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Abstract
Purpose The paper concerns a transport system for pedestrian
areas, based on a fleet of fully-automated Personal Intelligent
Accessible Vehicles. The following services are provided:
instant access, open ended reservation and one way trips. All
these features provide users with high flexibility, but create a
problem of uneven distribution of vehicles among the stations.
A fully vehicle based relocation strategy is proposed: when a
relocation is required vehicles automatically move among
stations. The paper focuses on a methodology that allows to
plan the proposed transport system for wide pedestrian areas.
The methodology aims to determine the fleet dimension and
the relocation strategy parameters which minimize the system
cost. The system cost takes into account the level of service
and the efficiency. Relocation strategy parameters define
when and among which stations relocations should be
performed.
Methods The problem faced is an optimisation problem
where the search space is defined by all the possible fleet
dimensions and relocation strategy parameters. As this cost
function could be a multipeak function and since the search
space is discrete and extremely large, a random search algo-
rithm has been adopted. Because of the characteristics of the
problem, a parallel optimization techniquewas required. Given
a fleet dimension and relocation strategy parameters, a
microsimulator models the activity of each user, as well as
the activity of each vehicle over time with the aim of finding
the level of service and the system efficiency.

Results, conclusions and application The methodology has
been applied to planning the proposed transport system for the
centre of Barreiro, Portugal.

Keywords New generation car sharing system . Automatic
relocation .Micro simulation . Parallel optimization .

SimulatedAnnealing

1 Introduction

The paper concerns a new car sharing system for pedestrian areas,
like historical city centres. The transport system is based on a fleet
of personal intelligent city accessible vehicles (PICAVs). The
PICAV vehicle is a one person vehicle which is meant to ensure
accessibility for everybody, and some of its features are specifi-
cally designed for people whosemobility is restricted for different
reasons, particularly (but not only) elderly and disabled people.
The PICAVs will travel in traditionally pedestrian areas and
allow people to travel around parts of urban areas which are
otherwise difficult or impossible for them to access.

The PICAV unit is an electrically powered with limited
autonomy range (some 60 km), at low speed (max 25 km/h).
The vehicle is about 1.1 m wide and 1.3 m long. Its total mass
is about 400 Kg (batteries included) and its cinematic charac-
teristics have been described in Masood et al. [18] and
Cepolina [11]. The vehicle can be fully automated or partially
automated. The automation is made possible by a number of
laser scanners, ultrasonic sensors and also cameras as well as a
highly sophisticated control system, which is being developed
by INRIA (http://team.inria.fr/imara/publications-2/papers/).
When the vehicle is user driven, the level of automation
depends on the user’s abilities. The vehicle because of its
small dimensions, tiny footprint and on-board intelligence
perfectly fits in pedestrian environments [18], disturbing the
other pedestrians as little as possible.
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Stations with charging devices are spread in the pedestrian
area and its border, possibly closed to interchange points. PICAV
are available at stations and should be returned to stations.

The PICAV transport system is a second generation car
sharing system, and it is meant to provide users a high level of
flexibility, similar to private car. One way trips , open ended
reservation and instant access are the main characteristics of
the proposed transport system. These three features provide
users a high level of flexibility. But on the other hand, the risk
of unbalancement in the number of available vehicles at
stations is high: due to uneven demand, some stations during
the day may end up with an excess of vehicles whereas other
stations may end up with none. Therefore, relocation is nec-
essary. In literature, several relocation schemes are proposed
[7]. In operator-based relocation strategies some operators
manually relocate a vehicle or a platoon of vehicles from
stations having too many vehicles to stations having too few.
Several car sharing systems have adopted this relocation
scheme, but sometimes have turned out into a failure due to
the heavy staff and management cost. Some user based relo-
cation strategies have been proposed, in Barth and Todd [2], in
Cepolina et al. [9] and in Cepolina and Farina [8], which
successfully reduce these costs. On the other hand, the level
of automation of vehicles is increasing so rapidly that a fully
vehicle based relocation strategy will soon be possible.

The proposed transport system implements a fully PICAV
based relocation strategy: when relocations are required, a
system supervisor has the duty to redirect PICAVs from a
station to another. According with the Supervisor hints,
PICAV vehicles automatically relocate themselves, thanks to
their high level of automation.

This paper focuses on the problem of optimising the fleet
dimension and the threshold values that determine relocation
occurrences. The study area is described by a street network
where stations are localized and by the PICAV transport demand.
The optimal fleet dimension and threshold values are the ones
that minimise a cost function. The cost function takes into
account both the level of service provided to users and the
efficiency from the management point of view. Since the cost
function could be amultipeak function and since the search space
is discrete and extremely large, Simulated Annealing (SA) has
been chosen for solving the minimization problem. Given a
PICAV fleet and a set of thresholds the related cost function
value is assessed by micro-simulation. This is achieved by input-
ting the street network, the PICAV transport demand and the fleet
dimension and the threshold values into the microscopic simula-
tor, which then simulates the behaviour of the transport system
during the reference time period and assesses the waiting times of
users and the total amount of time spent by vehicles in relocation.

The paper is organised as follows. Section 2 describes the
proposed transport system. Section 3 outlines the architecture of
the transport system microscopic simulator. Section 4 describes
the optimization problem and the random search algorithm.

Section 5 presents the case of study of the old part of Barreiro,
Portugal. Major conclusions and future work follow.

