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Abstract
Purpose This paper evaluates all the available transition curve
types related to road and railway alignments and proposes a
new, well verified, transition curve type that combines the
accuracy of clothoid curve and the simplicity of cubic parab-
ola curve.
Method A methodology similar to clothoid’s curve formation
is used to introduce a new transition curve type called “of
clothoid Symmetrically Projected Transition Curve (SPTC).
All three transition curve types are being compared to each
other, for a variety of transition length value versus Radius
value combinations. The cubic parabola is a simple function
of the form of y=f(x). Clothoid is a transition curve in the form
of x=f(l), y=f(l), having as main characteristic the linearity of
curvature variation versus its length. A new transition curve
will be defined in the form of y=f(x) having also as main
characteristic the linearity of curvature variation versus its
projection length on axis X. By using the same calculation
procedure as the clothoid, the new transition curve will be
fully defined. A relation similar to (1) was used as base, by
defining a parameter Α similar to the one used in the clothoid.
The new curve will be called Symmetrically Projected Tran-
sition Curve (SPTC).
Results Some remarkable results that derived from transition
curves comparison are: There are no significant differences
between the 3 curves in the area of short transition lengths. For
long transition lengths, cubic parabola is diverging from the
other 2. The deviation of the cubic parabola from the other
curves for large values of Χ, ratios Χ/Α >0.7, as well as the

affinity of the clothoid with the SPTC are obvious. The most
remarkable observation than can be made in the table is the
fact that ΔΧ always zero for the SPTC (10terms). Thus, the
SPTC curve is symmetrically projected on its basic tangent.
This property contributes to the simplicity of the alignment
design. That is another reason to prefer the SPTC curve.
Conclusions The use of cubic parabola in combination with
approximate value of diversion can lead to design problems.
The new transition curve can be used instead of cubic parabola
especially when long transition lengths are required. The new
transition curve can also be used successfully to join 2 homo-
bending arcs. However, referring to cubic parabola calcula-
tions, for a ratio X/A ≥0.5 and taking in to account the approx-
imate calculation procedure of ΔR it can lead to alignment
design errors. Consequently, the usage limits for each transi-
tion curve should be well known. A new transition curve was
also proposed in this work. The new curve is called Symmet-
rically Projected Transition Curve (SPTC). SPTC was found,
in most cases, to have better performance than cubic parabola.
Symmetry is an important characteristic of the SPTC and
contributes to simplicity, accuracy and audit ability of the
designed alignment. Finally SPTC can also be used as a
transition curve between two adjacent circular arcs in the same
direction.
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1 Introduction

The selection of a suitable transition curve is of major impor-
tance towards a proper alignment design in road and railway
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projects. There are two very well known transition curves. The
transition curve that is exclusively used in road alignments is
the Clothoid [2]. The cubic parabola is used, for historical
reasons only, in railway alignments. It is noted that currently
there is no research underway related to each curve’s accuracy
and usability.

A comparison of the cubic parabola with the clothoid
reveals that for small lengths of transition curves in
relation to the radius of curvature corresponding to the
end of the transition curve there are no significant
differences between the two transition curve types.
Thus, the use of the cubic parabola has no advantage
over the clothoid other than its simplicity which is its
dominant characteristic. However, the selection of tran-
sition curve type based on simplicity cannot be justified
nowadays that computer software is widely used to
design road and railway alignments. Thus, the criterion
of a suitable transition curve based on the simplicity of
the calculations must be reconsidered.

The use of the cubic parabola is acceptable only for
small values of transition curve length. There are cases,
however, where the length of the transition curve ex-
ceeds a certain limit. One such case is to obtain a
“flatter” alignment. Another case is when the transition
curve is used to adjust two circular arcs in the same
direction. In such cases the use of the cubic parabola
has serious limitations. When the length of the transi-
tion curve has to be greater than the half of the radius
of curvature, the differences between cubic parabola and
clothoid become significant. This is due to approxima-
tions applied in order to link cubic parabola to an arc
[1].

