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Abstract
Purpose In a transshipment problem all the sources and des-
tinations can function in any direction thus transshipment is
very useful to reduce the transportation cost. Sometimes, be-
cause of budget/political constraint, the total flow in transship-
ment problem is also specified by some external decision
maker and the optimal solution of such problems is of realistic
interest to the decision maker. This has motivated me to dis-
cuss impaired and enhanced flow in a transshipment problem.
Method Algorithms are provided for solving such transship-
ment problems by transforming the original problem into an
equivalent transportation problem by adding an additional
row and a column.
Results The optimal solution of the transformed transporta-
tion problem gives the optimal solution of the given transship-
ment problem having the same objective function value. I
have considered both balanced as well unbalanced transship-
ment problems and have also discussed various situations
emerging out of unbalanced capacitated transshipment prob-
lems in the form of inequalities.
Conclusion The algorithms and transformations are easy to
understand and serve the managers by providing the solution
to a variety of distribution problems. Numerical examples are
solved to illustrate the theory and computational work for
various higher dimensional problems is also included.
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1 Introduction

A transportation problem refers to a class of linear program-
ming problems that involves selection of most economical
shipping routes for transfer of a uniform commodity from a
number of sources to a number of destinations. In case of an
unbalanced transportation problem, the total availability is not
equal to total demand, thus some of the source and/or desti-
nation constraints are satisfied as inequalities. When one
wishes to keep reserve stocks at the sources for emergencies
thereby restricting the total transportation flow to a known
specified level, it results in a transportation problem with im-
paired flow. For example, stockiest reserves the goods viz.
medicines, food grains & other items at warehouses for emer-
gencies. On the other hand, when there is an extra demand in
the market due to high storage cost at some sources or during
festive / marriage seasons or during fire / military services, the
total flow needs to be enhanced compelling some of the fac-
tories to increase their productions in order to meet this extra
demand. The total flow from the factories in the market is now
increased by the amount of extra demand. This results in a
transportation problem with enhanced flow.

In case of transportation problem, the amount to be sent
from each origin, the amount to be received at each destina-
tion, the cost per unit shipped from any origin to any destina-
tion are specified and transshipment is not considered. Thus
each point acts as shipper only or as a receiver only. We may
extend this problem to permit transshipment with the addition-
al feature that shipments may go via any sequence of points
rather than being restricted to direct connections from one
origin to one of the destination. It is assumed that a large
amount of material to be shipped is available at each point
and act as stockpile, which can be drawn or replenished. The
unit cost of shipment from a point considered as a shipper to
the same point considered as receiver is set equal to zero. The
solution to the transshipment problem lies in the fact that
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withdrawals from and compensating additions to the stock-
piles are equivalent to transshipment.

The transshipment problem formulation has been and is
still being used extensively by researchers to solve spatial
equilibrium and plant location problems as well.

In the transshipment problem all the sources and destina-
tions can function in any direction. Usually, in the absence of
the transshipment, the transportation cost goes higher. Hence
transshipment is also very useful to reduce the transportation
cost. Both the transportation problem and the transshipment
problem are also quite widely used for planning bulk distribu-
tion, especially in the USA where the (road) distances trav-
elled are large.

Cost–time transportation problem have extensively been
studied by many researchers in the past years. Klingman
and Russel [1] introduced a specialized method for solv-
ing a transportation problem with several additional linear
constraints. Brigden [2] considered the transportation
problem (TP) with mixed constraints. Brigden [2] solved
this problem by considering a related standard transporta-
tion problem having two additional supply points and two
additional destinations. After that Gupta et al. [3, 4] have
also worked on linear and non-linear transportation prob-
lems. In the recent years, indefinite Quadratic Transporta-
tion Problem has also been studied [5–7]. Dahiya and
Verma [8] studied capacitated transportation problem with
bounds on the rim conditions.

Transshipment Problem was first introduced by Orden [9].
He gave an extension of the original transportation problem to
include the possibility of transshipment i.e., any shipping or
receiving point is also permitted to act as an intermediate
point. The Transshipment technique is used to find the shortest
route from one point in a network to another. The problem of
determining simultaneously the flows of primary products
through processors to the market as final products has been
formulated alternatively as a transshipment model by King
and Logan [10] and as a reduced matrix model by Rhody
[11]. An extension of this problem to a multiregional, multi-
product and multiplant problem formulated in the general lin-
ear programming model has been proposed by Judge et al.
[12]. Afterwards, various alternatives formulations of the
transshipment problem within the framework of the transpor-
tation model that permits solution of problems of the type
discussed by King and Logan without the need for subtraction
of artificial variables were discussed by Hurt and Tramel [13].
In 1985, Garg and Prakash [14] studied time minimizing
transshipment problem. Recently in 2014, 2011, Khurana
et al. [15, 16] studied three – dimensional time minimizing
transshipment problem.

In literature, much effort has been concentrated on trans-
portation problems as well as transshipment problems with

equality constraints. The transportation problem with restrict-
ed flow was studied by Thirwani and Arora [17]. In 2006,
Khurana and Arora [18] studied linear plus linear fractional
transportation problem for restricted as well as enhanced flow.
Later, Khurana et al. [5] studied the indefinite quadratic trans-
portation problem with restricted flow in 2009 and then in
2011 they [6] studied the same problem with enhanced flow.
Since the total flow in transportation/transshipment problem is
also specified by some external decision maker because of
budget/political consideration, the optimal solution of such
problem is of practical interest to the decision maker and
has motivated us to discuss such problems. Transshipment
problems with mixed constraints were studied by Khurana
et al. in 2011 [19]. Later Khurana et al. studied multi-
index transshipment problems [20, 21]. Later capacitated
transshipment problem with bounds on rim conditions was
studied by Khurana et al. [22].

