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Abstract
Purpose Studying travel time distribution or variability in
travel time is very much useful in travel time reliability
studies of transportation system. The properties of this dis-
tribution are described by various uncertainties which are
derived from supply side, demand side and other external
factors of any road network.
Method Present study investigates the development of sto-
chastic response surface of travel time variation under un-
certain factors of traffic volume and intensity of rain fall by
using Stochastic Response Surface Method (SRSM).
Analysis and Results This model was applied to a section of
Kobe Route (Nishnomiya to Awaza), Hanshin expressway,
Japan. Besides hourly traffic volume data, incident data for
the entire year 2006 were collected and multiple linear re-
gression analysis for entire year data was initially performed
to know the functional and significance relation between the
input and output variable. Further SRSM analysis has been
carried out for working days data. Results shows that travel
time distribution obtained using SRSM model is better than
distribution obtained by the regression model.
Conclusion It was observed from the results that SRSM
model is efficient for analyzing the stochastic relation between
the response variable and uncertain explanatory variables.

Keywords Stochastic response surface method .

Travel time distribution . Hanshin expressway

1 Introduction

Travel time distribution or variability in travel time is the
most useful indicator to measure the performance and reli-
ability of a transportation system. The properties of this
distribution are described by various uncertainties which
are derived from supply side, demand side and other external
factors of a particular road network. Width in travel time
distribution indicates higher uncertainties and lower travel
time reliability. The measure of central tendencies of travel
time distribution is unable to explain the traveler’s experi-
ence. Recently, various empirical travel time reliability stud-
ies [4, 11, 17] and Asakura [2] have extensively used travel
time distribution as a tool for developing various reliability
indices such as Planning Time (95 % travel time), Buffer
Time Index and Planning Time Index [14]. All these reliabil-
ity indices are useful to improve regional transportation
planning [10].

When we intend to evaluate the effects of a transport policy
on travel time reliability, it is necessary to identify the factors
(source of uncertainty) that will affect travel time, and relation
between the various sources of travel time. In this section
various existing studies related [1] to sources of travel time
variation are reviewed. Very few studies have concentrated on
quantifying sources of uncertainties making travel time
unreliable. Vander loop identified the main causes of
unreliability of travel times for Netherlands urban roads.
According to his study, 74 % of unreliability in the travel time
is mainly due to internal factors of the traffic. The remaining is
due to weather (8 %), road works (14 %), accidents (3to12 %)
and combination factors (2 %) [18].

The US, Federal Highway Administration (FHWA) has
identified seven sources of events which cause travel time
variation. Further they have categorized into three main
events such as traffic influence events (includes traffic inci-
dents, work zones and weather), traffic demand events (in-
cludes fluctuations in normal traffic and special events) and
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physical highways features (includes traffic control devices
and bottle necks) [3]. Ruimin [16], examined travel time
variability under the influence of time of day, day of week,
weather effect and traffic accident. In that study, the author
quantified sources of travel time parameters with the help of
multiple linear regressions with two way interaction models.
In another study, Florida department of Transportation (Flor-
ida DOT) developed empirical travel time variability models
such as function of frequency of incidents, work zones and
weather conditions. For this, they have considered regression
analysis on combination of different scenarios of uncertainty
sources [5]. Asakura [2] further categorized the sources of
travel time fluctuations in to three factors which are from
demand side such as day to day traffic variation, supply side
such as road closure due to accidents and external factors
such as adverse weather effects and natural disaster. Most of
the studies in the literature used deterministic approach to
model travel time variation under the influence of various
factors from supply side and demand side of the system.
Travel Time variation on Hanshin expressway, Kobe route
is mainly due to traffic volume, traffic accidents and amount
of Rainfall.

The present study is an attempt to model the travel time
distribution under various uncertainties. For this, Stochastic
Response Surface Method (SRSM) has been adopted. SRSM
[6] is an extension of classical Response Surface Method
(RSM) to systems with stochastic inputs and outputs. The
motivation for considering this model over the traditional
Multiple Linear Regression (MLR) and other deterministic
approaches is that both of these models fail to map stochastic
behavior between response variable and explanatory variable
in the system of uncertainty of travel time variation. In
particular, two continuous probabilistic random factors were
considered in this paper, one is traffic volume and the other is
intensity of rain fall.

