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Abstract

Objective Unlike other existing traffic data collection tech-
niques, probe vehicles, or floating cars traveling on a road
network, have appeared as a complementary solution for
increasing coverage areas without requiring expensive infra-
structure investments. When organized in a fleet with com-
munication capabilities and exchange of information with a
central data system, they give rise to a Floating-Car Data
(FCD) system. The purpose of this paper is to present a model
for short-term traffic speed forecasting based on an operating
FCD system, developed and operated in Italy, delivering real-
time traffic speed information throughout the Italian motor-
way network and along some important arterial streets located
in major Italian metropolitan areas.

Design Specifically, a database covering the whole period
ranging from April 2008 to October 2011 is available for
Rome Ring Road, a toll-free motorway that encircles Rome
(Italy), and the developed case study pertains to a portion of'its
available speed data.

Method A Pattern Matching method of prediction will be
detailed, which reports interesting properties in terms of fore-
cast accuracy; the method tries to identify, in the past data
history, patterns neighboring (in a proper sense) the current
one, which describes the actual traffic load, and produces
forecasts supposing that the current situation will evolve in a
similar way.

Keywords Floating car data (FCD) - Speed time series -
Short-term speed forecasting - Pattern matching

1 Introduction

The successful wide-scale deployment of Advanced Traveler
Information Systems (ATIS) and Advanced Traffic
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Management Systems (ATMS) relies significantly on the ca-
pability to perform accurate short-term predictions of traffic
parameters over the entire road network [1]. Most of the
studies and applications conducted so far used statistical or
heuristic techniques to predict traffic conditions starting from
historical and real-time traffic data collected by fixed sensor
networks. Among these, we can mention loop detectors,
which provide flows and speeds through a road section, and
automatic vehicle identification systems, which keep track of
the vehicles passing through a particular installed device or
checkpoint and compute travel times from the difference
between arrival times at consecutive checkpoints.

However these traffic information collection techniques
have limitations in terms of spatial coverage due to the high
cost of installation and maintenance.

Recently, mobile sensors or probe-vehicles have appeared
as a complementary solution to fixed sensors for increasing
coverage areas and prediction accuracy without requiring
expensive infrastructure investments. Unlike other existing
traffic data collection techniques, probe-vehicles act as mov-
ing sensors traveling in a traffic stream and do not require
instrumentation to be set up on the roadway. Key and innova-
tive aspects of probe-vehicle technology are that vehicle travel
time is measured directly and the quality of data is fixed by the
percent of vehicles monitored.

In this view the use of real-time FCD [2], based on traces of
GPS positions, is emerging as a reliable and cost-effective
method of collecting accurate traffic data for a wide-area road
network and improving short-term predictions of travel con-
ditions. This new method of urban traffic data collection has
become a new frontier, and there are a number of theories
about and applications of FCD [3].

The FCD technique is based on the exchange of informa-
tion between a fleet of floating cars traveling on a road
network and a central data system. The floating cars periodi-
cally send the recent accumulated data on their positions
(latitude, longitude and altitude) and, optionally, instantaneous
speed, whereas the central data system tracks the received
floating car data along the traveled routes by matching the
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related trajectories data to the road network. The reliability of
travel time estimates based on FCD is highly dependent on the
percentage of floating cars participating in the traffic flow;
other factors affecting the reliability of travel time estimates,
mainly for lower penetration of floating cars, are traffic con-
ditions and road link capacities.

As an intuitive rule, a lower percentage of floating cars is
required in more congested traffic condition while a higher
percentage of floating cars is needed in low/free flow condi-
tions. In fact, following the usual assumption that drivers aim
to minimize travel time, a few vehicles constrained to low
speeds suffice to reliably denote a congested traffic condition
(low data variability); on the contrary, in the case of low/free
flow, driving styles affect individual speed choices, causing a
larger data variability.

The purpose of this paper is to present a model for short-
term traffic speed forecasting based on an operating FCD
system, developed and operated in Italy by OCTO Telematics
[4] [5], delivering real-time traffic speed information through-
out the Italian motorway network and along some important
arterial streets located in major Italian metropolitan areas.

