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Abstract This paper addresses quantitative methods
for estimating the value of information from ITS in
urban freight distribution. A real-life application on
the retail distribution of perishable goods is considered.
The problem is formulated as a vehicle routing prob-
lem with soft time windows and time-dependent travel
times, and solved by using information affected by
different degrees of detail and reliability. The practical
performance of these solutions is then evaluated by
simulation, to assess the joint benefit of using more re-
liable and detailed information with different solution
algorithms.
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1 Introduction

The increase of congestion in transport system requires
innovative approaches to face the need for sustainable
mobility. In this context, limiting the impact of freight
transport on road congestion is specifically important.
In fact, the European freight road transport is expected
to increase by 55% by 2020 [1]. The traditional mea-
sures to accommodate this growth, such as the ex-
pansion of the existing transport networks, cannot be
pursued, at least in urban areas. The rationalization
of the freight flows in the urban areas is therefore
necessary and this need is addressed by City Logistics
[2, 3]. One of the basic concepts of city logistics is
the use of intermodal terminals. Here, goods incoming
from different transport modes (rail, maritime, large
trucks) are stored and small vehicles are used for the
distribution of freights towards the urban area. Termi-
nals are often located in the city neighborhoods, as near
as possible to the city center to reduce the distances for
truck collection and distribution [4].

Intelligent Transportation Systems (ITS) and tech-
nologies can play a key role to optimize the organiza-
tion of intermodal terminal and to reduce the impact of
freight traffic on urban congestion. In 2008, the Euro-
pean commission planned several actions aiming at the
introduction of the eFreight concept [5], consisting of
the collection of real-time information on the location
and condition of transported goods, and of its integra-
tion with other supply-chain activities and technologies,
such as radio frequency identification (RFID).

In this paper we focus on the best use of ITS in-
formation for the distribution of goods from an in-
termodal terminal to the retailers located in an urban
area. Specifically, we are interested in the development
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of a quantitative method to estimate the value of such
information in the optimization process of the retail
distribution of perishable goods. The perishable goods
market is characterized by the short life time of prod-
ucts, sometimes limited to few days, which turns out
in a rapid depreciation of the product value. The dis-
tribution must therefore comply with strict restrictions
on the delivery times. This challenge requires, on one
hand, effective optimization algorithms to plan punc-
tual deliveries to the retailers at sustainable cost. On
the other hand, there is a need for reliable and accurate
data on the road network to produce solutions that can
be implemented in practice.

Network traffic conditions deeply influence the link
travel times that constitute the main input of distri-
bution problems. Travel times are affected both by
systematic variability (traffic condition in the different
time slices) and stochastic variability (unforeseen
events, such as accidents or maintenance operations).
Therefore, in order to effectively plan the deliveries,
time-dependent travel times should be taken into ac-
count. Tracking systems based on the RFID technology
or GPS offer a new opportunity to collect reliable
real-time information about network traffic conditions.
Such information can be used both in real time, to
locate the position of a vehicle, and off line to estimate
the travel time of each element of the network with high
level of precision and reliability. However, while the
cost of implementing such measurement systems can
be easily computed, estimating the value generated by
advanced tracking systems is more difficult [6]. In fact,
there is a need for scientific studies on the evaluation
of the added value generated by advanced tracking
systems in distribution. This need motivates the present
work.

The main contribution of this paper is the application
of a new methodology to quantify the dependency of
distribution cost from data reliability and data accuracy.
The methodology is tested on a practical case study
arising in the urban freight distribution of perishable
goods. We consider an intermodal terminal located in
the suburban area of Rome (Italy) serving retailers
located in the historical center. The center of Rome
is characterized by narrow streets and high density
of commercial activities, which makes the distribution
quite decoupled from the rest of the city since specific
small vehicles have to be used in this area (smaller
than 3.5 tons). The case study is formulated as a vehicle
routing problem with soft time windows (VRPTW) for
the deliveries, in which the objective function includes
the transportation costs and the cost of late deliveries.
Different solution algorithms have been implemented
to solve the VRPTW, including simple greedy heuristics
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and advanced tabu search algorithms. The effect of in-
corporating practical experience of human dispatchers
in the solution algorithm is also assessed by construct-
ing a new neighborhood which takes into account the
geographical position of customers and routes. The de-
gree of sensitivity of the different algorithms to process
data information has been then evaluated, thus lead-
ing to a graphical representation of the dependency
of the distribution cost from the data reliability and
the algorithm adopted. Also the relation between costs
and data accuracy is investigated by representing the
evolution of traffic with different numbers of time slices
during which traffic conditions are considered constant.

