
ORIGINAL PAPER

European railway traffic management system validation
using UML/Petri nets modelling strategy

Sana Jabri & El Miloudi El Koursi &
Thomas Bourdeaud’huy & Etienne Lemaire

Received: 4 May 2009 /Accepted: 26 March 2010 /Published online: 17 April 2010
The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract
Purpose The European Union set up a European manage-
ment system for rail traffic: the ERTMS system to ensure,
in full safety, train circulation on different European
networks. As the full deployment of this system is long
and expensive, evolutions are necessary and raise other
technological challenges. The goal is to determine how to
use ERTMS specifications to produce test scenarios. This
paper presents methods, models and tools dedicated to the
generation of test scenarios for the validation of ERTMS
components based on functional requirements.
Methods The development of ERTMS system requires ade-
quate methods for modelling and checking its behaviour.
Evaluation and certification of the system can be done by
generating test scenarios applying formal methods. The Unified
Modelling Language (UML) is a widely accepted modelling
standard in industry. However, it is a semi-formal language and
it does not allow verification of system behaviour. In this case,
formal models like Petri Net can be used.
Results These methods are used in order to formalize ERTMS
specification. Tests scenarios are generated on the basis of Petri
net models. One scenario is considered like a firing sequence in

the reachability graph of the Petri net. Then, test scenarios are
applied on ERTMS platform simulator in order to check the
components and to give test verdicts.
Conclusions Finally, the approach, developed in this paper,
has been applied to ERTMS components in order to
demonstrate the validation and certification costs reduction
and also to minimize the upgrade and retrofit constraints
and validation cost.

Keywords ERTMS system . UML . Petri net . Model
transformation . Test . System validation

1 Introduction

On international trains, onboard equipment for the various
national control command systems must be installed. This is
becoming more and more expensive due to the increasing
sophistication and expense of equipment. A train crossing
several European countries must switch to the control-
command systems in the country it crosses. So, in order to
remove these obstacles through the European rail network, the
European Commission encouraged the development of a
signalling and management system common to all member
states: the ERTMS system (European Rail Traffic Management
System). This will, therefore, reduce the validation and
certification costs of ERTMS component implementation in
different member states. The objective of this research work is
to facilitate the interoperability through the mutual recognition
of the ERTMS components between the member states by
proposing test scenarios enabling cover checking.

Being a real-time distributed system, ERTMS can be
considered as complex industrial system. It also uses a
great number of actors and, as it is a railway signalling
system, it must comply with very strict safety con-

S. Jabri (*) : E. M. El Koursi : E. Lemaire
National Institute of Transport and Safety Research, ESTAS,
Lille, France
e-mail: sana.jabri@inrets.fr

E. M. El Koursi
e-mail: el-miloudi.el-koursi@inrets.fr

E. Lemaire
e-mail: etienne.lemaire@inrets.fr

T. Bourdeaud’huy
École Centrale de Lille,
Lille, France
e-mail: thomas.bourdeaud_Huy@ec-lille.fr

Eur. Transp. Res. Rev. (2010) 2:113–128
DOI 10.1007/s12544-010-0030-5

straints. It is then necessary to check and validate the
ERTMS system in order to give confidence to all parts
[17]. These checking activities suggest various techniques
such as: static analysis, model checking, and conformity
test. Conformity tests verify if an implementation satisfies
the behaviour described in the specification. This method
detects the errors of implementation by performing
sequences of actions; in order to determine whether
system behaviours are those initially specified. This type
of test was developed for the validation of communication
protocols [29]. Conformity tests have three steps: (1) the
derivation of tests scenarios which aims to generate
abstract test scenarios on the basis of the protocol
specification, (2) allows the implementation of test
scenarios in order to make them executable for a
particular implementation, and (3) apply the implemented
test scenarios in order to determine the conformity verdict.

Regarding ERTMS specifications, FRS (Functional
Requirement Specifications) and SRS (System Requirement
Specifications) contain functional requirements at system
level, which place the core of this study in the functional
testing field. However, the structure of the specifications
(inputs, outputs, requirements) is not formal enough and,
therefore, not appropriate to the preparation of test
scenarios. The objective of this work consists in producing
“standard bricks” which will describe and specify each
requirement. Then, a transformation process allows obtain-
ing formalised models which will be used in this work. This
formalisation requires analysing, classifying, and structur-
ing of the specifications.

The remainder of the paper is organised as follows:
Section 2 presents the UML (Unified Modelling Language)
modelling of ERTMS/ETCS specifications. In Section 3,
the transformation of the UML model into Predicate
Transitions Petri Nets is introduced with an application
example. Finally, before conclusion, the generation of test
scenarios on the basis of the Petri Net model is described.

2 ERTMS system

The ERTMS system aims at remedying for the fragmenta-
tion of the European rail network, identified as a major
obstacle to the development of international rail traffic [19].
In fact, the principle of the system is to standardize several
signalling systems currently coexisting in Europe and to
produce an economic and technical solution to railway
interoperability [7]. It is defined as “The aptitude of the
conventional transeuropean railway system to allow sure
circulation and without interruption of trains by achieving
the necessary performances for these lines. This aptitude is
based on the whole of the lawful, technical and operational
conditions which must be met to satisfy essential require-

ments” [8]. From a functional point of view, interoperability
is characterized by four major points: At the borders, the
train should not change locomotives, the train should not
stop, it should not have a change of control agent and the
driver should not carry out control actions other than
ERTMS standardized ones [13].

2.1 ERTMS components

The ERTMS system has two basic components [35]:

▪ ETCS(European Train Control System) allows transmit-
ting the permitted speed and movement information to the
train driver and constant monitoring of the driver’s
compliance with these instructions. An on-board computer
compares the train speed with the permitted speed and
brakes automatically when it is necessary.