Archived continuous supersonic vehicle detectors data of
Kobe Route on Hanshin expressway network in Japan were
considered in this study. Travel time has been estimated for
the study corridor by considering time slice method. Traffic
incident data was collected for the same study period to
model the travel time variation under various uncertainties.
The same data has been considered to develop the traditional
statistical model such as regression model and stochastic
models. The comparative evaluation was made between
these modeling approaches.

2 Study area and data collection

2.1 Study area

Data used in this study were collected from a section of Kobe
Route, Route Number 3 of Hanshin expressway, Japan. Kobe

route extends between Kobe and Osaka city and the length of
this route is about 30 km. For the present study a section of the
route from Nishinomiya IC to Awaza a total length 14.9 km
data was considered for modeling travel time distribution.
Figure 1 represents the study area and Kobe Route of Hanshin
Expressway.

2.2 Data collection

Supersonic vehicle detectors are installed on Hanshin ex-
pressway at every 500 m for observing the traffic volume and
time occupancy ratio. For this study archived continuous
supersonic vehicular detectors data for every 5 min intervals
were collected for the entire year 2006. The section travel
time at every 500 mts is estimated. After that path travel time
for the study area was estimated by considering the time slice
method, this has been explained in the next section. This
travel time is influenced by various incidents occurred in the
study area during the study period. The iincident data of this
study area such as traffic accident data, road works, vehicle
break down, road cleaning and other traffic related incident
data has been collected from Hanshin Expressway Corpora-
tion Ltd. for the entire Year 2006. The number of incidents
occurred on the study area for the year 2006 is presented in
Fig. 2. From Fig. 2, it can be observed that the traffic
accidents, vehicle breakdown and road inspection were com-
paratively more on the study area. Rain fall (mm/hr) data was
collected from the official website of the Japan Meteorolog-
ical Agency (JMA) [8]. Hourly rain fall data of Osaka was
considered for the present study area.

3 Travel time estimation

From vehicle detector data, spot speed is estimated for every
500 m interval and corresponding travel time for the same
sections are calibrated by transforming the speed data of the
section. Furthermore, path travel time for the study area
(14.9 km) is estimated by using the time slice method, which
considers the variation of speed over the time by constructing
the vehicle trajectory. Travel time obtained from this method
is sufficiently close to the actual travel time [2]. Convention-
ally the travel time of an entire route is calculated simply by
accumulating the travel times of each section at a given time.
It is expressed in Eq. (1)

ti sð Þ sð Þ ¼
X
i¼1

N

ti sð Þ ð1Þ

where ti (s) denotes the travel time of section “i” at a given
time “s”.

Small sections (500 mts interval) in a route are numbered
sequentially towards the downstream direction. This method
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generates an instantaneous travel time based on the assump-
tion that vehicles instantaneously traverse the route. When
traffic condition is stable and travel speed is constant, the
travel time can be calculated correctly through this instanta-
neous method. However, the estimated travel time may not
be accurate when traffic flows are unstable. The alternative
method of calculating the route travel time is the Time slice
method, with which the travel times of each section are
accumulated successively with the delay of the section travel
time. The route travel time is represented as T(s) and this was
explained in Fig. 3. The estimation of travel time by consid-
ering time slice method is expressed in Eq. (2). Yoshimura
and Suga compared two sets of travel time estimated by the
instantaneous method and the time slice method using Au-
tomatic Vehicle Identification (AVI) data as true values.
They found that the instantaneous method caused large er-
rors at both increased and decreased hours of traffic conges-
tion and the time slice method could follow actual travel time
fluctuation without delay[19]. The time slice method is more
suitable for offline application rather than online application
when the speed varies over time [9] and also provides better
results over the instantaneous method. This path travel time
is considered as a dependent variable for travel time distri-
bution modeling.