Traffic speed values are deduced at an interval of 3 min
from GPS traces transmitted in real-time from a large (and still
growing) number of privately owned cars (more than
1,000,000) equipped with a specific device covering a range
of insurance-related applications.

The paper is organized as follows: Sections 2 and 3 will
present the FCD data that supported this research, Sections 4,
5 and 6 detail the proposed method, and finally Section 7
reports on its performance in terms of accuracy.

2 Outline of the OCTO Telematics probe-vehicle system

The aim of the Probe-Vehicle System (PVS) operated by
OCTO Telematics is basically insurance profiling. This PVS
is based on the wireless exchange of information between a
large fleet of privately-owned probe-vehicles traveling across
Italy and a Data Processing Center (DPC), which performs a
variety of functions such as statistical computation on driver
behavior, total mileage, accident detection and reconstruction,
real-time traffic condition estimation, anti-theft satellite track-
ing and fleet management.

Each vehicle is equipped with an on-board unit (OBU) that
integrates the following components: a GPS receiver, a GPRS
transmitter, a three-axis accelerometer sensor, a battery pack, a
mass memory, a processor and a RAM. The OBU stores GPS
measurements (position, heading, speed, quality) and period-
ically transmits (on request or automatically) the recent accu-
mulated measurements to the DPC. As aforementioned, a
primary function performed by the DPC is the collection and
processing of the received location and time information from
the probe-vehicles in order to provide real-time estimates of
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traffic conditions, in terms of average link speeds, every
3 min, 24 h a day, 7 days a week.

The method of inferring traffic conditions from probe-
vehicle position and time information involves four sequential
steps, as follows: 1. map matching; 2. path identification; 3.
travel time allocation; 4. travel speed aggregation.

Field tests were performed by comparing speed values
obtained by OCTO Telematics PVS with measured values
coming from the automatic vehicle identification systems
installed on the Italian motorway network. The results [5]
indicated that the speed estimates furnished by this PVS are
within an error bound of +/— 10 % on the entire road network.

3 The Rome ring road case study

The case study selected for the development and evaluation of
the proposed speed prediction method is Rome Ring Road
(GRA—Grande Raccordo Anulare). The GRA is a toll-free
motorway (68.2 km in circumference) that encircles Rome
(Fig. 1). It is a dual carriageway with three lanes in both the
clockwise (inner carriageway) and the anticlockwise (outer
carriageway) direction.

The GRA has 33 numbered entry/exit junctions (starting
from Aurelia Junction and proceeding in a clockwise direc-
tion) and is a major city traffic artery distributing traffic on
radial routes and handling circumferential traffic in the city.

The GRA is a very challenging test bed because it is located
in one of the most congested metropolises in the country.
Traffic is heavy for most of the day and frequent delays and
traffic-jams are experienced due to accidents or queue
spillbacks from the exit ramps or the adjacent radial arterial
streets leading into the city center.

The most severely congested links are in the east quadrant,
specifically from Junction 10 (Al—Roma Firenze) to Junc-
tion 23 (Appia) (from km 21.0 to km 44.6, clockwise direc-
tion) and in the south quadrant from Junction 30 (Fiumicino)
to Junction 18 (Casilina) (from km 7.6 to km 30.2, anticlock-
wise direction).

In a working day, about 15,000 probe-vehicles monitored
by OCTO Telematics PVS pass through the GRA. The aver-
age distances traveled by these vehicles on the GRA is about
10 km. During the peak period, on average, more than 2,000
floating cars per hour travel on the GRA.