In this paper the author has given an algorithm to solve a
linear transshipment problem with impaired and enhanced
flow. The literature search reveals no systematic method for
finding an optimal solution of the same. We consider a gener-
alization of the standard transshipment model in which the
origin and destination constraints take not only the equality
form but also of inequality. It is shown that the models are
transformed to an equivalent standard transportation problem
be adding an additional row and a column.We have solved the
problems for balanced as well unbalanced cases and have
discussed the various situations emerging out of unbalanced
transshipment problems. The algorithms and transformation
are easy to understand and to apply. The solution method
can serve as an effective tool to the managers having produc-
tion allocation problems.

2 Mathematical formulation of transshipment problem

Suppose that, we have m origins and n destinations. Since in a
transshipment problem, any origin or destination can ship to
any other origin or destination it would be convenient to num-
ber them successively so that the origins are numbered from 1
to m and the destinations from m+1 to m+n.

Let ai be the quantities available at the origins and bj be the
demands at the destinations and

Xm
i¼1

ai ¼
Xmþn

j¼mþ1

bj

Let xij (i, j=1, 2, ...., m+n, j≠i) be the quantities shipped
from station i to station j and cij be the unit cost of shipping
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from i to j (i, j=1, 2,…., m+n, j≠i) where cij need not be the
same as cji.

We define a supply point to be a point that can send goods
to another point but cannot receive goods from any other
point. Similarly, a demand point is a point that can receive
goods from other points but cannot send goods to any other
point. A transshipment point is a point that can receive goods
from other points and send goods to other points. Thus the
Transshipment Problem may be written as

Minimize z ¼
Xmþn

i¼1

Xmþn

j ¼ 1
j≠i

ci jxi j ðP1Þ

subject to

Xmþn

j ¼ 1
j≠i

xi j −
Xmþn

j ¼ 1
j≠i

x ji ¼ ai ∀i ¼ 1; 2;……;m

Xmþn

i ¼ 1
i≠ j

xi j −
Xmþn

i ¼ 1
i≠ j

x ji ¼ bj ∀ j ¼ mþ 1;mþ 2;……;mþ n

xij≥0 ∀i, j = 1,2,……..,m + n; i≠j

The above formulation is a linear programming problem,
which is similar to a transportation problem but not exactly
since the coefficients of ∑xji’s are −1.

Here, originally we have m supply points and n de-
mand points. However, we make all the supply and
demand point as transshipment points resulting in m+n
transshipment points.

Thus the problem however may easily be converted to a
standard transportation problem.

Let ti ¼
Xmþn

j ¼ 1
j≠i

x ji ∀i ¼ 1; 2;……;m and

t j ¼
Xmþn

i ¼ 1
i≠ j

x ji ∀ j ¼ mþ 1;mþ 2;……;mþ n

where ti represents the total amount of transshipment through
the ith origin and tj represents the total amount shipped from
the jth destination as transshipment.

Let T > 0 be sufficiently large number so that ti ≤ T, for all i
and tj ≤ T for all j

We nowwrite ti+xii=T, then the nonnegative slack variable
xii represents the difference between T and the actual amount
of transshipment through the ith origin.

Similarly, if we let tj+xjj=T, then the nonnegative
slack variable xjj represents the difference between T
and the actual amount of transshipment through the jth
destination.

Thus the transshipment problem reduces to

Minimize z ¼
Xmþn

i¼1

Xmþn

j ¼ 1
j≠i

ci jxi j ðP2Þ

subject to

Xmþn

j¼1

xi j ¼ ai þ T ∀i ¼ 1; 2;……;m

Xmþn

j¼1

xi j ¼ T ∀i ¼ mþ 1;mþ 2;……:;mþ n

Xmþn

i¼1

xi j ¼ T ∀ j ¼ 1; 2;……;m

Xmþn

i¼1

xi j ¼ bj þ T ∀ j ¼ mþ 1;mþ 2;……;mþ n

xi j ≥ 0 ∀i; j ¼ 1; 2;……::;mþ n; i≠ j

cii ¼ 0 ∀i ¼ 1; 2;………;mþ n

The above mathematical model represents a standard
transportation problem with (m+n) origins and (m+n)
destinations.

We shall construct the transportation tableau for above
problem (P2) as follows: A row in the tableau will be
needed for each supply point and transshipment point,
and a column will be needed for each demand point and
transshipment point. Each supply point will have a supply
equal to its original supply, and each demand point will
have a demand equal to its original demand. Let T=total
available supply. Then each transshipment point will have
a supply equal to point’s original supply+T and a demand
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equal to point’s original demand+T. This ensures that any
transshipment point that is a net supplier will have a net
outflow equal to the point’s original supply, and, similarly,
a net demander will have a net inflow equal to the point’s
original demand. Although, we don’t know how much
will be shipped through each transshipment point, we
can be sure that the total amount will not exceed T. This
explains why we add T to the supply and demand at each
transshipment point. By adding the same amounts to the
supply and demand, we ensure that the net outflow at
each transshipment point will be correct, and we also
maintain a balanced transportation tableau.

Note1: The total amount shipped from an origin
must be equal to the amount it produces plus what it
transships. Similarly, the total amount received at a
destination must be equal to its demand plus what it
transships.

Note2: T can be also interpreted as a buffer stock at
each origin and destination. Since we assume that any
amount of goods can be transshipped at each point, T
should be large enough to take care of all transship-
ments. It is clear that the volume of goods transshipped
at any point cannot exceed the amount produced or

received and hence we take T ¼ max ∑
m

i¼1
ai; ∑

mþn

j¼mþ1
bj

 !
¼

Buffer stock.
Note3: The solution of the problem (P2) contains 2 m+2n-1

basic variables. However, m+n of these variables appearing in
the diagonal cells represent the remaining buffer stock and if
they are omitted, we have (m+n-1) basic variables of our
interest.

Remark1: An optimal solution of the transportation prob-
lem (P2) gives the optimal solution of the transshipment prob-
lem (P1) having the same objective function value.