The paper is organized as follows. In Section 2 we re-
vise some relevant related works. The research method-
ology to assess the information value is described in
Section 3. Section 4 deals with the formal description
of the vehicle routing problem. Solution algorithms are
described in Section 5 and the computational results
are reported in Section 6. Some conclusions follow in
Section 7.

2 Literature review

In this section we review the recent literature related
to this paper. The approach followed in this paper is
based on (i) choice of methods and technologies for
data collection, (ii) choice of solution algorithms for
solving the vehicle routing problem described in the
previous section, (iii) computation of the added value
generated by data reliability in combination with the
chosen solution algorithms. While an increasing num-
ber of papers addresses the first two points, there is a
substantial lack of scientific research as far as the third
point is concerned. Therefore, while this paper focuses
on the third issue, we next review the recent literature
related to the first two points.

In the last years there has been an increasing inter-
est in the literature on commercial vehicle tour data
collection and modeling [7]. Jarugumilli and Grasman
[8] use RFID technology to enable efficient control
of inventory distribution by exchanging real-time in-
formation upon arrival at each location. Wang et al.
[9] use real time information from different ITS such
as RFID and GPS to optimally route and schedule
vehicles in logistics and distribution services. Kim et al.
[10] propose effective algorithms for data estimation,
to be used once measures from the field have been
collected.

As for the literature on the vehicle routing problem,
the TABUROUTE algorithm introduced by Gendrau
et al. [11] is among the most well known solution
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algorithms. The inclusion of time windows (VRPTW)
has been addressed in a large number of papers, mostly
in the case in which travel times are time-independent.
We cite, among the others: Solomon [12], Russell
[13], Bramel and Simchi-Levi [14], Potvin et al. [15],
Taniguchi et al. [16]. Cordeau et al. [17] consider
soft time windows to take into account late and early
delivery.

Time-independent travel times do not adequately
represent all the real cases, since in practice travel
times can be affected by strong variability both sys-
tematic (traffic condition in the different time slices)
and stochastic (unforeseen events, such as accidents or
maintenance operations). Limited research has been
carried out on vehicle routing problems with variable
travel times. We cite, among the others: Laporte et al.
[18], Malandraki and Daskin [19], Taniguchi et al.
[21, 22], Kenyon and Morton [23] and Taniguchi and
Shimamoto [24].

Ahn and Shin [25] are among the first researchers
who studied the vehicle routing problem with time
windows and time-dependent costs. Malandraki and
Daskin [19] give a formulation of the VRPTW and
time-dependent costs, modeling the travel time fluc-
tuation with a step function.

Ichoua et al. [20] propose a time-dependent model
for a VRPTW, based on time-dependent travel speeds,
computed dividing the planning horizon into three time
periods. They extended the tabu search heuristic devel-
oped by Taillard et al. [26] to solve the problem and
performed some experiments to evaluate the model
in static and dynamic environments. Fleischmann et
al. [27] consider the Time-Dependent Vehicle routing
problem (TDVRP), defining the travel time function
with a linearized step function. The authors show that
all the models, with the exception of [20], are incon-
sistent since they do not represent the “no passing”
(FIFO) property. Ando and Taniguchi [28] presents a
model for minimizing the total costs incorporating the
uncertainty of link travel times with the early arrival
and delay penalty at customers who set up designated
time windows.