T sð Þ ¼
X
i¼1

N

ti sþ τ i sð Þð Þ ð2Þ

where τi (s)denotes the travel time from section 1to section i-
1 and written as

τ i sð Þ ¼
X
i¼1

i−1
ti sþ τ i sð Þð Þ

Travel time distribution of the study area for the entire
year (sample size 8760) were plotted and presented in Fig. 4.
The probability and cumulative distribution is a visual tool
representation of travel time variability over the period. The
minimum and maximum travel time for this 14.9 km section
varies between 498 and 4,383 s respectively. The mean travel
time of the study area is 760 s and the standard deviation of
travel time is 346 s.

4 Modeling travel time distribution

4.1 Multiple linear regression analysis

Multiple Linear Regression (MLR) analysis is carried to
understand the influence of all the incidents on travel time
variation. Further to understand the behavior of travel time
variation on working days MLR analysis was carried out
separately. The estimated MLR model coefficients for the

Fig. 1 Study Area of Kobe
Route, Route No.3 of Hanshin
Expressway

Fig. 2 Numbers of Incidents Occurred on Kobe Route for the Year
2006

t 1
t

i

Supersonic Detectors

500mts interval Section 
Time of Day 1 2 .. i

Distance

Present Time (s)

Travel Time by 
Time slice method

t N

Fig. 3 Route travel time estimation by Time slice method
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entire year data was shown in Table 1. The basic test of any
model estimation is examination of the sign of model coef-
ficients. From Table 1 it can be observed that the sign of
estimated coefficients of all the variables are positive for the
entire year of data. This indicates that all the incidents have
positive contribution towards the travel time variation and
this is more logical since travel time increase with occurrence
of incidents. Based on t-static values it can be conclude that
traffic volume, traffic accidents, vehicle break down, road
cleaning, rain fall and other incidents are significant vari-
ables contributing to the travel time variation ( t stat value is
greater than the critical value of 1.64 at 5 % level of signif-
icance). The higher F value (371.53) and corresponding low
probability value (p<0.05) of this model indicates that the
model is significant. The corresponding R2 value explains
the 24 % of the total variation.

Similarly MLR analysis carried out for working days data
(249 days) to understand the effect of incidents on travel time
variation during these days. From observation of t stat values of
traffic volume, traffic accident, rain fall and other incidents on

working days have high magnitude of significance in travel
time variation (t stat value is greater than the critical value of
1.64 at 5 % level of significance). Road works and road
cleaning incidents generally taken place on non working days
except during emergency cases on Hanshin Expressway. Anal-
ysis of Variance (ANOVA) of this model having high F value
(275.20) and with very low probability value (p<0.005) dem-
onstrates a very high significance for the regressionmodel. The
goodness of fit of the model R2 value indicates that 25% of the
total variation is explained by this model. From Table 1, it was
concluded that the traffic volume, traffic accidents and rain fall
incidents are highly significant for travel time variation on this
section of Kobe Route.

Further from these parameters, the continuous random
attributes such as traffic volume and rain fall effect was
considered in probabilistic analysis for modeling the stochas-
tic behavior of travel time distribution. For this Stochastic
Response Surface Method (SRSM) was considered to model
the travel time distribution under the uncertainties. The limi-
tation of this model is that, it considers the continuous random

Fig. 4 Travel Time distributions
of Study Area

Table 1 MLR estimated coefficients for the study area

Variable Entire year(365) data (Samples: 8364) Working day (249) data (Samples: 5675)

Coefficients t Stat Coefficients t Stat

Intercept 421.38 52.53 439.44 43.61

Traffic Volume (veh/hr) 0.27 44.93 0.28 38.58

Traffic Accident (Y=1/No=0) 241.75 15.37 244.94 13.04

Road Works (Y=1/No=0) 7.09 0.62 12.66 0.97

Breakdown (Y=1/No=0) 33.87 2.35 5.47 0.31

Cleaning (Y=1/No=0) 25.17 1.74 16.37 0.98

Other Incidents (Y=1/No=0) 115.68 3.30 134.15 3.33

Rain Fall (mm/hr) 20.77 5.65 22.58 5.31

88 Eur. Transp. Res. Rev. (2014) 6:85–92



variables in the modeling. Before carrying out the SRSM
analysis MLR analysis has been carried out for the continuous
random variable data considered in the SRSM analysis and the
results were presented in Table 2.