2 Main characteristics of the proposed transport system
and the relocation strategy parameters

A relocation is required when a critical situation occurs. A
critical situation occurs when the number of vehicles in a
given station at a given time instant goes below the station’s
low critical threshold. This situation is referred as ZV i.e. Zero
Vehicle [7, 10, 15].When this condition occurs, the station has
a shortage of vehicles and to avoid a possible queue in the next
future a request for a vehicle is generated. In Fig. 1 this
situation occurs in station j , since the number of vehicles nj

results lower than the station j ’s low critical threshold at the
time instant the figure refers to. The low critical threshold
could be assumed constant in time or a function of time.

When a ZV situation takes place, the vehicle request is
addressed only to stations where the number of vehicles is
above the low buffer threshold . According with Kek et al. [15],
the low buffer threshold is the minimum number of vehicles
that a station needs to have in order to be able to send vehicles.
In Fig. 1 station k is able to send a vehicle to station j , station z
is not in this situation at the time instant the figure refers to.

Among the stations to which the vehicle request could be
addressed, the providing one is selected according to two
criteria: the closest one (shortest time criterion) and the station
having the highest number of vehicles (inventory balancing ).
The shortest time criterion relates mainly to service levels,
while the inventory balancing mainly focuses on cost efficien-
cy. Therefore, an appropriate choice of relocation technique
should be made according to the current system situation: in
periods of low usage, the most appropriate relocation tech-
nique is by inventory balancing whilst in periods of high
usage, then the shortest time technique performs best [7, 10].

Another critical situation is the so-called FP i.e. Full Port
[7, 10, 15]. When this situation occurs, a station has reached
its capacity and therefore vehicles arriving must be redirected
to other stations because there is not more free space for
parking. In this case, vehicles are redirected and the
supporting station is always the nearest one, in order to reduce
the disutility created to the user. Experimental data show that a
relocation strategy based on preventing ZVoccurrences, guar-
antees that FP occurrences do not take place.

The relocation strategy parameters are the stations’ low
critical thresholds and the stations’ low buffer thresholds.

3 The microscopic simulator

The proposed transport system has been modelled according
to an object-oriented logic, because it is the most suitable to
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our targets. The developed simulation model indeed aims to
be: simple, modular, easy to understand, easy to modify (in
case we wanted to take into account further aspects in our
modelization). The language chosen for writing the code is
Python 2.5.

The simulator receives as input: the simulation time period,
the road network, the transport demand, the PICAV fleet char-
acteristics and the relocation strategy parameters. The simulator
allows to track the second-by-second activity of each user, as
well as the second-by-second activity of each vehicle. In Fig. 3 a
snapshot of the simulation in a given time instant is provided:
the green circle is proportional to the actual number of vehicles
available at each station; the red circle to the length of the queue
at each station and the white circle is proportional to the max-
imum waiting time at each station. In violet the actual positions
of the PICAV vehicles are shown. The simulator graphical user
interface has been provided byUCL [20]. The simulator gives as
offline output the transport system performances, in terms of
level of service (LOS) provided to users and in terms of effi-
ciency from the management point of view. A general scheme
of the micro simulator is reported in Figs. 2 and 3.

3.1 Input data

Themicro simulator input data are: the simulation time period,
the road network, the transport demand, the PICAV fleet
characteristics, the relocation strategy parameters. All these
inputs are deterministic. The only stochastic input is the
transport demand, as it concerns the user arrival time instant.

3.1.1 The simulation time period

The simulation time period starts when the car sharing system
opens to users and ends when the last user returns the PICAV.
In the following we refer to a daily simulation time period.
The simulation time period could be characterised by peak
and off peak phases: for each phase an average pedestrian
density k and a PICAV transport demand should be specified.

3.1.2 The road network

The road network includes stations, provided with charging
equipments, and the roads in which PICAVvehicles are allowed
to travel. The road network is defined by OpenStreetMap.

Stations have been represented through nodes. Between
each pair of stations, we take into account only one path, which
could be the shortest one or the more attractive one since
characterised by a high concentration of shops, museums and
other activities. The characteristics of the path we are interested
in are: its overall length and the average upslope. These data
are necessary for the discharging law of the PICAV vehicle’s
battery. The overall length of a path is also required in order to
determining the trip duration.

For each couple of stations, the path length and the average
upslope are assessed through a routing algorithm written in
JavaScript, which interacts with OpenStreetMap. These data
are given as data input in the simulator in the form of two
matrixes. Thematrixes are squared and the number of rows (or
columns) equals the number of stations in the network. In the

Fig. 1 Conceptual layout of the
fully PICAV based relocation
strategy
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first matrix, the cell ij represents the path length between the
origin node i and the destination node j . In the second matrix,
the cell ij represents the average upslope of the path between
the origin node i and the destination node j .

The travel time between each couple of stations is calcu-
lated in the simulator, from the distance between each pair of
stations and the PICAV speed. The vehicle speed is assessed
from the pedestrian density according to the following model:

PICAV user driven:

v ¼ −1:45k þ 1:58 ð1Þ

PICAVautomatically driven, relocation trip:

v ¼ −1:45k þ 1:38 ð2Þ

where k is the pedestrian density expressed in pedestrians per
square meters; v is the PICAV vehicle speed expressed in m/s.
The model for assessing the vehicle speed from the pedestrian
density is described in detail in Cepolina et al. [6]. The model
has been implemented in the micro simulator.