The detailed analysis of the differences between cubic
parabola and clothoid led to the introduction of a new transi-
tion curve type. This curve is called Symmetrically Projected
Transition Curve (SPTC). The new curve is a simple function
of the form of y=f(x) like the cubic one but is not based on any
approximation used in cubic parabola calculations. On the
other hand it is equally accurate to the clothoid.

2 Transition curves

2.1 The clothoid

The new transition curve has certain similarities with the
clothoid. Consequently, the clothoid is briefly described first
in order to clarify and distinguish it from the proposed curve.
The clothoid’s main characteristic is the linear variation in
curvature versus the covered length on the curve [2] (Kasper
et al. 1954). A transition curve with no linear variation in
curvature has also been proposed [4]. It is known, that for
every point of the clothoid the following relation which links

the distance L (on the curve) from the starting point with the
curvature radius R on that point is valid:

RL ¼ A2 ð1Þ
Thus, the product of R and L is constant for every curve

characterized by the specific parameter Α .
With reference to Fig. 1 and using the above relation as

well as the relation:

dL ¼ Rdτ ð2Þ
the following relation is obtained:

LdL ¼ A2dτ ð3Þ
where, τ is the tangent angle on the particular point of the
clothoid in relation to the axis x and dτ the elementary angle
corresponding to length dL .

Integration of Eq. (3) yields:

L2
.
2 ¼ A2τ þ C ð4Þ

Given that L=0 for τ=0 the value of C is equal to 0 and the
deflection angle τ (in rad) will be:

τ ¼ L2

2A2 ð5Þ

Based on Fig. 1 the following relations are obtained:

dX ¼ dLcosτ ; dY ¼ dLsinτ ð6Þ
After taking into account Eq. (5) dX and dY are as follows:

dX ¼ dLcos
L2

2A2

� �
; dY ¼ dLsin

L2

2A2

� �
ð7Þ

Fig. 1 Typical transition curve graph
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Integration of the above equation yields the following
relations used to calculate the coordinates of any point of the
clothoid at a distance ℓ away from its starting point [3]

x ¼ ℓ −
ℓ 5

40A4 þ
ℓ 9

3456A8 −
ℓ 13

599040A12 ⋯ ð8Þ

y ¼ ℓ 3

6A2 −
ℓ 7

336A6 þ
ℓ 11

42240A10 −
ℓ 15

9676800A14 ⋯ ð9Þ

2.2 The cubic parabola

Using only the first terms of the relations (8) and (9) the
following relation is obtained:

y ¼ x3

6A2 ð10Þ

which is known as the cubic parabola but is normally used as
follows:

y ¼ x3

6RX
ð11Þ

where R is the radius of the circle, which links to the end of the
cubic parabola. L is the actual length of cubic parabola and X
is its respective projection’s length on axis x . The length L of
the cubic parabola is considered to be equal with the projec-
tion of Χ on axis x . As noted above relation (11) is commonly
used instead of (10). This is because in the cubic parabola
parameter Α has not been defined.

According to Esveld [1] the same relation with (11) can be
derived starting from the general equation of the cubic parab-
ola:

y ¼ kx3 ð12Þ
In order for it to link with a circle of a radius R , its

curvature, its second derivation with respect to x , at a distance
X from its starting point, has to be the same with that of the
circle, as shown in the following relation:

d2y

dx2jx¼X
¼ 6kX ¼ 1

R
ð13Þ

from which the value of k is derived which, if set in (12) then
we get (11). This relation gives the y coordinate of any point
of the cubic parabola versus its projection on axis x .

From the relations (10)–(11), the deflection angle τ for the
cubic parabola can be calculated, using the relation:

tanτ ¼ dy

dx
¼ x2

2A2 ¼ x2

2RX
ð14Þ

As it is already mentioned, the length L of the cubic
parabola is considered to be equal with the projection of Χ
on axis x . This is an approximation, which is usually

satisfactory. Relation (13) is based on this approximation that
is valid for minor values of x in relation to radius R .