Nonlinear regression analysis was also carried out for
developing the relation among the Travel Time , Traffic
Volume and Rin Fall Intensity parameter. The functional
form of the nonlinear models is given in Eq. (3). The model
coefficients estimated for individual data of study area are
presented in Table 3. Non linear model was found better than
the linear model based on R2 value is 0.226 for non linear
model whereas this value is 0.22 for linear models As in the
case of non linear analysis

y ¼ β0 þ β1TV þ β2RF þ β3 TV2
� �þ β4 RF2

� �

þ β5TV RF ð3Þ

Where TV Traffic Volume (veh/hr) and RF is Rain fall
intensity (mm/hr)and β0 to a β5

Further these model coefficients were considered for es-
timating travel time for the collocation points (Table 6) gen-
erated for 2nd order polynomial equations. The following
sections discuss the SRSM analysis for working days data.

4.2 Stochastic response surface method

Probabilistic analysis is most widely used method for charac-
terizing uncertainty in physical and social systems, especially
when estimates of the probability distributions of uncertain
parameters are available. These models can describe uncer-
tainty arising from stochastic disturbances, variability condi-
tions and risk consideration. The main process of probabilistic
models comprises of probability encoding of inputs and prop-
agation of uncertainties through models. Probability encoding
of inputs involves the determination of the probabilistic dis-
tribution of the input parameter and incorporation of random
variation. This is accomplished by using statistical estimation
technique involves estimating probability distribution from
available field data. Figures 5 illustrate the concept of uncer-
tainty propagation of travel time. In this each point of the
response surface (calculated output value of travel time) of the
model, change in traffic volume and rain fall will be charac-
terized by probability density function (PDF) of these inputs.
The methodology for adopting this approach was discussed in
the next section.

4.2.1 Methodology

Stochastic Response Surface Method (SRSM) [6, 7] is an
extension to the classical deterministic response surface
method (RSM). RSM is a collection of mathematical and
statistical techniques that are useful for the modeling and
analysis of problems in which response of interest is
influenced by several variables [13]. RSM also quantifies
relationship among the measured responses and the input
factor. The main difference between RSM and SRSM is the
way the input parameter are supplied. SRSM is one of the
ideal conventional sampling based method for uncertainty
analysis and this is accomplished by approximating both
inputs and outputs of the uncertain system through stochastic
series of well-behaved standard random variable (srv). The
series expansion of the outputs contains coefficients that can
be calculated from the results of limited number of model
simulations.

The srv’s are selected from a set of independent, identi-
cally distributed (iid) unit random variable ( i=1, 2….n).
Where “n” is the number of independent inputs and each ξi
having a zero mean and unit variance. The following steps
are involved in the application of the SRSM to the uncertain
analysis of a model with random inputs and random outputs.

Step1 Representation of stochastic model inputs: For
each uncertain input, corresponding srv is assigned and
the input random variable is expressed in terms of the
srv. If the input random variables are mutually indepen-
dent, the uncertainty in the i-th input variable Xi is
expressed as a function of the srv.

Xi ¼ f i ξið Þ ð4Þ

Step2 Functional approximation of model output:
Each model output is expressed as a series of expansion
in terms of srv as a multidimensional hermit polynomial
with unknown coefficients. A Second order polynomial
approximation is generally recommended in the literature.
Also this approximation can be refined further using
higher order terms depending on the accuracy needs. In
this study second order polynomial function with two

Table 2 Model coefficient estimated by multiple regression analysis

Model Coefficients t Stat

Intercept 440.10 39.71

Traffic Volume (veh/hr) 0.28 34.10

Rain fall intensity (mm/hr) 24.40 5.06

Table 3 Model coefficient estimated by non linear analysis

Model Coefficients t Stat

Intercept 473.543 22.52

Traffic Volume (TV) (veh/hr) 0.203 5.024

Rain fall intensity (RF) (mm/hr) 28.081 1.993

TV2 2.94E-05 1.779

RF2 −3.922 −4.732

TV*RF 0.029 3.174

Eur. Transp. Res. Rev. (2014) 6:85–92 89



independent variable ξ1 andξ2 were considered and the
mathematical expression was presented at Eq. (5)