Currently, the penetration level of equipped private cars in
Rome (about 2.5 %) is significantly higher than the national
average. The link travel speed time series used in this study are
organized in 3-min periods (480 values per link per day) and
cover the whole period ranging from April 2008 to October
2011, for a total of 1,079 days effectively present in the
database (apart from the incompletely measured days) and
517,920 speed values for each link.
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Fig. 1 The Rome Ring Road (GRA)

Our analysis considers the link enclosed between Junction The left panel of Fig. 2 shows the superimposition of all
11 (Nomentana) and 12 (Centrale del Latte), in the clockwise ~ daily histories of this link, reporting a high variability during
direction (see Fig. 1), in one of the more congested quadrants;  the available period and a complex structure; some daily
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Fig. 2 Time/frequency characteristics of the link L1
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The bolded black curve presents the daily averaged speed;
it is worth noting that it summarizes the erratic time evolution
of this link poorly. This behavior suggested the use of an
approach of local modeling, in contrast with global modeling,
which does not benefit from the reported variability.

The right panel of Fig. 2 shows the histogram of the L;;_,
time history over the whole period and, with its bimodal profile,
justifies its complex evolution. There we can clearly observe two
different traffic states centered at about 60 km/h and 100 km/h,
denoting situations of near congestion and free flow, respectively;
the congested states involve about 10 % of the overall area.

4 Local models and pattern matching

The problem of modeling a process from observed data has
been the object of several disciplines. In the literature dealing
with this problem, many different approaches have emerged.

A possible classification of the approaches to modeling is
based on structural considerations, that view the approaches as
local versus global methods [6, 7].

Global modeling consists in describing the behavior of the
system at hand by means of a single model that covers all the
space of possible operating regimes, for example a global
linear model or a neural network. On the other hand, local
modeling provides a description of the system by combining
several models pertaining to different operating regimes, and
is suitable for problems where one cannot assume that a
unique statistical distribution underlies the system. Each of
the local models is obtained by giving full attention to a
reduced portion of the space of the possible behaviors, yield-
ing a more accurate description even when simple approxi-
mations are used: therefore this approach refers to the concept
of breaking up the domain into several small neighboring
regions and analysing these separately.

Generally local methods are memory-based algorithms, in the
sense that they defer data processing until a prediction is required.

A database of observed data is always kept and the estimation is
derived from a neighborhood of the query point/time.

Identifying the examples neighboring the query point/time
may require a possible large amount of memory and high
computational costs. For example, given an evolving database
with several thousands or millions of examples, the continu-
ous choice of examples can be burdensome for the system.
Nevertheless the evolution of computer hardware may help to
overcome these problems.

The method of Pattern Matching (PM) or Pattern Imitation
[8] presented in this paper can be ascribed to local modeling; it
avoids the assumptions normally required in the context of time-
series modeling (e.g. stationarity and/or Gaussian condition) and
is based on the imitation of the past patterns in the data history.

The method tries to identify patterns (intended in a sense that
will be defined later) in the past data history, neighboring the
current time, and assumes that the current situation will evolve in
a similar way.

Clearly the method does not enable forecasts for unusual
events or accidents, because generally they lead to few past
similar situations.

We now present the element which plays a leading role in
our forecasting method, the reference pattern.

5 The reference pattern

Let us suppose we have a multivariate time-series L(k) =
{Li(k), Lo(k), ...., Lp(k)} of p speed time-series defined on a
discrete time history indexed by k=1, 2, ...., N.

In our context L(k) is a vector composed of speed data of
all the links L; of Rome GRA at time k; L; denotes equiva-
lently, for the sake of brevity, the link L; ) in the clockwise
direction.

The pattern is defined as a collection of a subset s = {sy, s,,
..., spy of h < p links taken from the original vector L(k) and
composed of time fragments of observations of length by, b,,
ey bhl

P(s,b1, by, .., bp)={Le1(1) La(2) .. La(ba) § Lo(1) Loo(2) o Loo(by)} e F L (1)

Lin(2) ... Lan(br)}

(1)

The association in (1) of each pattern with the set of
structural parameters {s, by, by, .., by} is pointed out, but it

will be omitted later on. In particular we denote a pattern Py (k)
for our target link L;,_, at a generic time k as follows:

P.(K) = {L1012(k-5) Lioaa(k-4) ... Ligaa(K)i Lioos(k-5) Lisaa(k-4) o Liyps(k) §
L13-14(k'5) |-13-14(k'4) |-13-14(k):: |-14-15(k'5) L14-15(k'4) |-14-15(k)

Li112(k-7) Liz12(k-6) .. Liz12(K)},
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where:

Lio-11() is the j-th speed value of the immediately preced-
ing upstream link, enclosed between Junction
10 and 11 (see Fig. 1)

Li>-15() 1is the j-th speed value of the immediately follow-

ing downstream link (see again Fig. 1); similar
considerations hold for L;3-14() and Li4—15().

All the link fragments are lined up to the same final time
value k (see e.g. Fig. 3, where L, represents a target link
fragment and L the fragment of the immediately following
downstream link, lined up to the same final time and date,
etc..); one upstream and 3 downstream links are involved in
the pattern, which it is built by considering the actual and the
nearest past speed values of the target and of the spatial
correlated upstream/downstream links.

Clearly the pattern structure is link-dependent, in the
sense that it is to be tailored and calibrated to the target
link every time.

A dynamical sequence results, represented on both tempo-
ral and spatial scales, whose time depths depend on the time-
forecasting horizon.

The structure described in (2), with the time depths report-
ed there (five time steps for associated links and seven time
steps for the target link), was obtained by following a trial and
error procedure, driven by the tradeoff of pursuing data reduc-
tion and obtaining acceptable results in our forecast
procedures.

When the time k assumes the meaning of forecast origin,
the associated pattern will be denoted as the reference pattern;
our aim is to achieve a forecast for L;_;»(k + n), which is n
time-steps ahead, and results will be presented for n=5 (cor-
responding to 5% 3 min=15 min ahead), n=10 (30 min), n=15
(45 min), n=20 (1 h).

Reference Pattern for the link L., (30-Nov-2009)

Lyeq Lu2 L,
100 Ty f ~
b — | L ] .
‘ - ' 3 ‘ d
‘ ! : —_— ; i
i i | ! | |
! ! ! ‘ | : i
9 : ! ! ‘ w ! !
: : | ! \ ! '
L : : oo P
B \"! ! ‘ ! 1 ; !
S I i | ‘ b .
@ | ! | ! : i ! !
1 1 1 i I i
i i ! | ! 1
1 | ' ! ' 1
70 ! ! | | | ! i
i i i | ! i 1
! | ! ‘ i
1 | ! | i
! i 1 i 1
) : ‘ |
| | P i
‘ ‘ ! :
] 1 i !
H i H | i !
. R L
L H 1 i 1
7:45 8:00 T:45 8:00 T7:45 8:00 7:45 8:00 7:39 8:00

Time
Fig. 3 A reference pattern for the target link L, = L;_, (forecast origin
30-Nov-2009, 8:00)

Figure 3 presents a true example of a reference pattern
relative to the target link L;;_;,, and to an arbitrarily chosen
date and time.

6 Detailing the proposed pattern matching method

Three aspects are fundamental in our approach, and we now
detail them in sequence.

a) The bandwidth

Following the definition of a reference pattern re-
lated to a forecast origin k, we have to find all
possible past patterns present in the database and
compliant with the structure described in (2). In effect
our procedure is computationally reduced, because the
scanning of the database proceeds in the past within a
time frame of +30 min from the selected time origin
k, to simplify the search and reduce the computing
time; when the scanning is complete, the set of can-
didate patterns is thus obtained.

The frame value of +£30 min constitutes a
bandwidth parameter. This parameter decides how
wide the pattern neighborhood should be, and clearly
influences the results.

b) The matching criteria of selection

The next action consists in an oriented selection among
the candidate patterns: patterns are to be near to the
reference pattern in the sense of usual Euclidean distance,
and similar in shape, so as to have fully comparable
trends among the reference and the matched profiles.