3 Transshipment problem with impaired flow

Sometimes, situations may arise where one wishes to keep
reserve stocks at the sources, say for emergencies, thereby
restricting the total transportation flow to a known specified
level, say P. Then we have

Xm
i¼1

Xmþn

j¼mþ1

xi j ¼ P or
Xmþn

i¼1

Xmþn

j¼1

xi j ¼ P0

where P ′=P+(m+n)T

The transshipment problem with impaired flow is
given by

Minimize z ¼
Xmþn

i¼1

Xmþn

j ¼ 1
j≠i

ci jxi j ðP3Þ

subject to

Xmþn

j¼1

xi j≤ai þ T ∀i ¼ 1; 2; :::::::::::::;m

Xmþn

j¼1

xi j ¼ T ∀i ¼ mþ 1; :::::::::::;mþ n

Xmþn

i¼1

xi j ¼ T ∀ j ¼ 1; 2;…………:;m

Xmþn

i¼1

xi j≤bj þ T ∀ j ¼ mþ 1;………::;mþ n

Xmþn

i¼1

Xmþn

j¼1

xi j ¼ P0 P0 < min
Xm
i¼1

ai þ mþ nð ÞT ;
Xmþn

j¼mþ1

b j þ mþ nð ÞT
( ) !

xi j≥0 ∀i; j ¼ 1; 2;……………;mþ n i≠ jð Þ

cii ¼ 0 ∀i ¼ 1; 2;……………;mþ n

The flow constraint in the problem (P3) implies that a total

∑
m

i¼1
ai þ mþ nð ÞT

� �
−P0

� �
of source reserves has to be kept

at the various sources and a total

∑
mþn

j¼mþ1
bj þ mþ nð ÞT

 !
−P0

( )
of destination slacks are to

be retained at the various destinations. Therefore, an extra

destination to receive the source reserves and an extra source

to fill up the destination slacks are introduced. Hence the re-

lated transportation problem with restricted flow is given as

below.

Minimize z ¼
Xmþnþ1

i¼1

Xmþnþ1

j ¼ 1
j≠i

c
0
i jyi j ðP4Þ
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subject to

Xmþnþ1

j¼1

yi j ¼ a
0
i ∀i ¼ 1; 2;……;mþ n;mþ nþ 1

Xmþnþ1

i¼1

yi j ¼ b
0
j

∀ j ¼ 1; 2;……:;m þ n;m þ n þ 1

Xmþn

i¼1

Xmþn

j¼1

xi j ¼ P0

a
0
i ¼

ai þ T ∀ i ¼ 1 ; … … … ::; m
T ∀i ¼ mþ 1;………::;mþ nXmþn

j¼1

b
0
j−P

0 f or i ¼ mþ nþ 1

8>>><
>>>:

b
0
j ¼

T ∀ j ¼ 1 ; … … … ::; m
bj þ T ∀ j ¼ mþ 1;………::;mþ nXmþn

i¼1

a
0
i−P

0 f or j ¼ mþ nþ 1

8>>><
>>>:

c
0
i j ¼ ci j ∀i; j ¼ 1; 2;…::;mþ n

c
0
i;mþnþ1 ¼ c

0
mþnþ1; j ¼ 0 ∀ i; j ¼ 1; 2;……;mþ n

c
0
mþnþ1;mþnþ1 ¼ M

yi j≥0 ∀i; j ¼ 1; 2;……::;mþ nþ 1

Note4: We assign a cost zero to all the cells in the
additional row and column except the (m+n+1, m+n+1)
th cell, where we assign a cost M, where M is a large
positive number.

Definition A basic feasible solution {yij}, i, j=1, 2,……., m+
n+1 to problem (P4) is called a corner feasible solution (cfs) if
ym+1, n+1=0

Theorem1 Every corner feasible solution of (P4) provides a
basic feasible solution to (P3) and conversely.

Proof : Let {yij} be a cfs to (P4)

Define xi j ¼ yi j; i; jð Þ∈I� J where I; J ¼ 1; 2;…::; mþ nf g

{xij} so defined can be established to be a basic feasible
solution to (P3).

Conversely, given {xij} to be a basic feasible solution to
(P3), then {yij}, (i,j) ∈ I′×J′
where I ′ , J ′ = {1,2,…… . , m + n + 1} defined by the
transformation

yi j ¼ xi j; i; jð Þ∈I� J

yi;mþnþ1 ¼ a
0
i−
Xmþn

j¼1

xi j
; i ¼ 1; 2;……;m

¼ T−
Xmþn

j¼1

xi j ; i ¼ mþ 1;…::;mþ n

ymþnþ1; j ¼ T−
Xmþn

i¼1

xi j ; j ¼ 1; 2;…::;mþ n

¼ b
0
j−
Xmþn

i¼1

xi j ; j ¼ mþ 1;mþ 2;……;mþ n

ymþnþ1; mþnþ1 ¼ 0

can be shown to be a cfs to (P4)

Theorem 2 The value of the objective function of (P4) at
a corner feasible solution is equal to the value of the
objective function of (P3) at its corresponding basic
feasible solution.

Proof: Value of the objective function of (P4) is

¼
X
i∈I0

X
j∈ J0

c
0
i jyi j

¼
X
i∈I

X
j∈ J

c
0
i jyi j þ

X
j∈ J 0

c
0
mþnþ1; jymþnþ1; jþ

X
i∈I 0

c
0
i;mþnþ1yi;mþnþ1

¼
X
i∈I

X
j∈ J

ci jyi j as c
0
mþnþ1; j ¼ c

0
i;mþnþ1 ¼ 0; ymþnþ1;mþnþ1 ¼ 0

� �

¼
X
i∈I

X
j∈ J

ci jxi j sincexi j ¼ yi j; i; jð Þ∈I� J
� �

¼ Value of the objective function of P3ð Þ

Remark 2: A non-corner feasible solution to (P4) can not
provide a feasible solution to (P3)

Theorem3 An optimal solution to (P4) has to be a corner
feasible solution.
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Theorem4 There is a one to one correspondence between op-
timal solution to (P3) and optima among the corner feasible
solutions to (P4).