y ¼ a0 þ a1ξ1 þ a2ξ2 þ a3 ξ21−1
� �þ a4 ξ22−1

� �

þ a5ξ1ξ2 ð5Þ

Step 3: Estimation of unknown coefficients in func-
tional approximation: The unknown coefficients in
Eq. (2) are estimated by equating model outputs with
the corresponding polynomial expansions at a set of
possible collocation points. Preferably next higher order
of functional approximation routes to be considered for
the generation of collocation points [15].
Step 4: Calculation of the statistical properties of mod-
el outputs: The model outputs are estimated followed by
the estimation coefficients. The statistical properties of
the outputs such as probability density function, mo-
ments of “y” can be readily calculated. This can be
accomplished by generating large number of the srvs
and the calculation of the values of inputs and the
outputs from the transformation of Eqs. (4) and (5)

4.2.2 SRSM analysis

Out of 5675 working days sample data, 4180 sample data
were incidents free. During this time period travel time
varies only due to fluctuation in traffic volume and effect
of rain fall. SRSM method was applied to model the travel
time distribution due to the effect of these continuous ran-
dom variable. Table 4 shows the uncertainty ranges of
model parameters and sampling strategy considered for

transforming the uncertain variables for SRSM model. Also
the statistic parameters of input and response variable are
presented in Table 4. Goodness of fit test between the
observed frequencies (from data ) and the theoretical fitted
frequencies was done by considering Kolmogorov-Smirnov
test and Chi-square goodness of fit for the two fitted distri-
butions such as lognormal distribution for travel time and
exponential distribution for rain fall. The results indicates
that at the 5 % level of significance the decision is to reject
the null hypothesis, indicates that no difference between
empirical and theoretical cumulative distributions. There-
fore lognormal distribution and exponential distribution
was considered for generating the random data for traffic
volume and rainfall respectively in SRSM model.

Second order SRSM model was considered to approx-
imate the response of travel time (Eq. 5). In order to
solve for the second order polynomial expansion, the

roots of the third order hermit polynomial, þ ffiffiffi
3

p
;−√3

and zero are used. The points are selected such that

Fig. 5 Schematic
Representation of Propagation
of Travel Time Uncertainty

Table 4 Uncertainty ranges of model parameter and response variable

Parameter Traffic
volume
(veh/hr)

Rain fall
(mm/hr)

Travel
time
(seconds)

Minimum value 190 0 503

Maximum value 2429 19 4383

Average value 1222 0.20 784

Standard deviation 589 0.97 350

Distribution type Lognormal Exponential

Distribution parameter μ = 6.95; σ = 0.61 l = 5.23
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each srv takes the value of either 0 or one of the roots of
the polynomial. Therefore there are nine possible colloca-

tion points they are 0; 0ð Þ; √3; 0
� �

; 0; √3
� �

; −√3; 0
� �

;

0;−√3
� �

;
ffiffiffi
3

p
;−√3

� �
; −√3; √3
� �

; √3; √3
� �

and −
ffiffiffi
3

p
;−√3

� �
.

Set of model input points for traffic volume and rainfall
at the points were generated by using transformation tech-
nique and presented at Table 5. For lognormal distribu-
tion exp(μ+σξ1) and for exponential distribution − 1

λ log
1
2 þ 1

2 erf
ξ2ffiffi
2

p
� ��

was considered [6]where erf is a error function.

The unknown coefficients in Eq. 5 considered for SRSM
model are solved by using singular value decomposition
method and the corresponding coefficients (a0, a1…a5) are
presented at Table 6. The Eq. 5 is well fit for the points which
were considered in Table 5. The highest R2 value (0.99) of
this model indicates that this model is significant for the 2nd
order polynomial equation. The highest t-statistic values of
this model indicate that coefficients of linear term, quadratic
term and interaction term is significant.