3.1.3 The transport demand

The transport demand refers to a given phase of the simulation
time periods and it is given to the simulator in the form of OD
matrix. Each row refers to a station of origin, and each column
to a station of destination. Each cell gives the hourly number

of trips from the station the row refers to, to the station the
column refers to.

We consider two trip typologies. A trip by PICAV could be a
direct trip on board a PICAV, or a sequence of shorter trips
(multitask trip) where one accomplishes a number of short tasks
that require short term parking along the street, before finally
returning the unit. In both cases what is of interest for the
proposed study is the overall duration of the trip. Given an origin,
a destination, the path between them, and an average pedestrian
density, the trip duration changes according to the trip typology.

Therefore each OD matrix refers to a given phase of the
simulation time period and to a trip typology. In the simulation
PICAV users are generated with the following characteristics:
the origin of their trip by PICAV, the destination, the time at
which they appear in the origin and the trip typology. These
data are assessed according to the OD matrixes. The time at
which a user appears in their origin is randomly generated: if
X users have to be generated between 8 and 9 a.m. in a given
origin, X casual numbers are extracted within the given time
interval and these casual numbers are the exact arrival instants
of the X users in the origin.

3.1.4 The PICAV fleet characteristics

The PICAV fleet characteristics are: the fleet dimension, the
number of PICAV vehicles at each station at the beginning of
the simulation time period, the battery capacity, the charging
and discharging laws.

Fig. 2 General scheme of the micro simulator. The simulator is object-oriented and it involves three classes: user, PICAV and station. This is just a
simplified scheme and methods are not reported entirely
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A lithium-ion battery has been selected by MAZEL [19].
The battery is composed of 15 blocks connected in parallel,
each composed of 27 cells connected in serial, and provides
202 Ah and 48 V DC.

As it concerns the discharging law, the quantity of dis-
charge is assessed from the overall length and average upslope
of the paths. The upslope contributes heavily to the resistances
to motion encountered by the PICAV vehicle. If the path is
instead descending the recovery in battery charge is so slight
that it is neglected.

The battery charging technique is the opportunity charg-
ing . The term opportunity charging refers to the charging of
the batteries wherever and whenever power is available. The
minimum charge level is the quantity of charge necessary to
the vehicle to perform the longest trip or relocation journey.
Every time a PICAV is returned in a station, a check on its
charging level is performed. If the vehicle has a level of charge
which is more than minimum charge level, it is available to
users and to relocations, otherwise it starts the charging pro-
cess. The minimum charge level has been determined through

simulation, considering the most consuming path, both for
users and relocation trips.

3.1.5 The relocation strategy parameters

The relocation strategy parameters are described by two vec-
tors. Their dimension equals the number of stations in the area,
the value of each vector component is the station’s low critical
threshold for the first vector and the station’s low buffer
threshold for the second vector.

A high value of low critical threshold gives rise to a high
number of required relocations and to low waiting times, if the
fleet is consistent and therefore there are vehicles available for
relocation.

The low buffer threshold is greater than the low critical
threshold. If the low buffer threshold is much greater than the
low critical threshold, the number of satisfied requests for
relocations is low because often no stations can provide the
vehicles required: this results in an increase of the users
waiting times.

Fig. 3 A snapshot of the simulation at a given time instant [20]
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If the low buffer threshold is slightly greater than the low
critical threshold, the number of satisfied requests for reloca-
tions is high; on the other hand, it may occur that at a given
time instant a station provides a vehicle and at a following
time instant the same station is in shortage of vehicles. This
results in an increase in the number of required relocations. As
a result, it is necessary to optimize the low critical and low
buffer thresholds values for each scenario under study.

3.2 Output data

3.2.1 Level of service (LOS)

LOS measurement are assessed based on the statistical distri-
bution of users waiting times. Castangia and Guala [4] pro-
posed a new LOS measurement scale (shown in table 1) using
as reference the 50th, 90th and 95th percentiles of waiting
time. The LOS measurement scale ranges from LOS from A
(perfect service) to F (completely poor service). All the con-
straints on the three percentiles of users waiting times should
be met to achieve a given LOS. LOS measurements could be
assessed for each station or for the overall area, referring
specifically to the waiting time of users arriving in each station
or to the waiting time of all the population of PICAV users.

3.2.2 Efficiency

An explicit expression to assess the transport system efficien-
cy does not exist. However, according to Barth and Todd [1]
and Kek et al. [15], we assess the efficiency according to the
following variables:

& fleet dimension;
& number of required relocation trips;
& percentage of vehicles available, with reference to the total

fleet dimension, at each simulated time instant.

The values of the first two variables are assessed offline at
the end of the simulation; the value of the last variable is
assessed online, i.e. during the simulation run.

3.3 Stochastic effects

As the input data are stochastic regarding the users arrival times,
the output data, in terms of users waiting times and relocation
time, are stochastic as well. According with the criteria given in
Law and Kelton [17], 30 runs of the microscopic simulator
resulted sufficient to reduce these stochastic effects.

3.4 The validation of the microscopic simulator

Microscopic model calibration and validation require field data
collection, as it concerns output data and their relative input
data. In the proposed micro simulator, the critical input data is
the OD matrix since a transport system like the one proposed
does not exist yet and therefore we have no way to assess the
demand for it. As it concerns the output data, the critical ones
are related to the PICAV positions, the user waiting times and
the queue lengths at the stations. Again the collection of these
data in the field is not possible since the PICAV prototype is
under construction and the transport system is not yet operative.