Remark 3: Optimal corner feasible solution to (P4) pro-
vides optimal solution to (P3).

Theorem 5 Optimizing (P3) is equivalent to optimizing (P4),
provided (P3) has a feasible solution.

3.1 Algorithm to solve transshipment problem with impaired
flow

Step1: Given the linear transshipment problem. If ∑
m

i¼1
ai ¼

∑
mþn

j¼mþ1
bj, then the transshipment problem is balanced,

take T ¼ ∑
m

i¼1
ai else take T ¼ max ∑

m

i¼1
ai; ∑

mþn

j¼mþ1
bj

 !

and go to step 2.
Step2: Let the flow be impaired to P ′, where P0 < min

∑
m

i¼1
ai þ mþ nð ÞT

�
; ∑

mþn

j¼mþ1
bj þ mþ nð ÞTÞ, Con-

struct a transportation tableau as follows. A row in
the tableau will be needed for each supply point and
transshipment point, and a column will be needed for
each demand point and transshipment point.

Step3: Add a dummy demand point/column with a demand ¼
∑
m

i¼1
ai þ mþ nð ÞT

� �
−P0

� �
or a dummy supply point/

rowwith a supply ¼ ∑
mþn

j¼mþ1
bj þ mþ nð ÞT

 !
−P0

 !
. Ship-

ments to the dummy and from a point to itself are taken
as zero.

Step4: Each transshipment point will have a supply equal to
it’s original supply (ai, i=1, 2,…, m)+Tand will have a
demand equal to its original demand (bj, j=m+1, m+2,
…, m+n)+T. Also, each supply point will have supply
equal to original supply, T (for i=m+1, m+2,….., m+
n) and each demand point will have its demand equal to
original demand, T (for j=1, 2,……, m). This ensures
that any transshipment point that is a net supplier
will have a net outflow equal to point’s original
supply and a net demander will have a net inflow
equal to point’s original demand. Although we don’t
know how much will be shipped through each trans-
shipment point, we can be sure that the total amount
will not exceed T.

Step 5: Find out the optimal basic feasible solution of the
transformed transportation problem (P4).

Step 6: Ignoring the allocations in the diagonal cells, the
solution obtained is the optimal basic feasible solu-
tion for the transshipment problem (P3).

4 Transshipment problem with enhanced flow

Sometimes, situations may arise when because of the extra de-
mand in the market, the total flow needs to be enhanced, com-
pelling some of the factories to increase their productions in order
to be able to meet this extra demand. Let P0 > max

∑
m

i¼1
ai þ mþ nð ÞT

�
; ∑

mþn

j¼mþ1
bj þ mþ nð ÞTÞ be the enhanced

flow. The transshipment problem with enhanced flow is
given by

Minimize z ¼
Xmþn

i¼1

Xmþn

j ¼ 1
j≠i

ci jxi j ðP5Þ

subject to

Xmþn

j¼1

xi j≥ai þ T ∀i ¼ 1; 2;…………:;m

Xmþn

j¼1

xi j ¼ T ∀i ¼ mþ 1;………::;mþ n

Xmþn

i¼1

xi j ¼ T ∀ j ¼ 1; 2;…………:;m

Xmþn

i¼1

xi j≥b j þ T ∀ j ¼ mþ 1;………::;mþ n

Xmþn

i¼1

Xmþn

j¼1

xi j ¼ P0 P0 > max
Xm
i¼1

ai þ mþ nð ÞT ;
Xmþn

j¼mþ1

bj þ mþ nð ÞT
 ! !

xi j≥0 ∀i; j ¼ 1; 2;……………;mþ n i≠ jð Þ

cii ¼ 0 ∀i ¼ 1; 2;……………;mþ n

In order to deal with the flow constraint ∑
mþn

i¼1
∑
mþn

j¼1
xi j ¼ P0 >

max ∑
m

i¼1
ai þ mþ nð ÞT

�
; ∑

mþn

j¼mþ1
bj þ mþ nð ÞTÞ, a related

transportation problem is formulated by adding an additional

row with availability equal to P0− ∑
m

i¼1
ai þ mþ nð ÞT

� �
and

an additional column with demand equal to

P0− ∑
mþn

j¼mþ1
bj þ mþ nð ÞT

 !
. Hence the related transportation

problem with enhanced flow is given as below.
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Minimize z ¼
Xmþnþ1

i¼1

Xmþnþ1

j ¼ 1
j≠i

c
0
i jyi j ðP6Þ

subject to

Xmþnþ1

j¼1

yi j ¼ a
0
i ∀i ¼ 1; 2;……;mþ n;mþ nþ 1

Xmþnþ1

i¼1

yi j ¼ b
0
j ∀ j ¼ 1; 2;……:;mþ n;mþ nþ 1

a
0
i ¼

ai þ T
T

P0−
Xmþn

i¼1

a
0
i

8>><
>>:

∀ i ¼ 1 ; … … ::; m
∀i ¼ mþ 1;……::;mþ n

for i ¼ mþ nþ 1

b
0
j ¼

T
bj þ T

P0−
Xmþn

i¼1

b
0
j

8>>><
>>>:

∀ j ¼ 1 ; … … … ::; m
∀ j ¼ mþ 1;………::;mþ n

for j ¼ mþ nþ 1

c
0
i j ¼ ci j ∀i; j ¼ 1; 2; :::::;mþ n

c
0
i;mþnþ1 ¼

min
mþn

j¼mþ1
ci j
� 	

∀i ¼ 1; 2;……:;m

min
m

j¼1
ci j
� 	

∀i ¼ mþ 1;mþ 2;…:;mþ n

8>><
>>:

c
0
mþnþ1; j ¼

min
mþn

i¼mþ1
ci j
� 	

∀ j ¼ 1; 2;……:;m

min
m

i¼1
ci j
� 	

∀ j ¼ mþ 1;mþ 2;…:;mþ n

8><
>:

c
0
mþnþ1;mþnþ1 ¼ M

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;
ð1Þ

yi j≥0 ∀i; j ¼ 1; 2;……::;mþ nþ 1

Note 5: We assign a cost M to the (m+n+1, m+n+1) th cell,
whereM is a large positive number and to absorb the additional
flow, the rest of the elements in the additional row and column
takes the minimum of the various cost as defined in (1).

