared to other data sources, which may chal-
lenge the trend detection. Despite that, a slight reduc-
tion of the number of trips and the average trip length 
was detected from 2020, when the pandemic restric-
tions started. Zhong et  al. [98] also detected that in 
London users were making fewer trips, although these 
were longer. In the United Stated, Twitter data was also 

used as a source to detect mobility changes, although 
different trends were found between states [41].

The movements in this study were limited to move-
ments between municipalities, this aggregation might 
limit the full exploitation of the data, although few tweets 
were georeferenced with exact coordinates. Recent 
research is investigating how to estimate coordinates of 
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Tweets without geographically identified data, which 
could expand the data sample at any location [62], as 
well as allowing more detailed analyses. Thus, further 
work towards a finer spatial distribution is desired, which 
could also improve the detection of the trip purpose. 
Communing trips could also be further explored as in 
McNeill et  al. [60] and Osorio-Arjona and García-Pal-
omares [65], given that the residence location was esti-
mated, however several commuting trips are within the 
same municipality.

Twitter data presented a more stable data source than 
the national travel surveys along both years with similar 
population distribution and average trip length. Some 
previous work comparing the mobility patterns to travel 
surveys confirmed their similitudes, for New York city 
[46], and for California, where similarities in spatial dis-
tributions and trip lengths were also detected [48]. How-
ever, the latent mobility behaviour could not be captured 
in Spain [84]. Nevertheless, the behaviour could not be 
associated to different sociodemographic groups of 
population. Simple analyses were used to detect the user 
gender, resulting in a similar share than the travel survey, 
although further research should focus on expanding 
both the estimated sample and to other features, such as 
age.

The Norwegian travel survey is conducted quadren-
nially, covering varying time periods in each cycle. The 
2014 survey collected data from January to October, with 
limited responses post-August, whereas the 2019 survey 
encompassed the entire year. Additionally, respondents 
only report trips from the previous day, resulting in the 
absence of panel data. Consequently, capturing and ana-
lysing longitudinal trend changes becomes challenging. 
National travel surveys reflect the mobility patterns of 
the population residing in the country, i.e., mobility pat-
tern of the non-residents is never included. As a result, 
in some areas the real traffic volumes generated by the 
people movements differ far from those reflected in these 
surveys, especially in tourist areas. Social media data 
could potentially improve the representation of the non-
resident’s mobility as well as serving a complementary 
role for national travel surveys for residents’ travel behav-
iour. It could also aid in uncovering trends through senti-
ment analysis of the post contents.

7 � Conclusion
This paper contributes with the assessment of the fea-
sibility of integrating user-generated data with conven-
tional travel surveys to enhance the estimation of travel 
behaviour and improve the development of transport 
models. Twitter data presented a broad and stable spatial 
and temporal distribution of users’ movements despite 
having limitations in relation to the socio-demographic 

information of the users, compared to the travel sur-
vey. In addition, the availability of these data in real time 
could serve as a tool to detect trend changes, as conse-
quence of diverse policies or other events at micro or 
macro level, such as recessions, pandemics, or wars.

Further work should concentrate on reducing the spa-
tial location of the data from municipality level to spatial 
units corresponding to the transport models, as well as 
on improving the detection of the socio-economic char-
acteristics of the users. These will ensure representativity 
and provide more detailed information towards a poten-
tial data fusion.

Integrating user-generated data with traditional travel 
surveys has significant policy implications. This approach 
enhances data accuracy and granularity, providing policy-
makers with more precise insights into travel behaviour, 
and rapid detection of trend changes. This integration 
aids in further development of transport models to evalu-
ate policy impacts and targeted interventions and might 
be a cost-effective alternative to complement traditional 
surveys, allowing for more frequent and updated data 
collection.
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