▪ GSM-R (GSM for Railways) is the radio system used
for information transmission between the track and the
train. It is based on the standard GSM but using different
frequencies specific to rail.

Together, these components form the new signalling and
management system for Europe enable interoperability
throughout the European Rail Network.

2.2 ERTMS characteristics

The ERTMS system has to replace many railway signalling
systems that currently exist in Europe. To deal with the very
different configurations in the signalling equipments in the
member states, ETCS has been conceived with three so-
called application levels, which are a way to express the
possible relationships between track and train [35].

In application level 1 (Fig. 1), the track transmits to the
train information allowing it to calculate constantly its

Fig. 1 ERTMS level 1 and level 2

114 Eur. Transp. Res. Rev. (2010) 2:113–128

maximum authorized speed. This information is transmitted
to the trains by means of Eurobalises placed along the track
and connected to the existing signalling system. The train
position is detected by traditional trackside occupancy
controlling devices, which are linked to the interlocking.
The track is considered as a set of structured fixed block
sections [Web1]. In application level 2 (Fig. 1), the ETCS
uses a continuous radio communication mean, the GSM-R,
to exchange information between the track and the train.
The interlocking transfers the status of trains routes to
the RBC (Radio Block Centre) which, in turn, calcu-
lates the correct movement authorities and the safe
speed instructions it transmits to trains. In this level,
balises are mainly used for odometry purposes and the
train position is detected by the track [Web1]. Com-
pared to Level 1, the track-train communications are
done by GSM-R. Finally, in application level 3, RBC
uses the GSM-R transmission between the track and the
trains like for Level 2. But at level 3, the track receives
the train location and the train integrity from trains
[Web1]. Compared to level 2, this configuration offers a
great simplification with cost reduction of the equipment
on the track and an independence from structured fixed
block sections by using moving blocks. Required for any
new line in Europe, this paper focuses only on applica-
tion level 2 of ERTMS [35]. For this application level, as
any other level, the ETCS is distributed partly trackside
and partly on board the trains (Fig. 2).

The Functional Requirement Specifications (FRS)
[32] and the System Requirement Specifications (SRS)
[33] constitute the system level ERTMS specifications
[35]. They are defined in a text format. The FRS
identifies the functions required for technical interoper-
ability. The SRS define the system requirements for the
European Train Control System of ERTMS. They are the
translation of the mandatory functional requirements
defined in the FRS.

2.3 ERTMS implementation

Projects for ETCS implementation on lines exist at different
stages of advancement in almost all European countries
[36]. So, by the end of 2008, commercial operation of
ETCS was in existence on a total of about 2,650 km of lines
in Austria (70 km), Bulgaria (440 km), Germany (135 km),
Hungary (210 km), Italy (470 km), Luxembourg (160 km),
Netherlands (110 km), Spain (970 km) and Switzerland
(80 km) as shown in the following table (Table 1).

Since the beginning of the implementation of the
ERTMS/ETCS concept, the migration in the different
countries has not been as easy as planned and doesn’t
follow the original planning [34]. The reasons for these
discrepancies [37] are established in the following:

✓ The heritage of the past. Each National Railway has its
own constraints, then, it seems to be difficult to
organise the railway traffic around them. Indeed,
despite the huge amount of similitudes, the details
vary considerably and the safety is linked to these
details.

✓ A timing problem. The scheduling and the time frame of
the ERTMS deployment along the corridor is driven by
the national Member State considerations as budget
allocation, law application process, or what has been
established below.

✓ An organisational problem. The introduction of ERTMS
system and more generally the opening of the Railway
Market has introduced new stakeholders, a new split of
responsibilities and new contractual or other type of
relationship between them. The speed of the migration
depends on a clear definition of the role of each
stakeholder, their corresponding scope and activity and
the coordination of their collaboration.

European Commission imposes to take into account
the return of these experiences in order to review the

Fig. 2 ERTMS architecture

Eur. Transp. Res. Rev. (2010) 2:113–128 115

migration strategy and adapt it to the reality of the field
for the deployment of the corridors. Indeed, the Memo-
randum of Understanding (MoU), signed at July 2008,
between the European Commission and the European
Railway Associations (CER – UIC – UNIFE – EIM –
GSM-R Industry Group – ERFA), concerns the strength-
ening of cooperation for speeding up the deployment of
ERTMS. Our work belongs to this European approach.
Indeed, in the chapter 5 of the MoU, testing procedures
are considered as a fundamental factor to successfully

implement ERTMS. The Parties acknowledge and wel-
come the efforts made by the suppliers in the field of
interoperability testing between different suppliers in-lab,
on site or in dedicated test facilities.

3 Methodology and objectives

The industrial context of this study imposes strict safety
requirements. The proposed methodology consists in

Table 1 Lines with ETCS in commercial operation [36]

Country Line Length (km) ETCS level Year Supplier

Austria Vienna to Hungarian border section
Hegyesschalom

67 1 2006 Siemens / Thales

Bulgaria Sofia – Plovdiv – Burgas 440 1 2001 Thales

Germany Berlin – Halle/Leipzig 135 2 2005 Siemens / Thales

Hungary Hodos – Zalacséb-S. 23 1 2004 Thales

(Vienna-) Hegyeshalom – Budapest Thales 1 2007 Thales

Italy Milano – Bologna 182 2 2008 Ansaldo STS/Alstom

Torino – Novara 90 2 2006 Ansaldo STS/Alstom

Roma – Napoli 200 2 2005 Ansaldo STS/Alstom

Luxembourg 60% of the CFL network, including Luxembourg station 162 1 2005 - 2008 Thales