However, some sub-models implemented in the microscopic
simulator have been calibrated and validated. These sub-models
refer to: the battery discharging and recharging laws and the
relationship between PICAV speed and pedestrian density. The
sub-model related to the battery has been calibrated and vali-
dated byMAZELwho is in charge to provide the PICAVpower
system [19]. As it concerns the last sub-model, it has been
calibrated and validated with the results of experiments aiming
at understanding the relationship between the speed of an
electric scooter and the density of pedestrians [6]. The electric
scooter was a standard electric scooter designed for disabled
people, and not a PICAV unit as this is yet to be constructed.
However the authors believe that the speed density relationship
related to the electric scooter can be transferred to the PICAV
since the cinematic behaviours of the two are similar.

4 The optimization problem for the picav transport system

The problem of assessing the fleet dimension and the reloca-
tion strategy parameters is formulated as a constrained
minimisation problem. The function to be minimised is a
linear combination of the transport system cost Cd

s and of
the user’s costs Cd

u: both costs refer to the simulation time
period and their dimension unit is €/day.

In the formulated problem, the independent variable is a
vector s whose dimension is equal to 3:

& the first component is equal to the fleet dimension nV ;
& the second component is equal to the low critical thresh-

old . Low critical threshold values are taken constant for all
the simulation time period and also are assumed to be the
same in all stations. The value reported in the second

Table 1 The LOS assessed according to the percentiles of users waiting
time expressed in seconds [4]

LOS Waiting time (minutes) not greater than:

50th percentile 90th percentile 95th percentile

A 0.5 1 1.5

B 1 2 3

C 1.5 3 5

D 2.5 5 8

E 4 8 10

F Worse Worse Worse
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component of the vector s is the low critical threshold in
one of the stations;

& the third component is equal to the low buffer threshold .
Low buffer threshold values are taken constant for all the
simulation time period and also are assumed to be the same
in all stations. The value reported in the third component of
the vector s is the low buffer threshold in one of the stations.

High critical thresholds have not been optimised since they
correspond to the station capacities. The high buffer thresh-
olds are not optimized, since a relocation strategy based on
preventing ZVToccurrences, guarantees that FPToccurrences
do not take place, as stated before.

The search space has therefore three dimensions, each one
is determined by a component of the vector s . The search
space is limited as follows:

& the low buffer threshold of each station must be greater or
at least equal than the low critical threshold,

& the fleet dimension must be greater than the sum of the
low buffer thresholds,

& the fleet dimension must allow a vehicle-to-trip ratio be-
tween 0.03 and 0.06 [1].

The constraints of the optimization problem refer to the
50th, 90th and 95th percentiles of users waiting time from
which LOS depends.

4.1 The transport system cost

The daily cost of the system, Cd
s, is equal to:

Cs
d ¼ C f

d þ Crun
d þ Csetup

d þ Cman
d −Ctickets

d þ Cr
d ð3Þ

For Cd
f , i.e. the daily cost of the fleet, we assume that the

purchase price for each vehicle is 9,000€. This cost includes the
vehicle with a lifetime of 8 years and two lithium-ion battery
packs with a lifetime of 4 years each. The cost of adding
vehicles to the system increases linearly with each vehicle.
The linear increase in vehicle costs is a rather simplistic
assumption and does not take into account any economy of
scale, but it is a quite frequent assumption [1]. The daily cost
of amortization of the fleet has been calculated with a dis-
count rate r, according to the following formula:

C f
d ¼ nvcv

r 1þ rð Þlt
1þ rð Þlt−1

" #
1

365
ð4Þ

Where:

& nv is the number of PICAV vehicles within the fleet: it is
the first component of vector s ;

& cv is each PICAV vehicle purchase cost (it includes two
battery packs);

& r is the discount rate, equal to 8 %.
& lt (number of years) is the PICAV vehicle lifetime.

Cd
run, i.e. the daily cost of running the system, includes the

maintenance costs and the electricity cost to run the PICAV
fleet. Regarding the maintenance costs, and excluding the cost
of batteries that we already included in the vehicle purchase
cost, electric cars incur in very low costs and we neglect them.
As it concerns the electricity needed to charge all the PICAV
vehicles during an operative day, it is proportional to the
average daily kilometres travelled by the PICAV users and to
the length of the relocation trips. Since we assume a constant
PICAV transport demand, the average daily kilometres trav-
elled by the PICAV users do not depend on the vector s .
Conversely, the length of the relocation trips depends on s .
The electricity cost related to relocation trips is taken into
account in Cd

r and it is proportional, through the vehicles
velocity, to the total amount of time spent in relocation.

Cd
setup, i.e. the daily cost of system setup, includes infra-

structure cost which is related to the number of parking spaces
in each station. This cost depends on the fleet dimension. But
due to the small dimension of PICAV vehicles (1.1m long and
0.9 m wide) [18] we consider it as a flat cost. Cd

man, i.e. the
daily cost of system management, is again a flat cost.

Cd
tickets is the daily revenue derived from the tickets. The

ticket price is the same for all the PICAVusers. If we multiply
the number of PICAV users by the ticket price, this provides
approximate ticket revenues. Since the number of users in a
simulation time period has been assumed constant, Cd

tickets is
again a flat cost.