3 Research methodology

This section describes the procedure adopted for esti-
mating the value of information in our vehicle routing
application. The basic idea behind the procedure is that
the discrepancy between planned and implemented
solutions is only in minor part due to the inherent
stochastic nature of travel times. Major differences are

due to the mismatch between the observed data, used to
build the planned solution, and the actual travel times
occurring in practice. In other words, the actual travel
time #; for a link (7, j) can be expressed as f;; = d;; + sij,
where d;; is a deterministic value and s;; is a stochastic
variable due to perturbation events on transport de-
mand and supply. The first quantity d;; is the desired
value for solving the vehicle routing problem, such as
the expected value of #; or a value achieved with a given
probability v (i.e., such that the probability Pr{t; <
d;j} = V). In practice, the exact value of #; is unknown
and can only be estimated by collecting measures on the
network, which can be affected by measurement errors.
Consequently, also the estimation of d; is affected by
measurement errors. We let d"' and £ be the esti-
mated values of d;; and #;;, respectively.

We call discrepancy the quantity 8; = 15" — dy;. If
tf]:“” is a rough estimate of #;, then the measurement
error can be much larger than the inherent stochasticity
of the travel time, i.e., |§;;| >> |s;j.

The use of an advanced tracking system may help to
collect more reliable information and thus to produce
a better estimate ti‘ftz of #;, i.e., an estimate such that
|tf]:”2 —djj| << |tf;"” — d;j|. The value of such informa-
tion is related to the improved performance of the
system that would have been achieved if the planned
solution was built using the more reliable tf;“‘z instead of
tfj“l. Since the discrepancy may vary over the different
routes to be traversed, we introduce an aggregated
value ¢ that we call the unreliability of the data set. For
a urban network with a set N of links, possible aggre-
gations are the mean value of the discrepancies over all
the links, e.g. the mean value ¢ = |1W| > pen 18ijl, or the
square mean value ¢ = ﬁ Z(i,DEN((Sii)Z’ or any other
aggregated representative of all data discrepancies. In
our computational experiments we use the mean value.

Our procedure computes the value of information
with reference to a given vehicle routing algorithms .A.
It requires the production of several solutions with A
for varying the unreliability ¢ of the data set. Given the
data set and a value for the unreliability ¢, we let p?(¢)
be the planned solution obtained with .4 on such data
set, p"'(¢) be the associated historical solution, obtained
by using the same routing as in p”(¢) and the actual data
d;; instead of tfjs’ I, Since the values t;; are stochastic, also
the performance of p” (¢) is a stochastic variable. We let
7 (¢) be the mean value of the performance achieved by
p"(¢) for a given e. Applying the same procedure for
varying ¢, we get a curve m(¢) associated to the vehicle
routing procedure A being used. If using a certain type
of ITS one can decrease the information unreliability
from a value ¢, to €| < &, there is then a performance
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improvement 7 (g;) — w(g1), like shown by the curves of
Fig. 1.

In this paper, we focus on computing the relation
between data reliability and distribution costs. We do
not address the exact computation of the probabilistic
uncertainty of the information before and after the
introduction of ITS, which is very much related to the
technology and the specific setting, and it is the subject
of more technology oriented ITS studies. However, it
appears from the literature that there are many settings
in which suitable technologies, e.g. the RFID technol-
ogy, make possible to reduce the unreliability ¢ nearly
to zero (RFID Journal October 2002 [29] and August
2008 [30]).

It is worthwhile to mention that, very likely, different
vehicle routing algorithms may have different degrees
of sensitivity to process data information. Therefore,
when designing an intelligent transport system, it can
also be profitable to develop novel vehicle routing
algorithms that will use the more reliable information.

Figure 1 shows the cost m(¢) for two algorithms
Algol and Algo2. Let us first focus on Algol and
assume that the unreliability of the current informa-
tion is &,. Suppose that an advanced tracking system
may reduce the unreliability down to ;. The value of
information provided by the advanced tracking system
is B in Fig. 1, since this is the cost reduction achieved.
Note that the value of information depends on the
chosen vehicle routing algorithm. If the adoption of
the advanced tracking system is combined with a new
algorithm Algo2, then the cost reduction becomes « +
B, i.e., there is an additional benefit o due to Algo2.
From Fig. 1, it follows that Algol is preferable to Algo2
for highly unreliable data while Algo2 becomes the best
choice for ¢ = ¢;. In other words, it is important to
assess the impact of advanced tracking systems in com-
bination with different (simple and advanced) vehicle
routing algorithms. Clearly, it is worth paying the cost
of implementing the new tracking system and the new
algorithm Algo2 only if they generate sufficient ROI

81 82 €

Fig. 1 Performance for varying the unreliability
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(Return On Investment), i.e., if the implementation
cost is smaller than o + 8.