Netherlands Betuwe Line Rotterdam – Zevenaar 110 2 2007 Alstom

Spain Lérida – Roda 91 1/2 2006 Thales

Córdoba – Malaga 155 1/2 2006 Invensys

Roda – Barcelona 99 1/2 2008 Thales

Madrid Valladolid 180 1/2 2007 Thales

Madrid Lérida 440 1/2 2006 Ansaldo STS

Switzerland Mattstetten – Rothrist (Olten – Berne) 45 2 2007 Thales

Löstchberg base tunnel between Frutigen –
Visp (Bern- Brig)

35 2 2007 Thales

Total length of lines with ETCS in commercial operation 2,644 km

Fig. 3 Methodology

116 Eur. Transp. Res. Rev. (2010) 2:113–128

generating conformity test scenarios from the specification.
This specification has an informal description, so it is not
appropriate for the test scenarios generation. Then, we need
to model and formalize this specification.

As shown in Fig. 3, the UML (Unified Modelling
Language) is used to model specifications producing then
semi-formal models. In fact, it is an object-oriented modelling
language. The second objective of our work is to develop the
model transformation of our semi-formal models to formal
models by using the transitions systems like Petri nets. Petri
nets formalism is chosen because it is a powerful graphical
and mathematical tool. It allows the dynamic behaviour
modelling of reactive and concurrent systems. The third
objective of this research is the automatic generation of test
scenarios from formal models taking into account require-
ments defined in specification. These test scenarios allow
checking the compliance of the Implementation Under Test
(IUT) with specification. The test scenarios execution on a
simulation platform produces the test verdicts.

4 Modelling and transformation technique

The ERTMS specifications constitute the basis of this research.
The description of these specifications is not formal, hence the
need to build formal and standard models. At a first time,
SADT (Structured Analysis and Design Technique) method
was proposed to organize the specifications because it is a
functional analysis method [IGL, 89] and commonly used in
railway sectors. This method provides a static, clear, and precise
architecture of the ERTMS specifications. However, carrying
out checks of the ERTMS/ ETCS system appears to be difficult
using SADT models. Indeed, the SRS are evolving while
SADT models are static and cannot be easily reused. So, a
migration from this functional modelling to an object oriented
one is proposed in order to apprehend the dynamic behaviour of
the system and to allow the re-use of models. The selected
object formalism is UML (Unified Modelling Language).

4.1 UML modelling approach

The Object oriented analysis (OOA) applies object modelling
techniques to analyse the requirements for a system. OOA
views the world as objects with data structures and behaviours.
The idea that a system can be viewed as a population of
interacting objects, each of which is an atomic bundle of data
and functionality, is the foundation of object technology and
provides an attractive alternative for the development of
complex systems. This is a radical departure from prior
methods of requirement specification, such as functional
decomposition and structured analysis and design [38]. As
opposed to the traditional data or functional views of systems,
OOA can yield the following benefits: maintainability through

simplified mapping to the real world, which provides for less
analysis effort, less complexity in system design, and easier
verification by the user; reusability of the analysis artefacts
which saves time and costs; and, depending on the analysis
method and programming language, productivity gains
through direct mapping to features of Object-Oriented
Programming Languages [1]. Numerous OOA methods have
been described since 1988. They include: Shlaer-Mellor [30],
Jacobson [14], Coad-Yourdon [6], Booch [5] and Rumbaugh
[28]. In 1997, Rumbaugh, Booch and Jacobson gathered
their methods to produce the Unified Modelling Language
(UML) which has became the standard modelling language
used in object-oriented analysis and design.

The main objective of this research is the generation of
test scenarios to check the behaviour of an on-board
ERTMS component (EVC: European Vital Computer)
compared to specifications. Then, it is necessary to model
the dynamic view of the ERTMS system by using different
behavioural UML diagrams. Among these diagrams, the
State Machines are especially suitable for modelling the
dynamic view of systems. Sequence and collaboration
diagrams are used to model single cycles inside the system
and, therefore, they cannot be directly useful for investiga-
tion of the whole behaviour. UML State Machines are
widely accepted in industry because of the availability of
suitable software tools. They contain simple states, com-
posite states, transitions, pseudostates [25]. A state has
several parts, namely Name (textual string for identifica-
tion), Entry activity (action always executed upon entering
the state), Do activity (internal action in the state), Exit
activity (action always performed whenever the state is left,
regardless of which transition is taken). In our work, Entry
and Exit activities are not used (Fig. 4). Concerning the
Pseudostates, which are transient vertices with special
semantics, they can be used to connect multiple transition
paths into more complex ones. In our work, pseudostates
allowed include initial state and choice. Join and fork are
not used because we have no parallel scenarios in our case
study. A transition has five parts, namely Source state (state
affected by the transition), Event Trigger (event whose
reception makes the transition fireable, Fig. 4), Guard

Fig. 4 An example of a simple
StateMachine Diagram

Eur. Transp. Res. Rev. (2010) 2:113–128 117

Condition (Boolean expression that is evaluated before a
transition fires. The transition can fire only if the condition
evaluates to true, Fig. 4), Action (executable atomic
computation, Fig. 4), and Target state (state that becomes
active after the completion of the transition).

In this study, ERTMS system is described by a set of
State machines (that describe the behaviour of objects) and
that Sequence diagrams are used to emphasize specific
patterns of interactions among State machines. The pro-
posed analysis is based on the combined use of Sequence
diagrams and State machines because of the consistency
between these two types of UML diagrams. For instance,
components of the Sequence Diagram are those of State
machines, or are a proper subset.