4.1 Algorithm to solve transshipment problem with enhanced
flow

Step1: Given the linear transshipment problem. If ∑
m

i¼1
ai ¼

∑
mþn

j¼mþ1
bj, then the transshipment problem is balanced,

take T ¼ ∑
m

i¼1
ai else take T ¼ max ∑

m

i¼1
ai; ∑

mþn

j¼mþ1
bj

 !

and go to step 2.

Step2: Let the flow be restricted to P ′, where P0 > max

∑
m

i¼1
ai þ mþ nð ÞT

�
; ∑

mþn

j¼mþ1
bj þ mþ nð ÞTÞ. Con-

struct a transportation tableau as follows. A
row in the tableau will be needed for each sup-
ply point and transshipment point, and a column
will be needed for each demand point and trans-
shipment point.

Step3: Add a dummydemand point/columnwith a demand ¼
P0− ∑

m

i¼1
ai þ mþ nð ÞT

� �
or a dummy supply point/

row with a supply ¼ P− ∑
mþn

j¼mþ1
bj þ mþ nð ÞT

 ! !
.

Shipments from a point to itself are taken as zero.
Step 4: Assign a cost M to the (m+n+1, m+n+1) th

cell, where M is a large positive number. The
rest of the elements in the dummy row and
column take the minimum of the various cost
as defined in (1).

Step 5: Each transshipment point will have a supply equal to
it’s original supply (ai, i=1, 2,…, m)+T and will
have a demand equal to its original demand (bj, j=
m+1, m+2,…, m+n)+T. Also, each supply point
will have supply equal to original supply, T (for i=
m+1, m+2,….., m+n) and each demand point will
have its demand equal to original demand, T (for j=
1, 2,……, m).

Step 6: Find out the optimal basic feasible solution of the
transformed transportation problem (P6).

Step 7: Ignoring the allocations in the diagonal cells,
the solution obtained is the optimal basic fea-
sible solution for the transshipment problem
(P5).

5 Unbalanced capacitated transshipment problem

If in a given problem, the total availability ∑
mþn

i¼1
ai is not equal to

the total demand ∑
mþn

j¼1
bj, then some of the source and/or desti-

nation constraints are satisfied as inequalities. This gives rise
to an unbalanced capacitated transshipment problem (UCTsP)
whose related balanced capacitated transportation problem is
given below.

Minimize
Xmþn

i¼1

Xmþn

j¼1

ci jxi j ðP7Þ

Eur. Transp. Res. Rev. (2015) 7: 11 Page 7 of 19 11



subject to

Xmþn

j¼1

xi j ¼ ai þ T ∀i ¼ 1; 2;…………:;m

Xmþn

j¼1

xi j ¼ T
∀i ¼ mþ 1;………::;mþ nXmþn

i¼1

xi j ¼ T ∀ j ¼ 1; 2;…………:;m

Xmþn

i¼1

xi j ¼ bj þ T ∀ j ¼ mþ 1;………::;mþ n

cii ¼ 0 ∀i ¼ 1; 2;……………;mþ n

xi j≥0 ∀i; j ¼ 1; 2;…………:;mþ n

Depending upon the situation, there exist various cases for
UCTsP. In the next section, we discuss the various cases of
UCTsP.

Case I: Sometimes situations are arise when one wishes to
keep stocks at the sources for emergencies and/or
over supply to destinations due to high storage cost
at some sources. This gives rise to the following
UCTP

Minimize
Xmþn

i¼1

Xmþn

j¼1

ci jxi j ðP8Þ

subject to

Xmþn

j¼1

xi j ≤ai þ T ∀i ¼ 1; 2;…………:;m

Xmþn

j¼1

xi j ¼ T ∀i ¼ mþ 1;………::;mþ n

Xmþn

i¼1

xi j ¼ T ∀ j ¼ 1; 2;…………:;m

Xmþn

i¼1

xi j≥bj þ T ∀ j ¼ mþ 1;………::;mþ n

xi j≥0 ∀i; j ¼ 1; 2;…………:;mþ n

cii ¼ 0 ∀i ¼ 1; 2;……………;mþ n

Problem (P8) can be solved by solving the following trans-
portation problem

Minimize
Xmþn

i¼1

Xmþnþ1

j¼1

c0i jxi j ðP9Þ

subject to

Xmþnþ1

j¼1

xi j ¼ a
0
i ∀ i ¼ 1; 2;………::;mþ n

Xmþn

i¼1

xi j ¼ b
0
j ∀ j ¼ 1; 2;……;mþ n;mþ nþ 1

xi j≥0 ∀ i ¼ 1; 2;……;mþ n; j ¼ 1; 2; ::::;mþ nþ 1

where

a
0
i ¼

ai þ T ∀ i ¼ 1 ; … … … ::; m
T ∀ i ¼ mþ 1;………::;mþ n

�

b
0
i ¼

T ∀ j ¼ 1 ; … … ::; m
bj þ T ∀ j ¼ mþ 1;………::;mþ nXm
i¼1

ai −
Xmþn

j¼mþ1

bj; j ¼ mþ nþ 1

8>>><
>>>:

c
0
imþnþ1 ¼ 0 ∀ i ¼ 1; 2;…………;mþ n

c
0
i j ¼ ci j ∀ i; j ¼ 1; 2;………;m þ n

c
0
ii ¼ 0 ∀ i ¼ 1; 2; :::::::::::::::;mþ n

which is of the form (P2).
In another situation, when total availability of material at

sources is less than total demand at various destinations then
over production at sources may be required and still some
destinations may be short supplied. Thus the problem is of
the form