Cd
r, i.e. the daily cost of relocation, is calculated from the

total amount of time that PICAV vehicles have spent
relocating during the simulation time period:

Cr
d ¼ cr

X
j¼1

nv

trj ð5Þ

Where:

& cr is the cost of each minute of relocation, assumed equal
to 0.01€/min; it takes into account also the energy con-
sumed in each minute of relocation.

& t rj is the time spent by j th vehicle in relocation during the
simulation time period and it depends on the vector s : t rj(s).

The total relocation time ∑
j¼1

nv
trj takes into account the time

spent by all PICAV vehicles in relocation and it is a function

of s : ∑
j¼1

nv
trj sð Þ .

4.2 The users cost

The cost supported by users has been measured in terms of the
total users waiting time and the cost the users have to pay for
the service. The total users waiting time is the overall length of
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time, in minutes, users have to wait for a vehicle when it is not
immediately available. Cd

u has the following expression:

Cu
d ¼ cw

X
i¼1

m

twi þ Ctickets
d ð6Þ

Where:

& Cd
tickets is the overall cost paid by the PICAV users and it is

givenmultiplying the number of PICAVusers by ticket price.
Since the PICAV transport demand has been assumed con-
stant, Cd

tickets is again a flat cost. Moreover this term equals
the revenue derived from the tickets that appears in the
transport system cost, therefore both terms appear in the cost
function with opposite signs, and therefore delete each other.

& cw is the cost of a unit of waiting time, namely 0.10€/min
[12];

& m is the total number of users who have been in a queue
during the reference time period;

& twi is the waiting time in minutes of the i th user. It depends
on s : twi(s);
The total users waiting time in the simulation time period

∑
i¼1

m

twi is again a function of s : ∑
i¼1

m

twi sð Þ .

4.3 The constrained optimization problem

Weminimize a function f which is given by the sum ofCd
s and

Cd
u without the flat cost terms since they do not affect the

minimization problem. The f function has the following
expression:

f sð Þ ¼ nvcv
r 1þ rð Þlt
1þ rð Þlt−1

" #
1

365
þ cw

X
i¼1

m

twi sð Þ

þ cr
X
j¼1

n

tri sð Þ ∀s∈ N3

ð7Þ

N 3 is the search space and N is intended as the set of
natural numbers.

The constrained minimization problem is therefore

Minimize f sð Þ ð8Þ

subject to:

g sð Þ ¼
t50%w −4 < 0

t90%w −8 < 0

t95%w −10 < 0

8>><>>: ð9Þ

Where:

– tw
50%,tw

90%,tw
95% are the 50th, 90th and 95th percentiles of

users waiting time, expressed in minutes.

We transform the constrained minimization problem into a
single unconstrained problem using penalty functions. The
constraints are placed into a new objective function h (s ) via
a penalty parameter bμ > 0 in a way which penalises any
violation of the constraints:

h sð Þ ¼ f sð Þ þ bμ ⋅Σi max 0; gi sð Þf g½ �2 ∀ s∈ N 3 ð10Þ

Where: gi is the i
th constraint.

If gi(s )≤0, then the [max{0,gi(s )}]
2=0, and no penalty is

incurred. On the other hand, if g i(s )>0, then [max{0,

gi(s )}]
2>0 and the penalty term bμ max 0; gi sð Þf g½ �2 is applied.

The weight of the penalty function bμ is unknown and we
determine it with an iterative process, according with Bazaraa
et al. [3], starting from a small value and increasing it progres-
sively. In fact, as the value of μ increases, the optimal solution
of h (s) gets arbitrarily close to the optimal solution of the
original constrained problem: minimize f (s ), subject to:
g(s)≤0. The initial value of the penalty parameter is taken as
μ1=0.1, and is updated as follows: μk+1=βμk, where the
scalar β is taken as 10.0 [3] and k and k+1 are two successive
iterations.

For a given μ k, we have a function hk (s ) to minimise. If
the vector s* that minimise hk (s ) is the same vector for which
g (s*)≅0 we stop the iterative process and bμ ¼ μk .

For a given value for the penalty parameter μ k and a given
point in the search space so, we calculate the value of the
hk (so) function simulating the transport system with the
microscopic simulator that has been described in the section 3.

Since there is no analytical expression for hk (s), we cannot
exclude the need to deal with a multi-peak function and the risk
of reaching a local minimum, without being able to find the
global minimum, is high [5]. To combat this issue and the fact
that the search space is extremely large, Simulated Annealing
(SA) has been chosen to solve the minimization problem. The
procedure for solving the minimisation problem through the
Simulated Annealing is described in the following section.

4.4 The Simulated Annealing

The Simulated Annealing (SA) scheme is a stochastic method
currently very popular for difficult optimization problems.
The term Simulated Annealing is motivated by an analogy
to annealing in solids searching for minimal energy states.
This procedure starts with the metal at a liquid state and at a
very high temperature. In this state the atoms are quite free in
their movements. The temperature of the metal is then slowly
lowered. If the metal is cooled slowly enough, the atoms are
able to reach the most stable orientation. This slow cooling
process is known as annealing and so the method is known as
Simulated Annealing.
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Themethod is an iterative process that searches from a single
point moving in its neighbourhood and allows sometimes to
accept worse solutions. This is meant to avoid to get stuck in a
local minimum in the optimization procedure. Worse solutions
are accepted according to a probability, which depends on a
parameter, i.e. the temperature, which decreases with the num-
ber of steps.

The algorithm evolves through an iterative cycle, in which
the search space is explored. This search depends on a control
parameter called temperature Twhich decreases as the number
of the iteration of the cycle increases. In each iteration, a new
point sn is reached from so, according to the transition rule. At
the new point, the value of the cost function h is checked.