In our procedure, we used a sequence of two criteria:

1) a classification of the Euclidean point-to-point
distances between the reference and each of
the candidate patterns is preliminarily made,
and only those showing a distance below the
fourth percentile of the empirical distance distri-
bution enter the next step;

2) to evaluate shape similarity, the Spearman coefficient
[9] between the reference pattern and each of the
patterns surviving the previous selection step is cal-
culated. The Spearman coefficient is a measure of
rank correlation, and obeys the property that when
two variables X and Y are perfectly monotonically
related, its value becomes +1, the largest possible
value. This last criterion of selection was based on
the decision of choosing only the past patterns show-
ing a Spearman value larger than 0.95.

These two last parameters, the fourth percen-
tile of the distance distribution and a Spearman
value of 0.95, constitute the other free parame-
ters of our procedure.
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Fig.4 The selection process for a .
reference pattern of Ly;_, with its /\ Candidate Pattors Matchin,
231 matched patterns v I:> Criteri ]
riteria
Historical
Databas€ o
< \ =T
Matched Patterns
~— Reference Pattern

The final effect is the selection of patterns that
present marked resemblance in time evolution; the
current situation is then assumed to develop in a way
that resembles its matched patterns.

Figure 4 (left panel) summarizes the selection proce-
dure. Figure 4 also presents (right panel) a result
pertaining to the reference pattern at an assigned date
and time (5 Feb 2009, 08:36); 231 matched patterns that
were capable of passing the two-phase selection among
all candidates were found in the past and are shown. The
black bolded curve represents the reference pattern, the
colored lines refer to all the matched patterns.

Therefore the selection procedure helps us to find
past analogous situations.

The next developments of our method will discard
the contributions of the neighboring links Loy, Lio—3
and so on, and our considerations will be concentrated
only on the target link L;_5.

c) The local model
Looking at the right panel of Fig. 4, a question imme-
diately arises: how can the information conveyed by
matched patterns be used to furnish a forecast n steps

(Terms in left panel of Fig. 5)
Li1121(ki=7) Liciza(ki=6) ....... Lii-12,1(ki)
Li1-122(ko=7) Li-i22(ke=6) ....... Liji22(ka)

a5
.| 2,15

as,15

ahead? Figure 5 (right panel), where the effective time
evolutions of all 231 matched patterns of L;;_;, into their
true future are presented, suggests different possible solu-
tions: a simple averaging, referred to the time of forecast
(i.e. over the line +15 min., +30 min., etc..), a weighted
averaging, and so on.

Any choice based on averaging constrains the forecast
speed to lie within the corresponding line ranges, constitut-
ing a suitable procedure; but this procedure may generate
limitations.

In order to assign more flexibility to the method, that is to
assure better generalization capabilities, we prefer to define a
local model involving the L;;_;, fragments of all the
matched patterns.

Referring for example to the situation presented in Fig. 5,
we build up an autoregressive model using the usual least
squares (LS) procedure, where we properly employ all these
fragments (denoted L1—15, m, left and right panel, withm =1,
2, ..., 231). In detail, in matrix form the solving system for a
time horizon of 15 min (that is, five steps ahead) can be
expressed as:

(Terms on the line + 15min)

Lij-i21(ki +5)
Lij122(ks +5) (3)

Lii12231(kes1 +95)

Once solved, a set {a*i,ls}, i=1,2,., 8, of optimal
coefficients is obtained that can be applied to the current
Li1-1» time fragment (the bolded curve of the left side of
Fig. 5, denoted L;;-1, ), to obtain the desired five-step-
ahead forecast (that is, 15 min ahead) L*“,lz, c(k+35):

L*u—lz,c(k +5)=a"1s Lij12c(k=7) + 3*2,15 Lij-12,c(k—6)

+..+a'gs Lii-12.c(k) (4)
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Other time horizons forecasts can be found similarly; only
the right hand term of (3) has to be lined up to the times (k +
10) for 30 min ahead, (k + 15) for 45 min ahead, and so on.

Possible variations can be considered in (3), for example, by
taking into account the subtraction of a constant value from speed
values (mean detrending), or of an average profile, and so on.