4.2 UML model transformation into Petri Nets

In the following, we explain our approach for the
transformation of UML State Machines and UML Se-
quence diagrams into Petri Nets aimed at test scenario
generation. The translation of both State machines and
Sequence diagrams to Petri nets is automatic. However, we
are aware, that at this point, we cannot claim completeness
for transforming all State Machine elements and constructs
because we transform only elements used in our case study.
Indeed, there are some ambiguities for which we have made
a specific choice, and also some characteristics that we have
decided not to translate. So, the translation proposed here
provides a formal semantics for a subset of the State
machines (and the same is true for Sequence diagrams).
The approach is based on a decomposition of UML State
Machines into its basic elements, such as states, pseudos-
tates, and transitions. For each element, transformation
rules from State Machines into Petri Net fragments are
presented. Thereby, time constraints on transitions are taken
into account. For Sequence diagrams, they are used to
guide the connection of these Petri Net fragments,
providing a single Petri net for the system under study.

4.2.1 Background

King and Pooley used the Generalized Stochastic Petri Nets
(GSPNs) [22] in [16, 27] in order to represent the behaviour
of StateCharts. Indeed, each state is mapped into a place
and each state transition becomes a transition in the Petri
Net. The resulting sub-models are combined using UML
collaboration diagrams. In our study, the combination of
our sub-models is done using the UML sequence diagram.
Another approach for model transformation of UML
diagrams is proposed by Merseguer [23] and Bernardi et
al. [3]. In their study, extended UML diagrams are
translated into labelled GSPN modules, which are subse-
quently merged into a complete model. In [11] an extension

of UML models with probabilistic choice and stochastic
timing is also proposed.

In [31], the authors proposed to model the behaviour of
technical systems by means of UML State Machines and
the extending UML Profile for Schedulability, Performance,
and Time (SPT). A model transformation technique of
UML diagram into a Stochastic Petri Net is established in
order to measure performance by simulation or numerical
analysis. In [21], Lopez-Garo, Merseguer and Campos
proposed to model the dynamic view of the system by
using UML activity diagrams. Since UML defines “infor-
mally” their semantics, they choose to translate each
diagram into a Labelled Generalized Stochastic Petri net
(LGSPN), an extension of the well-known GSPN formal-
ism [22], gaining a formal semantics for them.

Bernardi, Donatelli and Merseguer used UML Sequence
Diagrams and Statecharts for the validation and the
performance evaluation of systems in [3]. They consider
that a system is specified as a set of Statecharts and that
Sequence Diagrams are used to represent “executions of
interest”. It is not possible for them to apply mathematical
techniques directly on UML diagrams because it lacks a
formal semantics. So, they propose an automatic translation
of Statecharts and Sequence Diagrams into Generalized
Stochastic Petri Nets, and a composition of the resulting net
models suitable for reaching a given analysis goal. Like this
study, the contribution of our work is to propose a formal
translation of two types of UML diagrams and to establish
relationships between them according to the UML meta-
model. Since the main characteristics of our approach are
that the translation is automatic using a model transforma-
tion technique, that consistency between States machines
and Sequence Diagrams is taken into account and the
model transformation is meant also for automatic test
generation purposes.

4.2.2 Petri net formalism

Petri nets are a promising tool for describing systems that
are characterized as being concurrent, asynchronous,
distributed, parallel, non deterministic, and/or stochastic.
As a graphic tool, it is used like as a means of
communication and it is similar to the state machine
diagram.

Définition 1 A Petri net R is a quadruple <P, T, A, M>
where:

▪ P denotes a finite set of places (containing tokens);
▪ T is a finite set of transitions (which specify how tokens

move from one place to another);
▪ W ∈ (P×T) ∪ (T×P) →N is the weighted flow relation

representing the arcs. It associates to each pair (place,

118 Eur. Transp. Res. Rev. (2010) 2:113–128

transition) or (transition, place) the weight of the
corresponding arc in the net;

▪ Minit: P → N+ is an initial marking in R (tokens
contained in the initial places).

We chose this class of Petri nets because of the similarity
with the UML state machines. However, in order to translate
our state machines diagrams to Petri nets, we added some
elements to the previous definition. In deed, the Petri net used in
our study is defined in the following Petri net Meta-model.

Petri net Meta-model The Petri net is considered like the
target formalism in the transformation technique. It consists
of places, transitions, and arcs that connect them. Input
arcs connect places with transitions, while output arcs start
at a transition and end at a place. In addition, tokens are
used in places in order to simulate the dynamic and
concurrent activities of systems. The transitions model the
activities which can occur, thus changing the state of the
system. They are only allowed to fire if they are enabled,
which means that all the preconditions for the activity must
be fulfilled. As a mathematical tool, it is possible to set up
state equations, algebraic equations, and other mathematical
models describing the behaviour of systems [24]. In order
to comply with UML State machine, the Petri net is
enriched by the addition of operators and predicates. A
predicate is associated to the transition and allows express-
ing of a condition guard. An operator allows performing of
an action and is also associated to a transition.

The description of the elements composing the Petri net
constitutes the meta-model. A meta-model is a model that
defines the expression language of a model, or the
modelling language. The meta-modelling is an activity

which allows defining of a modelling language meta-
model. In the Fig. 5, we present a simple meta-model for
the Petri net developed in our study.