Since the cost function does not have an explicit formula, at
each step of the Simulated Annealing algorithm, the micro-
scopic simulator is recalled to calculate the users waiting times
and the relocation times from which the cost function value
depends. The diagram in Fig. 4 represents the cost function
value assessment in the case so has only 2 components.

The updating happens according to:

a) if h (sn) ≤ h (so) → sn substitutes so, i.e. so : = sn
b) if h (sn) > h (so) → sn will become the current solution so
with a probability given by:

p ¼ exp −
h snð Þ−h soð Þ

T

� �
ð11Þ

This is the core of Simulated Annealing and is known as
the Metropolis algorithm. T is the value of the temperature for
the current cycle [16]. Given that r ∈[0,1] is a pseudo random
number, updating happens according to the following:

if r ≤ p → the new solution sn substitutes so,
if r > p → the new solution sn is rejected and therefore so
will not be updated.

Therefore the algorithm needs the definition of the cooling
schedule, the local search and the starting and stopping
conditions.

4.4.1 The cooling schedule

The cooling schedule is defined by the initial temperature, the
law of its decrease and the final temperature. The starting
temperature has been determined according to Laarhoven
and Aarts [16].

An initial acceptance ratio p0 of the worse solution, e.g.
0.5, is fixed at the first step of the algorithm. From this point,
the initial temperature T0 is determined from the acceptance
ratio p0 in this way, according to Laarhoven and Aarts [16]:

0:5 ¼ p0 ¼ exp −
h snð Þ−h soð Þ

T0

� �
ð12Þ

The choice of the initial acceptance ratio has the purpose of
performing a quite good exploration of the search space
without slowing down too much the algorithm.

As in Cepolina [5], the geometric temperature reduction
function has been used: Tk+1=α ⋅Tk where Tk and Tk+1 are
the temperatures in two consecutive iterations of the algo-
rithm. Typically, 0.7≤α ≤0.95. In order to have a good explo-
ration of the search space but not a too slow algorithm, α has
been assumed equal to 0.9.

The final temperature scheme of the cooling schedule is
replaced by a stopping condition. The algorithm is stopped
when 100 iterations without accepting any more new solutions
is reached, according to the stopping criteria given in Laarhoven
and Aarts [16].

4.4.2 The transition rule

The transition rule regards the exploration of the search space:
from a given vector so, a new vector sn is selected in the
neighbourhood of so.

The transition rule is probabilistic: it passes from so to sn
changing only one component of the vector so. The algorithm
randomly determines the component of the vector to modify. In
our case, each component has the same probability to be
selected. The algorithm also determines whether to increase
or decrease the chosen component: it is increased with a prob-
ability of 50 % and it is decreased with the same probability.
More specifically, the first component of so, i.e. the fleet
dimension, if selected, is increased or decreased by m , where
m is the number of stations in the intervention area. The second
and the third component of so, the low critical and low buffer
thresholds, if selected, are increased or decreased by 1. More-
over, the algorithm avoids the situation where, in a given
iteration, the vector component to change is the same as the

Fig. 4 For each point of the search space, the cost function value is
assessed by micro simulation

Eur. Transp. Res. Rev. (2014) 6:191–204 199



one that has been changed in the previous iteration. In this way,
it is guaranteed that the new vector s n is taken in the
neighbourhood of the previous vector so.

4.5 Parallel optimization

The optimization procedure previously described has shown a
serious problem: the objective function is heavily dependent on
the fleet dimension (first component of s) and slightly depen-
dent on threshold values (second and third components of s).
This causes a sensible slowdown of the optimization algorithm.

Therefore, it has been decided to split the search space into
two components and to work in parallel on two processors: on
a processor the objective function is kept dependent only on
the fleet dimension and all threshold values are fixed, while on
the other processor the objective function depends only on the
low critical and buffer thresholds while the fleet dimension is
kept constant. This technique is in accordance to the search
space decomposition methodology [13].

Search space decomposition refers to the case where the
problem domain, or the associated search space, is decomposed
and a particular solution methodology is used to address the
problem on each of the resulting components of the search space.
The chosen solution methodology is the Simulated Annealing
for both components. The two SA processes are not fully inde-
pendent and data exchange occurs at the end of each run of the
parallel optimization algorithm. This is a simple parallel optimi-
zation technique. In fact parallel/distributed computing means
that several processeswork simultaneously on several processors
solving a given problem instance [13]. The application of the
proposed methodology allows the reduction of calculation time
by 70%. Indeed, without the parallelism, the parameterα for the
decrease of the temperature must be taken equal to 0.98 instead
of 0.90 if wewant that successive runs of the algorithm converge
to the same solution. Instead, with about 3–4 iterations of the
parallel optimization, the algorithm converges.

Therefore the transition rule described in paragraph 4.4.2
changes on the 1st processor only the first component of s
while on the 2nd processor only the last two components of s .
According with Fig. 5, the parallel optimization steps are the
following:

& Initialization:

– The 1st processor receives in input the thresholds Th0

and it optimizes the fleet Fl1. The optimal fleet, given
the threshold values, is calculated through Simulated
Annealing.