To calculate the real length L on the cubic parabola the
following relation is used:

L ¼ X 1þ 1

10

X

2R

� �2
" #

ð15Þ

This relation is derived from the following procedure.
From Fig. 1 we get:

dL ¼ dX
.
cosτ ¼ dX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2τ

p
ð16Þ

which after the use of (14) becomes:

dL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X 4

4A4

s
dX ð17Þ

Analyzing it in Tailor series we get:

dL ¼ 1þ X 4

8A4 −
X 8

128A8 þ ::

� �
dX ð18Þ

Its integration results in the following relation for the final
length of the cubic parabola (x=X):

L ¼ X 1þ 1

10

X

2R

� �2

−
1

72

X

2R

� �4

þ ::

" #
ð19Þ

which, if only the first two terms are considered as important,
coincides with relation (15).

2.3 The new transition curve

The cubic parabola is a simple function of the form of y = f(x)
and is based on the acknowledgment that its length is equal to
its projection on axis X . Clothoid is a transition curve in the
form of x = f(l), y = f(l), having as main characteristic the
linearity of curvature variation versus its length. A new tran-
sition curve will be defined in the form of y = f(x) having also
as main characteristic the linearity of curvature variation ver-
sus its projection length on axis X . By using the same calcu-
lation procedure as the clothoid, the new transition curve will
be fully defined without having to acknowledge that its length
L is equal to its projection on axis X . A relation similar to (1)
was used as base, by defining a parameter Α similar to the one
used in the clothoid. The new curve will be called Symmetri-
cally Projected Transition Curve (SPTC). The analysis below
will be based on the relation:

RX ¼ Rxx ¼ A2 ð20Þ
where, R is the curvature radius at the end of the curve and Χ
its projection on axis x . Moreover, Rx is the curvature radius at
an intermediate point with respective projection x .
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With reference to Fig. 2 the following relation is obtained:

dx ¼ d ℓ cosτ ¼ Rxdτcosτ ð21Þ
which, using the relation (20), results in the following

dx ¼ A2
.
x

� �
cosτdτ ð22Þ

or

xdx ¼ A2cosτdτ ð23Þ
By integration of Eq. (23)Z
xdx ¼ A2

Z
cosτdτ þ C ð24Þ

the following relation is obtained

x2
.
2 ¼ A2sinτ þ C ð25Þ

However, at the beginning of the transition curve x = 0 and
τ = 0 . Thus, the angle τ (in rad) is expressed with the relation:

sinτ ¼ x2

2A2 ¼ x

2Rx
ð26Þ

which is similar to (5) and to (14) and expresses the angle τ
versus the projection of an intermediate point of the curve on
the axis x and of the constant Α or of the curvature radius Rx

on that point.
The relation (26) is also valid at the end of the transition

curve and becomes:

sinτ ¼ X 2

2A2 ¼ X

2R
ð27Þ

where Χ is the projection of the end of the curve and R the
respective curvature radius.

For the calculation of y for every x from the Fig. 2 there is
the relation:

dy ¼ tanτdx ¼ sinτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2τ

p dx ð28Þ

which, based on (26) becomes:

dy ¼
x2

2A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x4

4A4

r dx ð29Þ

Integration of Eq. (29) yields:

y ¼
Z
0

x
x2

2A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x4

4A4

r dx ð30Þ

In order to calculate the integral a Tailor series anal-
ysis is performed, beginning from the following simple
relation:

g xð Þ ¼ 1ffiffiffiffiffiffiffiffi
1−x

p ¼ 1−xð Þ−1=2 ¼ 1þ 1

2

x1

1!
þ 3

4

x2

2!
þ :: ð31Þ

which is written as follows:

g xð Þ ¼
X
i¼0

n

ai
xi

i!
¼
X
i¼0

n

bi ð32Þ

with coefficients ai, bi of the form:

ai ¼ ai−1
2i−1
2

; a0 ¼ 1 ð33Þ

bi ¼ bi−1
2i−1
2i

x; b0 ¼ 1 ð34Þ

If x is replaced with x4 the following relation is obtained:

g xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
1−x4

p ¼
X
i¼0

n

ai
x4i

i!
¼
X
i¼0

n

bi ð35Þ

where coefficients ai are the same as in Eq. (33) and coeffi-
cients bi are given by:

bi ¼ bi−1
2i−1
2i

x4 ð36Þ

Subsequently, function h(x) is defined:

h xð Þ ¼ x2ffiffiffiffiffiffiffiffiffiffi
1−x4

p ¼
X
i¼0

n

bi ð37Þ
Fig. 2 Transition curve graph in detail
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with bi as (36) and b0=x
2. Using relation (37) and by replac-

ing x with x= A
ffiffiffi
2

p� �
relation (30) becomes:

y ¼
Z
0

x
x2

2A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x4

4A4

r dx ¼
Z
0

x

f xð Þdx ð38Þ

where the equation:

f xð Þ ¼
X
i¼0

n

bi ð39Þ

with coefficients bi of the form:

bi ¼ bi−1
2i−1
2i

x4

4A4 ; b0 ¼ x2

2A2 ð40Þ

The integration will give an equation of the form:

y ¼
Z
0

x
x2

2A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x4

4A4

r dx ¼
X
i¼0

n ci
4iþ 3

ð41Þ
with coefficients:

ci ¼ ci−1
2i−1
2i

x4

4A4 ; c0 ¼ x3

2A2 ð42Þ

By taking into account only the first four terms, the fol-
lowing relation emerges:

y ¼ x3

2A2

1

3
þ 1

14

x2

2A2

� �2

þ 3

88

x2

2A2

� �4

þ 1

48

x2

2A2

� �6

þ ::

" #

ð43Þ

The above relation gives the value of y at intermediate
points of the transition curve versus the projection x. If only
the first term is used relation (10) is obtained. Thus, cubic
parabola is a first approximation of the proposed transition
curve.

For Υ at the end of the transition curve the following
relation will be valid:

Table 1 Basic characteristics of transition curves used

Curve A (m) X (m) L (m)

Cubic Parabola [1000] 1000 1025

Curve SPTC 1000 1000 1028.057

Clothoid (1) 1000 975.288 1000

Clothoid (2) 1013.278 1000 1026.732

Fig. 4 Comparison of transition curves in detail

Fig. 3 Comparison of transition curves used
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Y ¼ X 2

2R

1

3
þ 1

14

X

2R

� �2

þ 3

88

X

2R

� �4

þ 1

48

X

2R

� �6

þ…

" #

ð44Þ
The length ℓ on the curve will be calculated with the use of

the relation:

d ℓ ¼ dx
.
cosτ ¼ dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2τ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x4

4A4

s
dx ð45Þ

An analysis similar to the previous one also results in:

ℓ ¼
Z
0

x dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x4

4A4

r ¼
X
i¼0

n bi
4iþ 1

ð46Þ

with the coefficients given by the relations:

bi ¼ bi−1
2i−1
2i

x4

4A4 ; b0 ¼ x ð47Þ

By employing the first four terms, relation (48) emerges
which gives the value of length ℓ on the transition curve
versus the projection x on intermediate points:

ℓ¼ x 1þ 1

10

x2

2A2

� �2

þ 1

24

x2

2A2

� �4

þ 5

208

x2

2A2

� �6

þ⋯

" #

ð48Þ

At the end of the transition curve length L is:

L ¼ X 1þ 1

10

X

2R

� �2

þ 1

24

X

2R

� �4

þ 5

208

X

2R

� �6

þ⋯

" #

ð49Þ

which coincides with relation (15) if only its first two terms
are considered important.