The system matrix in (3) is prone to rank deficiency; in fact
rows are similar by choice, therefore linear (or quasi-linear)
combinations among rows may exist, in this case leading the
LS procedure to numerical problems or instabilities.
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Fig. 5 Time history of all

matched patterns (left panel: the

231 time fragments of L;;_;» and

the current one—right panel: L
evolutions of the 231 profiles into

their future until 1 h ahead)

11-12,m

-21 min

0 0 +15min +30min. +45min. +60 min.

Fig. 6 Two real cases of time
evolution of L_;, from a time k

currentk  +15 min +30 min

In any case, the LS procedure can take advantage of Ridge
Regression [10], which successfully treats situations of regres-
sion with collinearity or near-collinearity.

Moreover, complex and misleading situations can occur
when the future time evolutions of the reference patterns
disagree with those of the matched patterns.

An example is presented in Fig. 6.

It refers to two real cases of an effective time evolution of the
target link L, (black bolded curve) from a current time k into
the subsequent 60 min: the left panel shows a time evolution
always included within those of its matched patterns (the col-
ored lines), whereas the right panel shows the opposite case.

In the former case, the usual forecasting techniques can
furnish suitable values; in the latter (configuring an unusual
event) there is a component of unpredictability which affects

Table 1 Forecasting errors for PM modeling of L1,

Max absolute Mean absolute Mean absolute

error (km/h) error (km/h) percentage error (%)
15 min 0.01720 0.00086 0.001
30 min 0.63602 0.03237 0.037
45 min 5.37979 0.28758 0.337
60 min 23.31256 1.18310 1.395

+45 min

+60 min currentk  +15 min +30 min +45 min +60 min

the results. In this case the PM method produced the better
estimation, when compared with other methods like averaging
and global linear regression (see below).

7 Forecast results for the link L{;_;,

An extensive analysis of the link L1;_;, was done, considering
samples referred to daytime situations (from 6 a.m. to
11 p.m.). In other words, we randomly extracted about
20,000 reference patterns (4 % of those available) from the
recorded traces of Lj;-12, Lio-11, L12-13 and so on and sub-
mitted them to a process of forecast estimation for L,
relative to 15, 30, 45, 60 min ahead.

Having fixed (as a measure of quality) the requirement of
finding a minimum amount of 12 matched patterns to continue

Table 2 Forecasting errors for global regression modeling of L;_1»

Max Mean Mean absolute percentage error
absolute absolute (%)
error (km/h) error (km/h)

15 min  0.54989
45 min 18.28674

0.14489
6.01728

0.16292
6.57748
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every estimation process, only 17,359 of them (about 88 %)
reached the end of the procedure.

In effect we enabled a three-steep procedure that
progressively loosened the selection limits (the fourth
percentile on Euclidean distances and a Spearman coef-
ficient of 0.95) in order to obtain at least 12 matched
patterns: if the first trial on the current reference pattern
failed to furnish 12 matched patterns at the highest
limits, we loosened the fixed values slightly and tried

Max  Absolute  Error (km/h) =

Mean Absolute  Error (km/h) =

max ’SP11—12,i—SP11—12,i
Z ‘Spn—lz, i=SP11-12, i

again to obtain at least 12 matched patterns, and so on
until the third trial.

In this way only 12 % of the available cases did not support
the forecasting procedure; 13,991 cases enabled a first-trial
treatment, 3,035 required a second e 333 a third with a
progressive loosening of the criteria.

We will see the immediate consequences of this procedure
in terms of the precision. Table 1 summarizes the results in
terms of the following errors:

/17359

Mean Absolute Percentage Error(%) = 100 - (Z ‘SPlHZ i—SP1-12, i‘/SPn—lz, i>/17359,

where SP;;-15, i and S_Pllflz i are, respectively, the effective
and the forecast speed, with the index i ranging between 1 and
17359, the sample size.