4 Problem description

The problem addressed in this work is a vehicle routing
problem with soft time windows of [earliest,latest] de-
livery times. An intermodal terminal /7 must distribute
the required amount of perishable goods to a given
set R of retailers by using a given set V of vehicles of
given capacity. We assume that an unlimited amount of
merchandise and number of vehicles is available at /7.
Each retailer r requests a certain quantity of goods d,
to be delivered within a given time window [¢,, T,].

A feasible solution of the problem consists of con-
structing a route for each vehicle starting and ending in
IT such that (i) the demand of each retailer is satisfied,
(i) each retailer is served by exactly one vehicle, and
(iii) the capacity of each vehicle is not exceeded. In our
model, a vehicle arriving early at a certain retailer will
wait until its earliest delivery time.

A vehicle arriving at time a, > T, at retailer r incurs
a penalty cost w, for late delivery. This penalty w, is
proportional to the probability p, that the delivery is
refused by the retailer:

Wy = YrPr,

where y, is a given constant. We assume p, =0 for
on-time deliveries, i.e., for ¢, < a, < T,. The probability
that a delivery is refused is p, = 1 fora delay a, — T, >
Tmax and increases linearly from 0 to 1 when the arrival
time is in the time window [T, T, 4+ Tmay], as in Fig. 2.
Let p be the set of routes in a solution, each associ-
ated to the vehicle v(p;) used for route i. The cost of
route i is given by three quantities: (i) the fixed cost
foe associated to the usage of vehicle v(p;), (ii) the
variable cost ¢;(p;) associated to length of route p;, and
(iii) the penalty cost ), w,(p;) for late deliveries. The
objective function of the problem is therefore:

i
min Z |:fv(p,.) + ci(p) + Z wr(pi)] 1)

i=1 rep;

Fig. 2 Probability of refusing )2
delivery

ar

0 f r Tr Tr + Tmax
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5 Algorithms
In this section we describe the solution algorithms used
for our analysis. We assess the performance of different
vehicle routing algorithms when varying the data reli- *
o)

ability. Specifically, we consider a simple constructive
heuristic and two tabu search procedures.

The constructive heuristic groups retailers accord-
ing to their geographical position and assigns to each
group the minimum number of vehicles necessary to
accommodate their total demand. Retailers belonging
to the same group are ordered for increasing 7, and
then assigned in this order to vehicles. If the demand
of retailer r does not fit in any of the available vehicles,
anew vehicle is added and r is assigned to it. Otherwise,
r is assigned to the available vehicle with the minimum
remaining capacity.

When all retailers have been assigned to a vehicle, an
adaptation of the 3-OPT local search algorithm [31] to
the case with time windows is used to sequence retailers
served by the same vehicle. This constructive heuristic
is similar to the first steps of the procedure currently
adopted at the terminal to plan vehicle routes.

The first tabu search procedure (hereinafter called
ST or standard tabu search) implements the main fea-
tures of the TABUROUTE algorithm introduced by
Gendrau et al. [11]. A solution S in ST is given by
the sequence of retailers served by each route. The
neighborhood of a solution S is the set of all the fea-
sible solutions obtained by moving one of p randomly
chosen retailers from its route in S to another route
serving at least one of the g retailers closest to it, where
p and g are two parameters of the tabu search. If a
move leads to empty an existing route, the route is
eliminated. An additional move consists in adding a
new route to the set of routes and in assigning to it
one of the p retailers. A move can lead to infeasible
solutions that violate the capacity constraints of some
vehicles. Infeasible solutions are penalized by a factor
depending on the violation of the capacity constraints.