Minimize
Xmþn

i¼1

Xmþn

j¼1

ci jxi j ðP10Þ

subject to

Xmþn

j¼1

xi j≥ai þ T ∀ i ¼ 1; 2;…………:;m

Xmþn

j¼1

xi j ¼ T ∀ i ¼ mþ 1;………::;mþ n

Xmþn

i¼1

xi j ¼ T ∀ j ¼ 1; 2;…………:;m

Xmþn

i¼1

xi j≤bj þ T ∀ j ¼ mþ 1;………::;mþ n

xi j≥0 ∀ i; j ¼ 1; 2;………;mþ n

This problem can also be reduced to the form (P2) as follows
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Minimize
Xmþnþ1

i¼1

Xmþn

j¼1

c
0
i jxi j ðP11Þ

subject to

Xmþn

j¼1

xi j ¼ a
0
i ∀ i ¼ 1; 2;………;mþ nþ 1

Xmþnþ1

i¼1

xi j ¼ b
0
i ∀ j ¼ 1; 2;………::;mþ n

xi j≥0 ∀ i ¼ 1; 2;……;mþ nþ 1; j ¼ 1; 2;…:;mþ n

where

ai
0 ¼

ai þ T ∀i ¼ 1; :::::::::::;m
T ∀i ¼ mþ 1; :::::::::::;mþ n

Xmþn

j¼mþ1

bj
−
Xm
i¼1

ai; i ¼ mþ nþ 1

8>>>>><
>>>>>:

bj
0 ¼ T ∀ j ¼ 1; :::::::::::;m

bj þ T ∀ j ¼ mþ 1; :::::::::::;mþ n

�

c0mþnþ1 j ¼ 0 ∀i ¼ 1; 2; :::::::::::::::;mþ n

c0i j ¼ ci j ∀i; j ¼ 1; 2; :::::::::;mþ n

c0ii ¼ 0 ∀i ¼ 1; 2; :::::::::::::::;mþ n

which can be solved easily.
Also, problem (P9) with flow constraint can also be re-

duced to the problem of the form (P3).
Case II: When the total availability at the sources is less than

the total requirement at the destinations and one has
to satisfy the exact demand at all the destinations by
over producing at sources, then the problem takes
the following form:

Minimize
Xmþn

i¼1

Xmþn

j¼1

ci jxi j ðP12Þ

subject to

Xmþn

j¼1

xi j≥ai þ T ∀ i ¼ 1; 2;…………:;m

Xmþn

j¼1

xi j ¼ T ∀ i ¼ mþ 1;………::;mþ n

Xmþn

i¼1

xi j ¼ T ∀ j ¼ 1; 2;…………:;m

Xmþn

i¼1

xi j ¼ bj þ T ∀ j ¼ mþ 1;………::;mþ n

xi j≥0 ∀ i; j ¼ 1; 2;………;mþ n

This problem can be easily reduced to the form of problem
(P11) and can be solved.

Similarly, consider the case where the problem is of the
following form

Minimize
Xmþn

i¼1

Xmþn

j¼1

ci jxi j ðP13Þ

subject to

Xmþn

j¼1

xi j ¼ ai þ T ∀ i ¼ 1; 2;…………:;m

Xmþn

j¼1

xi j ¼ T ∀ i ¼ mþ 1;………::;mþ n

Xmþn

i¼1

xi j ¼ T ∀ j ¼ 1; 2;…………:;m

Xmþn

i¼1

xi j≥bj þ T ∀ j ¼ mþ 1;………::;mþ n

xi j≥0 ∀i; j ¼ 1; 2;………:;mþ n

Here, total availability is greater than total requirement,
no storage is allowed at sources and over supply to des-
tinations is allowed, can be solved by reducing it to the
form (P9).

Case III: Certain situations, where storage is allowed at
sources and demands are to be exactly met at
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destinations give rise to UCTP of the form:

Minimize
Xmþn

i¼1

Xmþn

j¼1

ci jxi j ðP14Þ

subject to

Xmþn

j¼1

xi j ≤ai þ T ∀ i ¼ 1; 2;…………:;m

Xmþn

j¼1

xi j ¼ T ∀i ¼ mþ 1;………::;mþ n

Xmþn

i¼1

xi j ¼ T ∀ j ¼ 1; 2;…………:;m

Xmþn

i¼1

xi j ¼ bj þ T ∀ j ¼ mþ 1;………::;mþ n

xi j≥0 ∀i; j ¼ 1; 2; :::::::::::::::;mþ n

cii ¼ 0 ∀i ¼ 1; 2; :::::::::::::::;mþ n

This problem (P14) can be solved by adding only an
additional column where the variables in the additional
column represent the stored amount at the sources. Here the
problem reduces to the form (P9) and hence can be solved
easily.

The problem where exact amount to be supplied, short
supply is allowed at destinations and the constraints are of
the form

Minimize
Xmþn

i¼1

Xmþn

j¼1

ci jxi j ðP15Þ

subject to

Xmþn

j¼1

xi j ¼ ai þ T ∀ i ¼ 1; 2;…………:;m

Xmþn

j¼1

xi j ¼ T ∀ i ¼ mþ 1;………::;mþ n

Xmþn

i¼1

xi j ¼ T ∀ j ¼ 1; 2;…………:;m

Xmþn

i¼1

xi j≤bj þ T ∀ j ¼ mþ 1;………::;mþ n

xi j≥0 ∀ i ¼ 1; 2;……………;mþ n

cii ¼ 0 ∀ i ¼ 1; 2;……………;mþ n

can be similarly solved by reducing it into the form of problem
(P11).

5.1 Algorithm for unbalanced capacitated transhipment
problem

Step 1: Given the unbalanced transshipment problems of the
forms P8, P10, P12, P13, P14 and P15, transform
them into their respective transportation problems
P9, P11, P11, P9, P9 and P11.

Step 2: Problem P9 and problem P11 are of the form of
problem P2 whose optimal basic feasible solution
can be obtained as explained in Section 2.