Table 1 presents the results related to PM forecasts, show-
ing good levels of precision, including when the forecasting
horizon reaches as far as 60 min; in this last case only, a
maximum absolute error of 23.31 km/h is reported, while
other results in the same column maintain acceptable values
of error.

Both types of mean absolute errors (second and third
column of Table 1), on the other hand, show encouraging
results in all cases.

Table 3 Relations among max absolute error and number of matched
patterns (#MP)

Max absolute error (km/h) 12 <#MP <20 20 <#MP <30 #MP >30

15 min 0.01720 0.00811 0.00759
30 min 0.63602 0.32034 0.29799
45 min 5.37979 2.98723 2.77643
60 min 23.31256 12.86972 12.01528

@ Springer

A comparison with a global linear regression model is
presented in Table 2 with regard to the forecasts 15 and
45 min ahead. As usual the global regression modeling was
performed on matched and unmatched patterns, in accordance
with the structure described in (2); as unique differences, the
same regression order of six was assumed for all of the links
and a preliminary mean value detrending on all components of
P, (k) was conducted.

Interestingly, we can note a systematic lowering of the
forecast quality when compared to PM modeling.

The histograms of the forecasting errors of PM modeling
show Gaussian-like profiles, with small positive excess kur-
toses (see Fig. 7. Left: 15 min. ahead; right: 30 min. ahead).

Moreover, Table 3 shows the dependence of the maximum
absolute error on the cardinality of the matched pattern set
(#MP), distributed into three possible ranges; for example, the
last value of the first row means that among all the 15-min-
ahead forecasts with a population of matched patterns larger
than 30, the maximum absolute error was found to be
0.00759.

We can note that situations where #MP is higher show
lower levels of maximum absolute error among all the time
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Fig. 8 The 20 maximum 25
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horizons considered, so we are able to conclude that a cautious
consideration of the parameter #MP, in terms of the assumed
value during the selection procedure, is to be taken into
account.

Table 3 justifies our choice of finding at least 12 matched
patterns to continue the PM forecast procedure and obtain
satisfying errors (apart from the value of 23.31 for the 60-
min-ahead forecast (see Table 3) which probably pertains to
an unusual situation); our choice is derived from a tradeoff,
and thus limits the intractable situations to only 12 % of the
total cases.

Finally, Fig. 8 shows the 20 maximum absolute prediction
errors of two situations of PM modeling compared to global
regression modeling, in descending order of magnitude.

A comparison of the green profile (pertaining to 45-min-
ahead forecasts of global regression modeling) versus the red
one (45-min-ahead forecasts of PM modeling) confirms on a
point-to-point scale the superior performance of PM model-
ing. In effect even the 60-min-ahead forecasts of PM modeling
(blue profile) perform better, apart from the first well known
situation of an error of 23.31 km/h.

8 Conclusions

Present-day computer technology enables effective storage of
large database at reduced costs, and computational techniques
and tools to gain access to large amount of data are now
possible; in particular procedures for finding useful patterns
in available data are to hand and enable the development of
PM modeling, which is based on searching similar patterns in
the past data history, under the hypothesis that the current
situation will evolve in an analogous way.

The application of these concepts to speed values of the
link L;—;, (and of its neighbors) of Rome GRA, taken from a
data collection of more than 3 years obtained by OCTO
Telematics PVS, following the method presented in Section 6,
produced superior results when compared to global regression
model predictions, in both average and point-to-point com-
parisons, as reported in Section 7.

Possible drawbacks of the presented approach are the lack
of guarantee of obtaining a forecast (because in some cases the
number of past similar examples may be insufficient), or the
computational costs due to pattern tracing when scanning
large databases. Our experience reported a PM forecast failure
of 12 % with regard to the former and an average computing
times of 20 s/forecast on a desktop computer with a typical
configuration (a Pentium dual-core CPU @ 3.16 GHz, 8GB of
RAM) with regard to the latter. On the other hand the encour-
aging results obtained in terms of forecast quality suggest that
this method should be applied on a wider basis for an exten-
sive verification of its performances, and efforts in this direc-
tion have been undertaken.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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