4.2.3 Transformation rules

As already said in the previous paragraph, UML provides
several types of diagrams which allow capturing of
different aspects and views of the system. The abstract
syntax of each modelling notation is described by means of
meta-models, which are graphically represented with Class
Diagrams, together with textual comments. The approach
adopted for the transformation of State machines and
Sequences Diagrams consists at first in translating the two
UML notations into Petri Net separately, starting from the
metamodel of the UML State Machines. The translation of
the Sequence Diagrams is used to connect the different
elements obtained after State machines translation. The
Resulted Petri net model is then built on the basis of the
UML State machine and offers the possibility to check all
existing paths within the states graph, where one path
constitutes one scenario to be tested [26].

The model transformation allows translating a model Ma
into a model Mb in accordance with their respective meta-
models MMa and MMb. These meta-models may be
identical in the case of endogenous transformation or
different in the case of an exogenous transformation. On
the other hand, the model transformation can be vertical
when there is a move from one abstraction level to another.
But if we keep the same abstraction level, the transforma-
tion will be horizontal. The transforming relationship of a
model Ma consistent with its meta-model MMa into a

Fig. 5 A simple Petri net
metamodel

Eur. Transp. Res. Rev. (2010) 2:113–128 119

model Mb consistent with its meta-model MMb through
a transformation model Mt can be described as follows:

Mb f MMa; MMb; Mt; Mað Þ:
In this paper, we transform models in the same

abstraction level; it is therefore a horizontal transformation.
This transformation is also exogenous because that the
UML meta-model and the Petri net meta-model are
different. The translation between the source model and
the target model needs some rules to match the elements
modelled in UML to other elements, which compose the
Petri net. To formalize this transformation [20], the first
step is that the structure, so called metamodel, of both UML
and Petri Net models must be known. The UML meta-
models of the State machine and Sequence diagram
metamodel are available in [25]. Figure 5 shows the Petri
net meta-model [INRIA, 05]. Based on these meta-models,
the second step consists in defining some rules to match the
elements modelled in UML to elements composing the
Petri Net one (Fig. 6).

In the UML StateMachine Metamodel, a StateMa-
chine sm is basically composed of regions and pseudos-
tates. In particular, a region r∈sm.region is composed of
states, pseudostates and transitions (Fig. 6). A state s∈r.
states can be composed of regions in the case of
composite state. A state s can be also composed of s.
pseudostates, s.constraint, s.trigger and s.behavior. A
transition tr∈r.transtions is a complete response of sm to
a particular event instance tr.trigger. Firing of a transition
provokes a behaviour tr.behaviour to be performed. In the
Fig. 6, these UML elements are mapped to elements
which compose the Petri net metamodel (Fig. 5) in order

to transform the State machine diagram into a PrT Petri
net diagram. In the following we describe some trans-
formations rules between the State machine and the
Petri net.

A- Initial Pseudostate

Definition The initial Pseudostate is a state that defines the
starting point for the default state machine. It is represented
by a black circle. The outgoing transition from the initial
vertex may have behaviour, but not trigger or guard.

Rule A An initial Pseudostate is transformed into a place in
the Petri net with a token (Fig. 7). The place name is
composed by the modelled object name followed by “init”.

B- Simple State

Definition A simple state is a state that does not have
substates (i.e., it has no regions and it has no submachine
state machine).

Rule B1 A simple state without internal activity is trans-
formed into two places and a transition: a place that marks
the entrance to the state, another place that marks the exit of
the state and a transition between the two (Fig. 8). A simple
transition between the initial and the next state is translated
into a transition in the corresponding Petri net

Rule B2 A simple state including an internal activity (do
activity) is transformed like this: a place to enter the state, a
transition, a place that marks the beginning of the “do

Fig. 6 Mapping between the
UML State machine metamodel
and the Petri net meta-model

120 Eur. Transp. Res. Rev. (2010) 2:113–128

activity”, a transition with an operator that defines the
action to do in the activity, an exit place from the method
that marks the end of the action, a transition to the place
that marks the exit of the state.

C- Transition

Definition A transition leaving a source state has usually a
trigger event, a guard condition, an effect (action) and a
target state. Four types of transitions exist: external
transitions, internal transitions, entry transitions and exit
transitions. The most common type that we use in our work
is the external transition. This is a response to an event that
causes a state change or a self-transition, and a specified
effect. It is represented by an arrow from the source state to
target state, with other attached properties in text form
(Fig. 9).

Rule C1 A simple transition in the state machine is
transformed to a simple transition in the Petri net.

Rule C2 A transition with a trigger and an effect is
transformed like this:

✓ A trigger is represented in the Petri net by two places
and a transition: a first place to declare that the message
is arrived, a transition that allows variables assignment
(operator) and a place to declare that the message is
received (Fig. 10).

✓ An effect is represented in the Petri net by three
places and a transition: a first place to call the

action, a transition that allows variables assignment
(operator), a place to show that the message is sent
and a place to declare that the message is arrived
(Fig. 10).

Rule C3 A transition with a guard condition is transformed
into two transitions in the Petri net. A predicate is attributed
to each transition. The first predicate checks if the guard is
true and the second predicate checks if the guard is false
(Fig. 11).

D- Choice Pseudostate

Definition Choice vertices which, when reached, result in
the dynamic evaluation of the guards of the triggers of its
outgoing transitions. This realizes a dynamic conditional
branch. It allows splitting of transitions into multiple
outgoing paths such that the decision on which path to
take may be a function of the results of prior actions
performed in the same run-to-completion step. If more than
one of the guards evaluates to true, an arbitrary one is
selected. If none of the guards evaluates to true, then the
model is considered ill-formed. (To avoid this, it is
recommended to define one outgoing transition with the
predefined “else” guard for every choice vertex.)

Rule D In our study, the choice has two outgoing
transitions with two guards. So the choice is transformed
into two transitions in the corresponding Petri net. A
predicate is associated to each transition representing
guards of the state machine (Fig. 11).