When the solution does not improve after a certain
number of iterations, diversification strategies are used
to restart the search from new solutions.

The second tabu search procedure (hereinafter
called AD or advanced tabu search) differs from ST for
the definition of a larger neighborhood of a solution,
that is generated by considering an additional move.
The new move emulates the behavior of human dis-
patchers and is based on the geographical properties
of the real application considered in this paper and
depicted in Fig. 3.

As described in Section 1, intermodal terminals are
typically located in the peripheral area of the cities.

Fig. 3 The new move

On the other hand, the retailers can be located in the
central area of the city, as in our case study. In such
case, each route includes a long path from /7 to the first
served retailer 7y and a long path from the last retailer
r; to IT. The new move allows moving a retailer r from
its current route to another, before r or after 7;, even
if 7y or r; are not included in the g retailers closest to r.
The solution S’ obtained after the move is included in
the neighborhood of S if the cost of S’ minus the cost of
S is below a given treshold o.

6 Computational results

This section reports on the performance of the greedy,
AD and ST algorithms on a real test case, located in a
subarea of Rome (Italy). The code is implemented in
C++ and runs on a PC equipped with a Intel 2 GHz
processor and 2 GB of RAM.

6.1 Test case description

The network includes the historical center of Rome,
where customers are located, and the south area until
the Big Ring Road, where the intermodal terminal
IT is located. The network is shown in Fig. 4 and
consists of 250 centroids, 425 nodes and 2,346 oriented
links. Each node may host a customer, even if not all
customers require a delivery in the same day. The his-
torical center of Rome is characterized by many narrow
streets and by a large number of small activities, which
translate into specific problem characteristics such as
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city center

Rome south

Fig. 4 Rome network

the dimension and the number of customers and low
link capacity values. The distribution of merchandise
takes place from 4:00 am to 11:00 am. In order to
model the traffic conditions within this time window,
about 280,000 vehicles are generated at the centroids
of the network considering the variable demand profile
shown in Fig. 5.

For each hour, link travel times are obtained by sim-
ulation using dynamic assignment model where trans-
port demand can change during the simulation interval.
For the dynamic simulation we use the DYNAMEQ
model: this is a dynamic traffic assignment model which
exploits variants of gradient like directions and the
method of successive averages to determine pre-trip dy-
namic equilibrium path choices [32]. As a consequence,
the travel times between each pair of retailers, as well
as between each retailer and the terminal /7, are time-
dependent and can be represented by a vector where
each component is associated to a certain time slice.

Fig. 5 Demand profile A

(%)
[«

Table 1 Relative performance loss (percentage) between solu-
tions and REF

e GREEDY AD ST

0 2713 2.9 335
10 449.5 47.2 73.8
20 456.0 53.0 88.4
30 481.1 59.1 90.3
40 512.6 59.1 90.4
50 559.2 60.0 111.0
60 618.5 70.9 1115
70 647.5 63.4 110.7
80 675.1 64.7 116.7
90 697.5 72.0 118.7
100 722.0 71.9 139.4

In our study, we consider these travel times values as
the actual traffic conditions in the network. To gener-
ate errors on the input data, these travel times values
have been randomly perturbed using the relation tff’ =
d;j(1 4+ §55), where x is a random variable uniformly
distributed in the interval [— P, 4+ P]. With this position,
for each link (i, j) we get a discrepancy |§;;| = d{ggl. We
considered ten values for P = {10, 20, ..., 100}, besides
the reference case P =0 in which input data is not
affected by error. We consider ten scenarios for the
customer orders, each scenario consisting of one day
with 50 deliveries randomly located in the city center.
For each value of P and for each scenario, ten random
perturbations of the travel times have been generated,
thus obtaining a total of 1,010 instances of the vehicle
routing problem to be solved with the three algorithms.
As an aggregate indicator of the unreliability we use
the unreliability ¢ expressed in percentage, i.e., ¢ =

1
100W Z(meN 8l

6.2 Results analysis

For the reference case ¢ = 0 and for the ten scenarios,
Algorithm AD finds a better solution with respect to
Algorithm ST in eight out of ten cases. In the following,

N
W

[\
(=)

demand distribution (%)

(=]

—_ =
(9] IO (9]
|

| |

4.00-5.00 I 5.00-6.00
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Fig. 6 Relative performance

Relative performance loss with respect to REF

loss (percentage) of solutions 160
costs computed by AD and
ST with respect to REF
(seven time slices data input)

140

120 -

100 -

[%]

the best solution obtained either by AD or ST fore =0
is referred to as the REF solution.