Table 3 Deflection angle τ for
various values of X Projection Clothoid Cubic Parabola SPTC (10 terms) SPTC (3 terms) SPTC (2 terms)

X(m) τ(deg) τ(deg) τ(deg) τ(deg) τ(deg)

100 0.28648 0.28648 0.28648 0.28648 0.28648

200 1.14601 1.14576 1.14599 1.14599 1.14599

300 2.57936 2.57657 2.57918 2.57918 2.57918

400 4.58955 4.57392 4.58857 4.58857 4.58850

500 7.18453 7.12502 7.18076 7.18075 7.18010

600 10.38118 10.20397 10.36976 10.36965 10.36572

700 14.21129 13.76630 14.18183 14.18089 14.16307

800 18.73093 17.74467 18.66292 18.65686 18.59212

900 24.03667 22.04795 23.89113 23.85986 23.66376

1000 30.29735 26.56505 30.00000 29.86525 29.35776

Table 2 Displacement Y (tan-
gent offset) for various values of
X (tangent distance)

Projection Clothoid Cubic Parabola SPTC (10 terms) SPTC (3 terms) SPTC (2 terms)
X(m) Y(m) Y(m) Y(m) Y(m) Y(m)

100 0.167 0.167 0.167 0.167 0.167

200 1.333 1.333 1.333 1.333 1.333

300 4.502 4.500 4.502 4.502 4.502

400 10.682 10.667 10.681 10.681 10.681

500 20.908 20.833 20.904 20.904 20.903

600 36.271 36.000 36.254 36.254 36.250

700 57.976 57.167 57.924 57.923 57.902

800 87.444 85.333 87.303 87.297 87.206

900 126.491 121.500 126.143 126.105 125.771

1000 177.678 166.667 176.858 176.661 175.595
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3 Comparison of the curves

Using the relations of the previous paragraphs all the transition
curves were calculated and selected segments of the transition
curves (R≤1500 m) are presented in Fig. 3, to demonstrate the
differences between them. These differences are presented in
detail in Fig. 4 (R≤1110 m ).

Besides the cubic parabola and the symmetrically projected
transition curve, two clothoids also are illustrated. The curvature
radius of the circle in which all curves end is R=1000 m . Τhe
parameter for the first three curves is Α=1000 m . For the fourth
curve the following parameter value was used Α=1013.278 m ,
corresponding to the curve’s length L=1026.732 m , so that its
projection at the end is Χ=1000 m , exactly as the projection of
the cubic parabola.

In Table 1 the details of all four curves are shown. It should
be noted that radius values of about R=1000 m are high for
ordinary roads but are common to railway alignments.

From Fig. 4 it is shown that the symmetrically projected
transition curve is very close to the clothoid with the same
parameter. The length is their difference and this is due to the

fact that the length of the clothoid, which is L=1000 m , is
equal to the projection of the symmetrically projected transi-
tion curve. Namely with the second curve there is a variation
from the radius R=∞ to the radius R=1000 m at a length
greater by 28 m .

In the following tables some comparative characteristic
quantities will be presented for five different kinds of transi-
tion curves. Quantities for the clothoid, the cubic parabola and
the curve SPTC are presented with accuracy, using 10 terms of
the series for clothoid and SPTC. Two approximations of the
curve SPTC (with three and two terms respectively) are
presented on the last two columns of each table.

All curves have parameter Α=1000 m . The clothoid is
calculated according to relation (9) using as value of ℓ the
one corresponding to a projection equal to the first column of
the Table. This is calculated according to relation (8). The
clothoid was used in this way so that the resulted quantities are
directly comparative to the quantities of the other curves.