4.3 Start Of Mission (SOM) Application

The ERTMS system is composed of two parts, on-track
and on-board equipment. It is necessary to consider two
system points of view in order to identify external actors.
In the first point of view, the considered system is the

Fig. 7 Transformation rule of initial Pseudostate

Fig. 8 Transformation rule of a simple state

Eur. Transp. Res. Rev. (2010) 2:113–128 121

on-board one, so actors are defined as driver, RBC, and
GSM-R. In the second point of view, the considered
system is the trackside one, so actors are defined as
trains (EVCs), traffic manager, and interlocking. This
allows defining system use cases which are a sequence
of actions carried out by the system and producing an
observable result for a particular actor. The first point of
view was chosen in order to comply with the research
aim and to check the EVC component. Therefore, a
complete use case must be modelled in order to use it for
verification and validation. The table of requirements
used to model this procedure is available in [33]. This
procedure is a use case for the on-board system and needs
to be detailed in a State machine diagram in order to
understand the dynamic behaviour of the EVC.

4.3.1 The UML modelling of SOM procedure

The procedure Start of Mission (SOM) allows the start
of a train and it is triggered by the driver in these
cases: Once the train is awake, or once shunting
movements are finished, or once a mission is ended,
or once a slave engine becomes a leading engine. The
common point of all these situations is that the ERTMS/
ETCS on-board is in Stand-By mode, but the Start of
Mission will be different, since some data may be
already stored on-board, depending on the previous

situation. Once the ERTMS/ETCS on-board equipment
is in Stand-By mode, the start of mission is not the
only possibility; the engine may be remote controlled
(sleeping). At the beginning of the Start of Mission
procedure, the data required may be in one of three
states: “valid” (the stored value is known to be correct)
or “Invalid” (the stored value may be wrong) or
“Unknown”. This refers to the following data: Driver
ID, ERTMS/ETCS level, RBC ID/phone number, Train
Data, Train Running Number and Train Position.

The State machine diagram presented in this section
(Fig. 12) describes the behaviour of the EVC during the
identification of SOM data.

4.3.2 The transformation of SOM model into Petri net

In order to apply the different transformation rules, we
choose at first, to transform a simple part of the UML State
machine (Fig. 12), the identification of the driver (Fig. 13).
In fact, the Start of Mission procedure shall be engaged
when the ERTMS/ETCS on-board equipment is in Stand-
By mode with a desk open and if no pending communica-
tion session and/or radio safe connection is established.
After, depending on the stored status of the Driver-ID, the
ERTMS/ETCS on-board equipment shall request the driver
to enter the Driver-ID (if the status of Driver-ID is
unknown) or shall request the driver to revalidate or re-

Fig. 9 Transition

Fig. 10 Transformation of a
simple transition

122 Eur. Transp. Res. Rev. (2010) 2:113–128

Fig. 11 Transformation rules of condition guard and choice

Fig. 12 A UML State Machine of SOM Data Identification [33]

Eur. Transp. Res. Rev. (2010) 2:113–128 123

enter the Driver-ID (if the status of the Driver-ID is
invalid). Then, the ERTMS/ETCS on-board equipment
shall check if the entered Driver-ID is valid or invalid. In
the case of a valid DI, the ERTMS/ETCS on-board
equipment updates the stored DI. In the case of a stored
valid DI, it is possible to check the status of the Train
running number (TRN).

The application of our defined transformation rules
allows obtaining the Petri Net shown in Fig. 14.

5 Test scenarios generation

5.1 Approach

A test scenario is considered as a firing sequence in the
Petri net. So, the test scenarios generation corresponds to
the generation of firing sequences in the reachability graph.
Various methods have been suggested to handle the PN
reachability problem. In this paper, we are interested in the
Petri net logical abstraction technique proposed initially by
Benasser [2]. This method consists of developing a
unique sequence of partial steps corresponding to the
total behaviour of the system. The proposal approach
was validated on several examples using logical con-
straint programming techniques. Numerical results using
Prolog IV have shown that the method can be more

effective than other generic solvers. However, the
practical resolution performance is limited by the
incremental search mechanism used: memory overflows
appear early when the size of the problem grows.

If we recall the definition 1 of Section 4.2.2, we add the
definition of the following matrices: Precondition (Pre: m×n),
Postcondition (Post: m×n) and Incidence (C: m×n).

8 p 2 P; 8 t 2 T; Pre p; tð Þ ¼ k,W p; tð Þ ¼ k;
8 p 2 P; 8 t 2 T; Post p; tð Þ ¼ k,W t; pð Þ ¼ k;
8 p 2 P; 8 t 2 T; C p; tð Þ ¼ Post p; tð Þ � Pre p; tð Þ:
In a Petri net, the markings of places represent the state

of the corresponding system at a given moment. This
marking can be modified according to the firing of
transitions. A transition t is firable for a marking m0

(denoted by m0 [t〉), when ∀ p∈P, m0 (p)≥W (p, t). If this
condition is satisfied, a new marking m1 is produced from
the marking m0 (denoted by m0 [t〉m1): ∀ p∈P, m1 (p)=m0

(p)−W (p, t)+W (t, p).
The reachability graph corresponds to the usual formal

representation of the behaviour of the net. The reachability
graph of a net R, denoted by G(R, m0), is defined by:

✓ A set of nodes A(R, m0) which represent all the markings
reachable by any firable transition sequence. Formally, A
(R, m0)={mf|∃ σ ∈ T (R, m0) s.t. m0[σ〉 mf };

Fig. 13 A UML state machine of driver identification

Fig. 14 The obtained Petri net of driver identification part after the UML model transformation

124 Eur. Transp. Res. Rev. (2010) 2:113–128

✓ A set of arcs, where an arc (mi, mj) labelled t
connects nodes representing the markings mi and mj if
mi [t〉 mj.