– When the 1st processor ends its optimization algo-
rithm, the 2nd processor receives in input the optimal
fleet dimension Fl1 from the 1st processor, and opti-
mizes the threshold values Th1 through Simulated
Annealing. The point s*1 is given by the optimal fleet
dimension Fl1 and the optimal threshold values Th1

& kth iteration

– the two processors work together; they both receive in
input the point s*k-1. The 1st processor optimizes the
fleet Flk through keeping the thresholds constant
(Thk-1) and the 2nd processor optimizes the thresholds
Thk keeping the fleet dimension constant (Flk-1).

– When both the processors end their optimizations, the
values of the objective function in the two points
h(Flk,Thk-1) and h(Flk-1,Thk) are compared. The
departure point for the following iteration of the paral-
lel optimization is the point s*k which gave the min-
imum value of the objective function

& Stopping conditions

– if the values of the objective function in s*k-1 and s
*
k

differ less than 5 %,
– or if the two processors do not find any better solution

than the initial one

4.6 Validation of the optimization procedure

The calibration and validation of the overall optimization
methodology consists in the calibration and validation of the
cost function parameters and of the optimization methods (SA
and parallel optimization).

Regarding the cost function, the r and cw values have been
taken from the literature. We choose a discount rate of 8 % as
it is an average rate of return for investments and therefore
reasonably represents the opportunity cost of the purchase.

Fig. 5 The parallel methodology implemented in the optimization pro-
cedure. In the figure, the fleet dimension is referred as Fl, and the low
critical and low buffer threshold values are referred as Th
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Given these values, the value of cr has been assessed in
such a way that the transport system cost and the users cost
assume comparable values when calculated in the optimal s*

point. Under this hypothesis, the value of cr has been assumed
equal to 0.01€/min.

Regarding the optimization algorithms, since the optimiza-
tion methods converge to the same solution, with different
starting points and in a reasonable amount of time, the values
assumed for the parameters could be considered correct.

5 Barreiro case study

The proposed transport system has been planned and simulat-
ed for the old part of Barreiro, a suburb of Lisbon, Portugal.
This village is on the edge of a peninsula, on the left side of the
Tago River. The old part is about 1 km2. The area is almost
flat. An air view of the intervention area is given in Fig. 6.

In the intervention area, i.e. the old part of Barreiro, roads
form a grid and vehicles are allowed to circulate in the area.
The road pavement is quite irregular and therefore the speed is
limited. Several parking spaces exist in the most peripheral
parts of the intervention area and the parking here is for free.
However, in the most inner part of the intervention area, due to
narrow roads, the parking is restricted. Some images of the
intervention area are provided in Figs. 7 and 8.

Several bus lines cross the old part of Barreiro, and several
stops are in the area.

The railway line passes on the border of the old part of
Barreiro and two are the railway stops of interest: Barreiro
centre and the one at the fluvial terminal, as shown in Fig. 9.

We identified 5 internal centroids and 3 external ones. Their
positions are shown in Fig. 9. The old part of Barreiro is in part
a residential area (zones 1, 3 and 4 in Fig. 9), where most of the
population (about 18,000 residents) is aged and in part a
commercial area (partially zone 2 and mainly zone 5 in
Fig. 9). Zone 5 is characterised by a big new commercial centre

(Forum Barreiro). The three external centroids correspond to
the fluvial terminal (centroid 6), the Barreiro A railway station
(centroid 7) and a big car park space (centroid 8).

According with the data provided by Transportes
Collectivos do Barreiro (TCB) [14], the trips that interest the
area are: trips that have the intervention area as origin or
destination and trips internal to the area, that have origin and
destination inside the area. There are not trips that cross the
area and have origin and destination outside it.

Trips to/from Barreiro happen mainly:

& by boat, to/from the fluvial terminal. The trips by boat
connect Barreiro with Lisbon.

& by train: to/from Barreiro centre station. Trips by train
connect Barreiro to the villages in the mainland, on the
other side of Lisbon.

& by car: trips to/from Barreiro centre take place along three
roads.

Internal trips take place mainly by bus and by foot.

Fig. 6 Aerial view of Barreiro [14]

Fig. 7 A street on the border of the intervention area

Fig. 8 A street in the inner part of the intervention area

Eur. Transp. Res. Rev. (2014) 6:191–204 201



5.1 The simulation of Barreiro case study

The O/D matrixes for this case study have been assessed from
data collected on the field by TCB [14]. These data regard the
total transport demand in the study area. TCB has also made
some hypotheses on the modal shift of a quota of the total
transport demand to PICAV system. The hypotheses made are
the following:

& 10 % of commuters arriving in Barreiro centre by car will
be PICAV users;

& 20% of commuters arriving in Barreiro centre by boat and
by train will be PICAV users;

& 20% of trips internal to the intervention area take place by
PICAV. In this case users are mainly elderly and disabled
people;

& 0 % of commuters arriving in Barreiro centre by bus will
be PICAV users;

The overall number of daily trips by PICAV results 1296.
The simulation time period is a working day and two

phases have been identified: a morning period from 7 a.m.
to 1 p.m. and an afternoon period from 1 p.m. to 7 p.m. The
demand has been assumed constant in each phase. The overall
number of trips is the same in the two phases but the OD
matrix in the second phase is the transpose matrix of the first
phase. In the simulation, pedestrian density has been assumed
the same in the two phases and equal to the greatest one

registered in Barreiro footpaths (0.2 pedestrians per square
meter).