6 Numerical examples

Example1. Transshipment problem with impaired
flow Consider the following Unbalanced Transshipment prob-
lem (P16) involving two origins and two destinations. The
availabilities at the origins, the requirements at the destinations
and the costs of transportation are given in Table 1 below.

Since ∑
4

j¼3
bj > ∑

2

i¼1
ai we take buffer stock, T ¼ max

∑
2

i¼1
ai; ∑

4

j¼3
bj

 !
¼ 9 and convert the problem into a balanced

transshipment problem by adding 9 units to each ai and bj; i, j=1,
2,3,4. The transformed transportation problem is given in Table 2.

Let P ′ be the total flow, restricted to 40.

Table 1 (Cost matrix of unbalanced transshipment problem (P16))

i  j O1 O2 D1 D2 aj

O1 0 1 5 4 3

O2 1 0 2 6 4

D1 5 2 0 2 –

D2 4 6 2 0 –

bj – – 6 3

Table 2 (Transformed transportation problem)

i  j O1 O2 D1 D2 ai

O1 0 1 5 4 12

O2 1 0 2 6 13

D1 5 2 0 2 9

D2 4 6 2 0 9

dO3 0 0 0 0 2

bj 9 9 15 12
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Here we add a dummy row dO3 and a dummy column dO3

with each cell having a cost 0 except c55 having cost M. And

we take demand ¼ ∑
4

i¼1
ai −P0 ¼ 43−40 ¼ 3 and supply ¼

∑
4

j¼1
bj −P0 ¼ 45−40 ¼ 5.

Next we find out the initial basic feasible solution by any of
the regular method and check its optimality. The optimal so-
lution is given in the Table 3 below.

Ignoring the allocations in the diagonal cells, we obtain the
optimal basic feasible solution for the transshipment problem
with impaired flow. The optimal schedule is O1 ——dO3,
3 units; O2——D1, 4 units; O3——D1, 2 units; dO3——D2,
3units or we can say x15=3, x23=4, x53=2, x54=3withmin Z=8.

The optimal schedule of the transhipment problem with
impaired flow is described in the flow chart (Fig. 1)

In the Fig. 1, the allocations in the diagonal cells are ignored,
since they do not have any physical meaning i.e., no transpor-
tation. The remaining allocations are summarized as follows.

(a) O1 transports 3 units to the dummy point source/ desti-
nation, so the supply capacity of dO3 increases to 5 units
including the original availability of 2 units.

(b) Of the 5 units supply capacity of dO3, dO3 transport 2
units to D1 and 3 units to D2

(c) O2 transports 4 units to D1.

Thus the original demand of 6 units of D1 and 3 units of D2
are satisfied.

Example2. Transshipment problem with enhanced
flow Consider the same Unbalanced Transshipment Problem
(P16) and its transformed transportation problem with flow,
P ′, enhanced to 48.

Here we add a dummy column dO3 with supply ¼ P0−

∑
4

i¼1
ai ¼ 48−43 ¼ 5 and a dummy row dO3 with demand ¼

P0− ∑
4

j¼1
bj ¼ 48−45 ¼ 3.

Also, c15=4, c25=2, c35=2, c45=4; c51=4, c52=2, c53=2,
c54=4; c55=M.

Next we find out the initial basic feasible solution by any of
the method and check its optimality. The optimal solution is
given in the Table 4 below.

The optimal schedule for the above unbalanced transship-
ment problem with enhanced flow is O1 ——D2, 3units;
O2——D1, 1 unit; O2——dO3, 3 units; dO3——D1, 5units
or we can say x14=3, x23=1, x25=3, x53=5 with min Z=30.

The optimal schedule of the transhipment problem
with enhanced flow is described in the flow chart
(Fig. 2).

In the Fig. 2, the allocations in the diagonal cells are
ignored, since they do not have any physical meaning i.e.,
no transportation. The remaining allocations are summarized
as follows.

(a) O1 transports 3 units to the D2
(b) O2 transports 3 units to the dummy point so the supply

capacity of dO3 increases to 5 units including the origi-
nal supply of 2 units.

(c) O2 transports 1 unit to D1 and dO3 transports 5 units
to D1.

Thus the original demand of 6 units of D1 and 3 units of D2
are satisfied.

O1

O2

D1

D2

dO3

4

3

2
3

Fig. 1 Impaired flow

Table 4 Optimal solution of transformed transportation problem with
enhanced flow

i  j O1 O2 D1 D2 dO3 ai

O1 0(9) 1 5 4(3) 4 12

O2 1 0(9) 2(1) 6 2(3) 13

D1 5 2 0(9) 2 2 9

D2 4 6 2 0(9) 4 9

dO3 4 2 2(5) 4 M 5

bj 9 9 15 12 3

Table 3 Optimal solution of transformed transportation problem with
impaired flow

i  j O1 O2 D1 D2 dO3 ai

O1 0(9) 1 5 4 0(3) 12

O2 1 0(9) 2(4) 6 0 13

D1 5 2 0(9) 2 0 9

D2 4 6 2 0(9) 0 9

dO3 0 0 0(2) 0(3) M 5

bj 9 9 15 12 3
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7 Computational results

We also solved various test problems for higher dimensions
with different scenarios by varying the number of nodes, the
demand and other parameters on GAMS (General Algebraic
Modeling System) on a PC with Intel Pentium Processor
1.40GHz having 1.25GB RAM and it took less than 5 s to
solve the problems.

We have solved transshipment problems of order 2×2 for
Case-I, II, III, impaired and enhanced flow and of order 5×5
for impaired and enhanced flow. The cost matrices of the test
problems are given in Tables 5 and 6. The input data of
availability, demand etc. and the optimal basic feasible
solutions of the test problems are provided in Tables 7
and 8 respectively.

Ignoring the allocations in the diagonal cells, the op-
timal schedule for various test problems is described in
the flow charts below (Figs. 3 to 14). The author has
explained the meaning of 5×5 problems described in
Figs. 7 and 8. The rest of flow charts can be understood
in the same way.