Table 1 reports the average (in percentage) over all
instances of the difference between the performance of
each of the three algorithms and the performance of
the REF solution. In what follows, we refer to this in-
dicator as the relative performance loss [100%]
For ¢ = 0 we report the relative performance loss over
the ten scenarios. For each ¢ # 0 we report the average
over 100 instances (ten scenarios and ten perturba-
tions). Clearly, the larger is the relative performance
loss, the worse is the performance of the algorithm
in combination with a certain data unreliability. The
greedy algorithm performs very poorly with respect
to the two tabu search algorithms, the relative perfor-
mance loss from REF ranging from 271.3 to 722.0%.
With the AD and ST algorithms, the relative perfor-
mance loss from R EF is significantly smaller. It reaches
a maximum of 139.4% with a perturbation ¢ = 100 in
the ST case.

Fig. 7 Average perturbation
error (percentage)

20 30 40 50 60 70 80 90 100

€ [%]

A pictorial comparison between AD and ST is shown
in Fig. 6. On average, AD outperforms ST for all values
of ¢, which demonstrates the effectiveness of the new
neighborhood concept adopted by AD.

As for the sensitivity of the algorithms to the unreli-
ability ¢, Fig. 6 shows that there is a significant increase
of the distance with respect to the REF solution when
passing from ¢ =0 to ¢ = 10. For higher values of ¢
the distances remain quite stable for AD and slightly
increase with ¢ for ST. For example, from Table 1,
passing from &, = 50 to &; = 40 with ST would generate
a value of information equal to 0.2 REF. If in addition
ST is replaced with AD, the total gain increases up to
more than 0.5 REF.

This behavior highlights the lower robustness of ST
with respect to AD.

The robustness of AD and ST can be explained by
Fig. 7. For each value of ¢ and for each instance, the
objective function of the solutions obtained by AD
and ST with perturbed input data have been compared

Average perturbation error

—O—AD
——ST

30 40 50 60 70 80 90 100
€ [%]
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Fig. 8 Relative performance

Relative performance loss with respect to REF (3 time slices)

loss (percentage) of solutions
costs computed by AD and
ST with respect to REF
(three time slices data input)

160

140

120 1

100 +

[%]

80 1

60 -

40

20 1

—O—AD
——ST

with the objective function values obtained by the same
solutions with no perturbation on link travel times (i.e.,
with ¢ = 0). The lowest is the difference, the highest
is the robustness. We call this difference the average
perturbation error (in percentage).

It can be observed that the estimation error increases
almost linearly with ¢ for both AD and ST and does not
vary significantly with the algorithm but it depends only
one.

In the remaining part of this section, we study the
benefit of using aggregated versus more detailed input
data when modeling the traffic conditions in different
time slices. The previous results are obtained using link
travel times available for each hour of the planning
horizon 4:00-11:00 am (i.e., the planning horizon is
divided into seven time slices). In order to consider
more aggregated input data, the same planning horizon
is divided into three time slices (from 4:00 to 7:00, from
7:00 to 10:00 and from 10:00 to 11:00); the link travel
times from 4:00 to 7:00 am (and from 7:00 to 10:00 am)

Fig. 9 Relative performance
loss computed by AD with

20

30 40 50

€ [%]

60 70 80 90 100

are considered constant and equal to the average values
during the three hours.