We identified 8 PICAV stations in the area: each one refers
to a centroid. The exact localization of stations takes into
account the available space and stations are placed as close
as possible to interchange points. Their localization is shown
in Fig. 7. The station capacity has been assumed equal to 15
PICAV for each station. The high critical threshold is equal to
14 vehicles for each station and the high buffer threshold is
equal to 12 vehicles for each station. These values guarantee
to keep high the number of supporting stations, and on the
other hand to avoid that a station in a given instant accepts a
vehicle and in the following instant reaches the FPT situation.

The charging technique is the opportunity charging tech-
nique and the minimum level of battery charge is equal to 6 %.

At the beginning of the simulation period, the fleet has been
assumed equally distributed among stations.

The low critical and low buffer thresholds, as well as the
fleet dimension, are the result of the optimization procedure.
The optimum fleet dimension resulted equal to 72 vehicles,
i.e. 9 vehicles per station. And this is consistent to the results
by Barth and Todd [1] regarding the Coachella Valley trans-
port system, for which the vehicle-to-trip ratio is comprised
between 0.03 and 0.06 vehicles per trip. Indeed for the fleet
dimension of 72 vehicles, i.e. 9 vehicles per station, the
vehicle-to-trip ratio is equal to 0.055. The optimized low
critical threshold is equal to 2, the optimized low buffer
threshold is equal to 4. The optimised fleet dimension and
relocation strategy parameters provide an average waiting
time equal to 0.20 min. The 95th percentile of user’s waiting
times results equal to 1.84 min, the 90th percentile equal to
0.04 min and the 50th percentile equal to 0 min. This provides
a level of service C. The given values of the percentiles of
waiting times have been obtained by averaging the related
values over the 30 runs of the micro simulation.

As it concerns the efficiency of the optimised transport
system, in Fig. 10 the number of PICAVs is each state (occu-
pied by users, available, in charge and relocating) is plotted
against time: the time is expressed in minutes starting from
420, that refers to 7 a.m., therefore a time of 480 refers to
8a.m, a time of 960 refers to 4 p.m. and a time of 1,200 refers
to 8 p.m. Figure 11 shows the distribution of users waiting
times: the total number of users is 1,296 and 1,082 users have
not been in queue. The optimised threshold values result
efficient since: on one side, relocations are possible in fact
waiting times are low (as shown in Fig. 11); on the other hand
the number of relocations is kept low as it results in Fig. 10.

The relocation cost is equal to 368.37€/day, the cost of
users waiting times is equal to 83.86€/day and the objective
function results equal to 769.48€/day. It results evident that
the cost of users is much lower that the system cost, this is due
to the fact that the cost of waiting times decreases strongly
with the fleet dimension; conversely, the relocation cost

Fig. 9 The PICAV intervention area
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increases slightly with the fleet dimension. However it should
be noted that the function values do not have any meaning
since the function does not take into account flat costs, like for
instance the ticket prices.

5.2 Sensitivity analysis

With reference to the Barreiro scenario, a sensitivity analysis
has been performed. The total transport demand has been
increased by 10 % keeping the same optimized fleet dimen-
sion and threshold values. The cost function value increases
from 769.48€/day to 806.98€/day, with a limited percentage
increase (4,6 %). However, the users cost increases from
83.86€/day to 399.78€/day while the transport system cost
decreases from 685.62€/day to 407.2€/day. Since the

optimised transport system is not able to cope with the de-
mand increase, it results necessary to optimise the transport
system parameters for the new value of the transport demand.

6 Conclusions

A new shared vehicle system for pedestrian areas is proposed
in this paper; its main characteristics are: one way trips, open
ended reservation and instant access. These three features
provide users a high level of flexibility. But on the other hand,
the risk of unbalancement in the number of available vehicles
at stations is high, therefore, relocation is necessary.

A new management strategy is proposed in the paper,
based on vehicles that are fully automated and therefore move
without an operator among stations in order to relocate them-
selves. The newmanagement strategy is defined by relocation
strategy parameters that define when and among which sta-
tions relocations should be performed.

In order to plan such a vehicle sharing system for a given
pedestrian area, an optimization procedure is presented in the
paper which allows to assess the relocation strategy parame-
ters that minimize the system cost, both in terms of level of
service provided to users (that depends on waiting times) and
the efficiency from the management point of view (that de-
pends on relocation time and fleet dimension).

Since there is not an explicit expression for the cost function,
the distribution of users waiting times and the total amount
of time spent by vehicles in relocation, from which system
cost depends, are assessed by microscopic simulation. The
microscopic simulator follows an object – oriented logic. The
simulator follows each users and each vehicle within the
simulation period, and gives the actual users waiting times
and the relocation time.

Fig. 10 Number of vehicles in each state during the simulation period

Fig. 11 Distribution of users waiting times
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As illustrative problem, the proposed transport system has
been planned for the old town of Barreiro, a suburb of Lisbon,
Portugal. The results of the simulation clearly show the effec-
tiveness of the proposed car sharing system, because, with low
staff costs, it allows users a high level of satisfaction. Themodel
has been validated through a comparison of the simulation
output data with those available in the body of knowledge.

The automatic relocation of PICAV vehicles still cannot be
applied on the field because of legal problems in case of
accident. To reduce the impact of automatically driven vehicles,
also at legal level, it could be explored relocation by platooning.
The operator drives the first vehicle of a platoon and the other
vehicles follow the leader through automatic distancing. This
relocation technique, however, increases the staff costs, as some
operators to perform the relocation are needed. This cost could
be reduced by optimization of relocation trips.
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