Practically, it is not possible to explore the reachability
graph exhaustively because of the well known problem of
combinatorial explosion: the size of the state-space may
grow exponentially with the size of a system configuration.
Many methods have been studied to master this explosion;
we cite the three main approaches:

✓ The first one consists of managing the combinatorial
explosion without modifying the studied reachability
graph. Classical approaches are graph compressions
and forward checking [9, 10].

✓ Other techniques construct a reduced reachability graph
associated to the original, based on some properties to
preserve [4, 12].

✓ The last ones are based on the state equation: we can
distinguish parameterized analysis and algebraic meth-
ods [18].

In the following section, we propose new approaches to
find firable transitions sequences leading to a target
marking. Our methods are based on the Petri net logical
abstraction and mathematical programming techniques.

5.2 Test generation

Benasser [2] proposed an algorithm to solve the reach-
ability problem using the logical abstraction and constraint
programming techniques. This algorithm iterates the num-
ber of partial steps used, adding one new step at each
iteration, in order to test all the lengths of complete
sequences of partial steps lower than K.

This algorithm is correct since the sequences found are
effectively sequences of steps which produce the desired
final marking. It is also complete since it can enumerate all
the solutions of length lower than a given integer. In each
iteration, the algorithm uses a mechanism of linear
constraints solving. It has been implemented using the
constraint logic programming software Prolog IV. The
interest of the use of Prolog IV lies in the fact that its
constraints resolution mechanism is incremental [15].
Indeed, it is not necessary to redefine in each iteration the
constraints incorporated into the previous stage. The
constraints are added in the constraints solver so that it
can reuse the results of the previous constraints propaga-
tion. The search for the concrete results is made at the end
by an enumeration of all the possible integer solutions.

In the previous figure (Fig. 15), we show how to
generate sequences from resulted Petri net (transformation

Fig. 15 Sequences generation example

Eur. Transp. Res. Rev. (2010) 2:113–128 125

of UML diagram in Fig. 14). The Pre and Post matrices
are generated in order to be used for sequences generation.
Indeed, as shown in Fig. 15, we can generate sequences
with fixed length for all final markings. We can also
generate sequences whose maximum length is l. The final
marking can be also fixed. In this case, all possible
sequences, which can reach this final marking, are
generated.

5.3 Simulation

The scenarios obtained from the sequences generation
method, will be tested on the ERTMS platform
simulator in order to check the components. INRETS’s

ERTMS simulation platform consists of the following
components:

▪ A single train operational simulator with its 3D
visualization of the tracks

▪ An ERTMS traffic simulator:

▪ a route map controller;
▪ an interlocking system
▪ up to 2 Radio Block Centres
▪ up to 11 trains including the operational train simulator

▪ Off-line tools:

▪ A track editor for constructing tracks and a set of elements
of the tracks (track, points, balises, boards...)

Fig. 16 The DMI of the train operational simulator with its 3D

126 Eur. Transp. Res. Rev. (2010) 2:113–128

▪ A scenario editor for setting the dynamic parameters
of each scenario.

Both the train operational simulator and traffic simulator
can be used stand alone or interconnected to put the train
driver in a simulated traffic (Fig. 16). They use the same
offline tools so tracks can be used either for traffic or
operational train scenarios.

6 Conclusions

In this paper, we developed a methodology of test scenarios
generation. At a first step, we formalized specification by a
using a transformation technique of UML models. The
obtained Petri net models are used in order to generate test
scenarios. One scenario is considered like a firing sequence
in the reachability graph. So, we developed a method
allowing generation of firing sequences from an initial
marking to a final marking.

Generally, the number of tests is directly linked with the
product of its amount of functions and the degree of
freedom of its application conditions. It means the more
flexible is the solution the biggest is the number of tests and
its related costs. The approach, developed in this paper, has
been applied to components of a flexible system ERTMS
(European Rail Traffic Management System) in order to
demonstrate the validation and certification costs reduction
and also to minimize the upgrade and retrofit constraints
and validation cost.

In future work, we take into account the time in order
to formalize specifications. In ERTMS context, interac-
tions may be related to time constraints. A transforma-
tion of UML models based on time constraints is
interesting. Then, the coverage of the generated test
scenarios must be defined. In this paper, we generate a
set of test scenarios from the reachability graph accessi-
bility based on constraint programming. Later we want to
define a coverage criterion to ensure that tests adequately
cover the specification

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Baudoin C, Hollowell G (1996) Realizing the object-oriented
lifecycle. Prentice Hall, Upper Saddle River

2. Benasser A (2000) “L’accessibilité dans les réseaux de Petri : une
approche basée sur la programmation par contraintes”, PhD thesis,
Université des sciences et technologies de Lille

3. Bernardi S, Donatelli S, Merseguer J (2002) From UML Sequence
Diagrams and Statecharts to analysable Petri Net models, In Proc.
of the 3rd Int. Workshop on Software and Performance (WOSP),
pp 35–45, Rome, Italy, July

4. Berthelot G (1986) Transformations and decompositions of
nets. In: Brauer W, Reisig W, Rozenberg G (eds) Advances in
Petri Nets 1986 Part I. Proceedings of an Advanced Course
254:359–376