Once the coefficients are estimated the travel time distri-
bution can be fully described by random generation of a
large number of samples. In this study the 4180 random
samples (same size original data) are generated for SRSM
analysis. All this procedure was implemented in MATLAB
environment [12]. Travel Time estimated by SRSM model
and MLR models are compared against with actual travel
time is presented at Fig. 6. From this figure it can be
observed that SRSM probability distribution is uni-modal
(having onemaximum at 625 sec), asymmetrical and similarly

follows the actual travel time distribution. Whereas travel
time distribution obtained by MLR models are bimodal
frequency curves having two peaks, one maximum at 625 s
and the other maximum at 925 s. Even travel time distribu-
tion estimated by MLR model by considering all the uncer-
tainty parameters (Table 1) also follows bimodal frequency.
From this it can be conclude that the MLR models are
overestimating beyond the average actual travel time
(783 s). It can also be concluded from the Fig. 5 that even
if more uncertainty parameters are considered for modeling
travel time MLR models are unable to follow the actual
travel time distribution. Further, from travel time distribution
it can be observed that travel time obtained by SRSM model
is well distributed between travel time, 542 s to 2,302 s.
Whereas MLR models estimated travel time distribution
varies between 493 to 1,363 s. From this it can be concluded
that MLR models are unable to map the worst case scenar-
ios, this we can observe from tails of the probability distri-
bution of travel time (Fig. 5).

From the above discussion of results, it was observed that
SRSM models are capable to analyze the stochastic behavior
of uncertain variable and also these models are performs
better than the conventional regression model to model travel
time distribution. The algebraic expressions in terms of stan-
dard random variable (srv) are smooth and continuous could
efficiently model the tails of the probability distributions of
the outputs (Fig. 5). This explains that the SRSM models are

Table 5 Collocation points for 2nd order polynomial equations and
corresponding travel time

Collocation points Traffic volume
(veh/hr)

Rain Fall
(mm/hr)

Travel Time
(seconds)

ξ1 ξ2

0.000 0.000 1045 0.133 736.32

1.732 0.000 2996 0.133 1282.57

0.000 1.732 1045 0.008 733.30

−1.732 0.000 365 0.133 545.70

0.000 −1.732 1045 0.608 747.83

1.732 −1.732 2996 0.608 1294.08

−1.732 1.732 365 0.008 542.73

1.732 1.732 2996 0.008 1279.56

−1.732 −1.732 365 0.608 557.26

Table 6 Model coefficients estimated by SRSM model

a0 a1 a2 a3 a4 a5

Coefficients 797.015 212.709 −4.193 59.282 1.416 0.0001

Fig. 6 Evaluation of SRSM: Probability distribution and Cumulative
Probability Distribution
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capable to model the worst case scenarios. Further the ob-
servable difference between the estimated distribution of
SRSM model and actual distribution can be improved by
increasing the number of uncertainty parameters in the
model.

To validate the distributions obtained by both the
models, chi-square non-parametric statistical goodness of
fit have been carried out between actual travel time con-
sidered as observed frequency and travel time estimated
by SRSM and MLR model considered as expected fre-
quency and 30 s travel time intervals have been consid-
ered for frequency estimation. From the results it can be
concluded that MLR models have higher estimated chi-
square value (6415) than the SRSM models (2182). This
emphasizes that MLR models have grater discrepancy
between actual distribution and estimated distribution than
SRSM model.

5 Conclusions

Travel time distribution is the most useful indicator to mea-
sure performance of any transportation system and properties
of this distribution was influenced by various uncertainties
which are derived from supply side, demand side and other
external factors of any transportation system. Regression
analysis between travel time and various uncertain parame-
ters were considered to develop the functional relationship
among them. From the t-statistic value it was observed that
the effect of traffic volume, traffic accidents and amount of
rain fall influence is quite significant on Hanshin Express-
way study area. Further, SRSM models were applied in this
study to resolve a probabilistic analysis. The uncertain pa-
rameters considered in this analysis are traffic volume and
rain fall intensity for modeling travel time distribution. The
travel time distribution obtained by SRSM model was com-
pared with regression models and observed that SRSMmod-
el is better than the regression model and also following the
actual travel time distribution. Further the difference be-
tween the estimated distribution by SRSM model and actual
distribution may be improved by increasing the number of
uncertainty parameters in the model.
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