Figure 8 shows the relative performance loss of the
objective function values from the REF value when
using three and seven time slices, for varying ¢. The
REF value is computed by using seven time slices and
¢ = 0. The distance from REF for the case with three
time slices ranges between 40 and 80% for AD and
between 60 and 140% for ST. Such behavior confirms
that AD is more resilient to perturbation with respect
to ST also when the input data are more aggregated.

It is interesting to compare the performance of each
algorithm considering three and seven time slices. This
is shown in Fig. 9 for the AD algorithm and in Fig. 10
for the ST algorithm.

As for the AD algorithm, when the input data are
very reliable (i.e., when ¢ = 0) there is a clear conve-
nience in using seven time slices rather than three. On
the other hand, for 10 < ¢ < 40 the difference between
the two cases reduces almost to zero, and it is always

Relative performance loss with respect to REF (3 vs 7 time slices)

respect to REF (three vs 90

seven time slices data input) 80 1
70 A
60 -

50 A

[%]

40 A
30 A
20 A
10 4

—O—AD 7 SLICES
——AD 3 SLICES
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Fig. 10 Relative performance

loss computed by ST with 160

Relative performance loss with respect to REF (3 vs 7 time slices)

respect to REF (three vs

seven time slices data input) 140

120 1

100 +

[%]

80

60

40

20

—O—ST 7 SLICES
—A—ST 3 SLICES

less than 20% for higher values of ¢, so that there is no
big convenience in collecting and using more detailed
input data for ¢ > 10. When the ST algorithm is con-
cerned, Fig. 10 shows that detailed input data (seven
time slices) are still preferable when the perturbation
¢ is zero and that aggregated input data (three time
slices) are slightly preferable for ¢ > 10.

7 Conclusions

This paper addresses quantitative methods for estimat-
ing the value of information from ITS in urban freight
distribution. The information adopted are link travel
times, that can be deeply influenced by systematic
and stochastic variability. Specifically, we developed
a quantitative method to estimate the value of such
information in the optimization process of the retail dis-
tribution of perishable goods. The method consists of
solving the distribution problem by using data affected
by different degrees of reliability and accuracy. As a
stage of the analysis, different algorithms are evaluated
in terms of performance and robustness, to assess the
best results achievable with a given data set. In par-
ticular, we define the monetary cost of unreliability as
the additional cost that has to be paid with respect to
the best solution achievable with perfect information.
We tested several solution procedures, ranging from
simple greedy algorithms to specialized tabu search al-
gorithms. As for the latter case, a standard tabu search
is derived from the literature on the vehicle routing
problem. A new advanced tabu search has been devel-
oped by taking into account the geographical position
of customers and routes to construct a new effective
neighborhood.

20 30 40 50 60 70 80 90 100
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Experimental analysis has been carried out on a real
network (a subarea of the city of Rome). Our results
show that there is a clear benefit in using detailed and
highly reliable data. When reducing the travel time
estimation error nearly to zero is not possible (e.g.,
when travel time values are inherently stochastic in
nature) it is important to use an advanced algorithm,
able to achieve good performance for a large range
of perturbation. Our computational results also show
that when the input data perturbation is large, there
is no big convenience in using detailed information
for the solution of the vehicle routing problem. An
accessory result to the main objective of the paper is to
show that the advanced tabu search clearly outperforms
the standard one from both the points of view of the
objective function and the robustness.

The methodology described in this paper can be
used to evaluate the marginal value of different types
of information and therefore the potential return on
investment on the acquisition of reliable data. At the
same time, the results of this paper can be of interest
also for information providers, to evaluate the willing-
ness to pay of potential customers and/or to estimate
the associated market share.

Future developments of this work will be possible
when practical measures on the network links will be
available, and will address the design of the most suit-
able distributions for the link travel time errors and the
definition of the right combination of levels of input
data aggregation, information reliability and algorithm
to be used in practice. A further important research
direction should address the problem of dynamically
re-routing deliveries in real-time, i.e., to investigate
the benefit of adapting vehicle routes in real time
on the basis of the current traffic conditions. Several
papers [33, 34] demonstrate that, as the uncertainty
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in the travel times increases, dynamic vehicle routing
strategies becomes more and more convenient with
respect to the static strategies.
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