5. Booch G (1991) Object Oriented Design with Applications,
Redwood City, CA:Benjamen/Cummings

6. Coad P, Yourdon E (1991) Object-oriented analysis, 2nd edn.
Yourdon Press, Prentice Hall, Englewood Cliffs

7. European Commission (2006) ERTMS – Delivering flexible and
reliable rail traffic, DG TREN,16p

8. European Communities Commission (2001) Council Directive
2001/16/EC of the European Parliament and of the Council on the
interoperability of the trans-European conventional rail system,
Official Journal of the European Union

9. Fernandez JC, Jard C, Jéron T, Mounier L (1992) On the fly
verification of finite transition systems. Formal Methods in
System Design

10. Gunnarsson J (1998) Symbolic tools for verification of large scale
DEDS. IEEE Int. Conf. on Systems, Man, and Cybernetics
(SMC’98), 11-14 October 1998, SanDiego, CA, pp 722–727

11. Hopkins R, Smith M, King P (2002) Two approaches to
integrating UML and performance models. In Proc. of the 3rd
Int. Workshop on Software and Performance (WOSP), pp 91–92,
July

12. Huber P, Jensen AM, Jepsen LO, Jensen K (1985) Towards
reachability trees for high-level Petri nets, Lecture Notes in
Computer Science: Advances in Petri Nets 1984, 188:215–233

13. Jabri S, Lemaire E (2007) Modeling of the European railway
system for automatic checking”, 15th International Symposium
EURNEX- ZEL 2007: Towards more competitive European rail
system

14. Jacobson I (1987) Object Oriented development in an industrial
environment, Proceedings on Object-Oriented programming sys-
tems, languages and applications, pp 183-191

15. Jaffar J,Michaylov S, Stuckey P, Yap R (1992) The CLP (R) language
and system. ACM Trans Program Lang Syst 14(3):339–395

16. King P, Pooley R (1999) Using UML to derive stochastic Petri net
models. In Proceedings of the 15th UK Performance Engineering
Workshop, pp 45–56, Bristol, UK, July

17. El Koursi EM, Kampmann B (2002) Qualitative and quantitative
safety assessment of ERTMS Operating rules. Comprail, pp 671-
680

18. Lautenbach K (1987) Linear algebraic techniques for place/
transition nets. In Advances in Petri Nets 1986, Part I, Proceed-
ings of an Advanced Course, 254:142–167

19. Lochman L (2009) Background for ERTMS. In: IUC (ed)
Compendium on ERTMS

20. Lopes D, Hammoudi S, Bezivin J, Jouault F (2005) Mapping
Specification in MDA: From Theory to Practice. Proceedings of
INTEROPESA, pp 253-264

21. Lopez-Garo JP, Merseguer J, Campos J (2004) From UML
activity diagrams to stochastic Petri Net models: Application to
Software Performance Engineering. Proceedings of the 3rd Int.
workshop on Software and performance, pp 25-36

22. Marsan MA, Balbo G, Conte G, Donatelli S, Franceschinis G
(1995) Modelling with Generalized Stochastic Petri Nets. Series in
parallel computing. Wiley

23. Merseguer J (2004) On the use of UML State Machines for Software
Performance Evaluation, In Proc. of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS)

24. Murata T (1989) Petri nets: Properties, analysis and applications.
Proc IEEE 77(4):541–574

Eur. Transp. Res. Rev. (2010) 2:113–128 127

25. Object Management Group (2005) Unified Modelling Language:
superstructure, version 2.0 http://www.omg.org

26. Pettit RG, Gomaa H (2000) Validation of Dynamic Behavior in
UML Using Colored Petri Nets, Workshop on Dynamic Behavior
in UML Models: Semantic Questions

27. Pooley R, King P (1999) The Unified Modelling Language and
Performance Engineering. In IEE Proceedings - Software, volume
146(2), March

28. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W (1997)
OMT, Tome1 : Modélisation et conception orientées Objet, Dunod

29. Samuel P, Mall R, Kanth P (2007) Automatic test case generation
fromUML communication diagrams. Inf Softw Technol 49:158–171

30. Shlaer S, Mellor S (1988) Object-oriented systems analysis.
Yourdon Press Computing Series

31. Trowitzsch J, Zimmermann A (2006) Using UML state machines
and Petri nets for the quantitative investigation of ETCS.

Proceedings of the 1st Int. conference on Performance evaluation
methodologies and tools, Italy

32. UNISIG, ERTMS Users Group (1999) FRS V4.29, Functional
System Requirements Specification, FRS

33. UNISIG, ERTMS Users Group (2008) Subset026-5, System
Requirements Specification, SRS

34. Wendler E (2009) Influence of ETCS on the capacity of lines. In:
UIC (ed) Compendium on ERTMS

35. Winter P (2009a) Train control-command: the ETCS develop-
ments. In: UIC (ed) Compendium on ERTMS

36. Winter P (2009b) European ERTMS applications in commercial
operation. In: UIC (ed) Compendium on ERTMS

37. Winter P (2009c) Conclusions and outlook. In: UIC (ed)
Compendium on ERTMS

38. Yourdon E, Constantine L (1979) Structured Design. Prentice
Hall, Englewood Cliffs

128 Eur. Transp. Res. Rev. (2010) 2:113–128

http://www.omg.org

	European railway traffic management system validation using UML/Petri nets modelling strategy
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	ERTMS system
	ERTMS components
	ERTMS characteristics
	ERTMS implementation

	Methodology and objectives
	Modelling and transformation technique
	UML modelling approach
	UML model transformation into Petri Nets
	Background
	Petri net formalism
	Transformation rules

	Start Of Mission (SOM) Application
	The UML modelling of SOM procedure
	The transformation of SOM model into Petri net

	Test scenarios generation
	Approach
	Test generation
	Simulation

	Conclusions
	References