In Table 2 the values of the displacement Υ (tangent offset)
for various values of Χ (tangent distance) are shown. The
deviation of the cubic parabola from the other curves for large

Table 5 Deviation ΔR for different values of X

Projection Approximation Clothoid Cubic Parab. SPTC (10) SPTC (3) SPTC (2)
X(m) ΔR(m) ΔR(m) ΔR(m) ΔR(m) ΔR(m) ΔR(m)

100 0.04167 0.04167 0.04167 0.04167 0.04167 0.04167

200 0.33333 0.33333 0.33363 0.33335 0.33335 0.33335

300 1.12500 1.12492 1.13012 1.12524 1.12524 1.12525

400 2.66667 2.66606 2.70486 2.66850 2.66850 2.66870

500 5.20833 5.20543 5.38909 5.21710 5.21712 5.21942

600 9.00000 8.98959 9.63887 9.03157 9.03205 9.04875

700 14.29167 14.26107 16.13011 14.38539 14.39032 14.47809

800 21.33333 21.25548 25.86352 21.57540 21.61157 21.97114

900 30.37500 30.19768 40.24449 30.93898 31.14653 32.34456

1000 41.66667 41.29661 61.09386 42.88336 43.85947 47.17075

Table 4 Lengths L (on curve)
corresponding with the
values of X

Projection Clothoid Cubic Parabola SPTC (10 terms) SPTC (4 terms) SPTC (3 terms)
X(m) L(m) L(m) L(m) L(m) L(m)

100 100.000 100.000 100.000 100.000 100.000

200 200.008 200.008 200.008 200.008 200.008

300 300.061 300.061 300.061 300.061 300.061

400 400.257 400.256 400.257 400.257 400.257

500 500.787 500.781 500.786 500.786 500.786

600 601.973 601.944 601.971 601.971 601.970

700 704.321 704.202 704.311 704.310 704.307

800 808.599 808.192 808.564 808.562 808.542

900 915.990 914.762 915.879 915.867 915.771

1000 1028.386 1025.000 1028.057 1027.980 1027.604
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values of Χ , ratios Χ/Α>0.5 , as well as the affinity of the
clothoid with the SPTC are obvious. The last two columns
give an indication of the areas where their use is satisfactory
for simplified calculations without the use of a computer.

In Table 3 the values of angle τ in degrees are presented.
The value of angle τ was calculated by using relation (5) for
the clothoid, relation (14) for the cubic parabola and relation
(26) for SPTC. The deviation of the cubic parabola from the
other curves for large values of Χ , ratios Χ/Α>0.5 , as well as
the affinity of the clothoid with the SPTC are obvious.

In Table 4 the lengths L on the curve corresponding with
the values of Χ are shown. The length L of the clothoid was
calculated by using relation (8). The length L of the cubic
parabola was calculated by using the commonly used approx-
imate relation (15) instead of (19) which is more accurate. The
length of SPTC was calculated by using relation (49). On the
last two columns of Table 4, the approximations with four and
three terms respectively are presented. The approximation
with two terms is equal to the approximate length of cubic
parabola. The deviation of the cubic parabola from the other
curves for large values of Χ , ratios Χ/Α>0.7 , as well as the
affinity of the clothoid with the SPTC are obvious. The use of
relation (19), that gives more accurate results, will yield
smaller values of the length of cubic parabola and thus the
deviation of cubic parabola from the other curves would be
greater.

In Table 5 the values of the deviation ΔR for different
values of Χ are shown. The values of the deviation on the
second column of the Table result from the approximate
relation:

ΔR ¼ X 2
.

24Rð Þ ð50Þ

which is the one most frequently used [1], [3] (Esveld 2001,
Lamm et al. 1999). The following accurate relation was used
for the other columns [3] (Lamm et al. 1999):

ΔR ¼ Y−R 1−cosτð Þ ð51Þ

The divergence of the real deviation of the cubic parabola
from the approximate relation (50) for large values of the ratio
Χ/Α>0.5 is obvious. The alignment design with the simulta-
neous use of the cubic parabola and of the approximate value
of the deviation can lead to serious mistakes.

The use of the cubic parabola for ratios Χ/Α≤0.3 does not
lead to mistakes but does not differentiate it from other curves
as results from Tables 2, 3, 4 and 5. This means that apart from
the simplicity, which characterizes it, it has nothing to offer
compared to the clothoid.

In Table 6 the values of quantity ΔΧ versus Χ are
presented. Quantity ΔΧ (Fig. 5) represents the distance of
the projection of the center of the curvature at the end of the
curve from the middle of the linear segment, which defines the
projection of the whole curve. The two projections are viewed
on axis Χ .

In the second column of the Table the value ofΔΧ is given
based on the approximate relation:

Fig. 5 Displacement ΔX of a transition curve

Table 6 Displacement ΔX versus projection X

Projection Approximation Clothoid Cubic Parab. SPTC (10) SPTC (3) SPTC (2)
X(m) ΔX(m) ΔX(m) ΔX(m) ΔX(m) ΔX(m) ΔX(m)

100 0.00063 0.00021 0.00062 0.00000 −0.00005 −0.00005
200 0.02000 0.00667 0.01999 0.00000 −0.00005 −0.00004
300 0.15187 0.05062 0.15164 0.00000 −0.00005 0.00018

400 0.64000 0.21327 0.63694 0.00000 −0.00003 0.00301

500 1.95313 0.65053 1.93053 0.00000 0.00025 0.02260

600 4.86000 1.61738 4.74500 0.00000 0.00307 0.11548

700 10.50437 3.49096 10.05396 0.00000 0.02270 0.45372

800 20.48000 6.79180 19.03034 0.00000 0.12536 1.46384

900 36.90563 12.20138 32.90848 0.00000 0.55439 4.03497

1000 62.50000 20.57446 52.78640 0.00000 2.03807 9.73871
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ΔX ¼ X 3
.

16R2
� � ð52Þ

which is only valid for the cubic parabola [1] (Esveld 2001).
The exact values in the following columns are calculated
based on the relation:

ΔX ¼ X
.
2−RX sinτX ð53Þ

where with indicator X are symbolized the radius R and angle
τ for the particular point of the transition curve that its pro-
jection is at a distance Χ from its starting point [1] (Esveld
2001). It is worth noting the good approximation of theΔΧ of
the cubic parabola from the relation (52) for values of the ratio
Χ/Α<=0.5 , as shown by the comparison of the second with
the fourth column of the Table 6.

The most remarkable observation than can be made in the
table is the fact that ΔΧ always zero for the SPTC curve
whereas in the other curves it has a value which increases as
Χ/Α increases. Thus, the SPTC curve is symmetrically
projected on its basic tangent. This property can be easily
explained by examining relation (27) and Fig. 6. This property
contributes to the simplicity of the alignment design. That is
another reason to prefer the SPTC curve. The comparison of
all transition curves for different ratios of transition curve
length versus arc radius, leads to remarkable conclusions.
The results are presented in Tables 2, 3, 4, 5 and 6 to demon-
strate the usability of each transition curve. In particular they
allow the designer to know the accuracy of the calculations.

4 Conclusions

A comparison of the cubic parabola transition curve and the
clothoid revealed that for a ratio X/A≤0.3 the curves have no
significant differences. Thus, beyond simplicity reasons the
cubic parabola has no other obvious advantage compared to
the clothoid. However, referring to cubic parabola calcula-
tions, for a ratio X/A≥0.5 and taking in to account the approx-
imate calculation procedure of ΔR it can lead to alignment
design errors. Consequently, the usage limits for each transi-
tion curve should be well known. A new transition curve was
also proposed in this work. The new curve is called Symmet-
rically Projected Transition Curve (SPTC). SPTC was found,
in most cases, to have better performance than cubic parabola.
By employing its approximate forms it can offer the
correct solutions in cases where the use of the cubic
parabola was preferred, due to simplicity reasons, to the
clothoid. The SPTC will be more attractive than the
clothoid to the engineers who prefer the cubic parabola
as a transition curve because it is of the form y=f(x) .
SPTC can also give the relation between tangent dis-
tance and tangent offset of the clothoid because the two
curves are identical for X/A≤0.5. Symmetry is an im-
portant characteristic of the SPTC and contributes to
simplicity, accuracy and audit ability of the designed
alignment. Finally SPTC can also be used as a transi-
tion curve between two adjacent circular arcs in the
same direction.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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