The allocations in Fig. 7 are summarized as follows.

(a) O1 has availability of 10 units which is transported to dum-
my point source/destination, so that supply capacity of dO3
increases to 18 units including the original availability of 8

units (total supply being 50 units minus total demand being
42 units) at dummy point source/ destination

(b) Of the 18 units supply capacity of dO3, 2 units are
transported from dO3 to D1.

(c) Of the 12 units available at O2, 8 units are transported to
O3 which increases the supply capacity of O3 to 13 units
including the original availability of 5 units, and 4 units
are transported to D5.

(d) O4 has availability of 15 units out of which 6 units are
transported to O3 which increases the supply capacity to
O3 to 19 units (as from (c) O3 had 13 units), and 9 units are
transported to O5 which increases the supply capacity to
O5 to 17 units including the original availability of 8 units.

(e) Of the 19 units supply capacity of O3 from (d), 9 units
are transported to D3 and 10 units to D4.

(f) Of the 17 units supply capacity of O5 from (d), 6 units are
transported to D1 and 11 units are transported to D2.

(g) D1 receives 6 units from O5 and 2 units from dO3 which
satisfies the requirement of D1.

(h) D2 receives 11 units from O5, D3 receives 9 units from
O3, D4 receives 10 units from O3 and D5 receives 4 units
O2 which satisfies their respective original requirements.

The allocations in Fig. 8 are summarized as follows.

(a) O1 has availability of 10 units which is transported O2
which increases the supply capacity of O2 to 22 units,
including its original availability of 12 units.

(b) Of the 22 units supply capacity of O2 (as from (a)), 4
units are transported to D5 and 18 units are transported to
O3which increases the supply capacity of O3 to 23 units,
including its original availability of 5 units.

Table 6 Cost matrix for the impaired and enhanced flow transshipment
problem with 5 origins and 5 destinations

i  j O1 O2 O3 O4 O5 D1 D2 D3 D4 D5

O1 0 1 2 3 4 7 6 5 4 3

O2 1 0 1 2 3 6 5 4 3 2

O3 2 1 0 1 2 4 3 2 1 2

O4 3 2 1 0 1 8 7 4 3 6

O5 4 3 2 1 0 2 1 3 4 2

D1 7 6 4 8 2 0 4 3 2 1

D2 6 5 3 7 1 4 0 4 3 2

D3 5 4 2 4 3 3 4 0 4 3

D4 4 3 1 3 4 2 3 4 0 4

D5 3 2 2 6 2 1 2 3 4 0

Table 5 Cost matrix for Case-I, II, III, impaired and enhanced flow
transshipment problem with 2 origins and 2 destinations

i  j O1 O2 D1 D2

O1 0 1 5 4

O2 1 0 2 6

D1 5 2 0 2

D2 4 6 2 0

O1

O2

D1

D2

dO3

3

5

3

1

Fig. 2 Enhanced flow
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(c) O4 has availability of 15 units out of 9 units are
transported to O3 which increases the supply capacity
of O3 to 32 units (as from (b) O3 had 23 units) and 6
units are transported to O5 which increases the supply
capacity of O5 to 14 units, including the original avail-
ability of 8 units.

(d) Of the 32 units available at O3 from (c), 9 units are
transported to D3, 10 units are transported to D4
and 13 units are transported to dO3 which increases
the supply capacity of dummy supply point source/
destination to 21 units, including the original

availability of 8 units (total supply being 50 units
minus total demand being 42 units) at dummy point
source/ destination.

(e) Of the 14 units available at O5 from (c), 3 units are
transported to D1 and 11 units to D2.

(f) D1 receives 3 units from O5 and 5 units from dO3 which
satisfies the original requirement of D1.

(g) D2 receives 11 units from O5, D3 receives 9 units
from O3, D4 receives 10 units from O3 and D5 re-
ceives 4 units O2 which satisfies their respective orig-
inal requirements.

Table 7 Input data of various test problems

Test problem
no.

Problem no./type Order of Original availability
and demand of the
transshipment problem

Buffer
stock (T)

Availability and demand of the
transformed transportation
problem with dummy point
source/destination

Original
transshipment
problem

Transformed
transportation
problem

7.1 Impaired Flow (P4)
P ′=40

2×2 5×5 a1=4, a2=5, b3=3, b4=6 9 a1=13, a2=14, a3=9, a4=9,
b1=9, b2=9, b3=12, b4=15,
a5=5, b6=57.2 Enhanced Flow (P6)

P ′=48

7.3 Impaired Flow (P4)
P ′=115

2×2 5×5 a1=8, a2=12, b3=15, b4=10 25 a1=33, a2=37, a3=25, a4=25,
b1=25, b2=25, b3=40, b4=35,
a5=10, b6=57.4 Enhanced Flow (P6)

P ′=130

7.5 Impaired Flow (P4)
P ′=540

5×5 11×11 a1=10, a2=12, a3=5,
a4=15, a5=8, b6=8,
b7=11, b8=9, b9=10,
b10=4

50 a1=60, a2=62, a3=55, a4=65,
a5=58, a6=50, a7=50, a8=50,
a9=50, a10=50, b1=50, b2=50,
b3=50, b4=50, b5=50, b6=58,
b7=61, b8=59, b9=60, b10=54,
a11=2, b11=10

7.6 Enhanced Flow (P6)
P ′=555

All values are same as impaired
flow except dummy points
a11=5, b11=13

7.7 Case-I
(P8)

2×2 4×5 a1=7, a2=5, b3=3, b4=6 12 a1=19, a2=17, a3=12, a4=12,
b1=12, b2=12, b3=15, b4=18,
b5=3

7.8 (P10) 2×2 5×4 a1=4, a2=5, b3=8, b4=6 14 a1=18, a2=19, a3=14, a4=14,
b1=14, b2=14, b3=22, b4=20,
a5=5

7.9 Case-II
(P12)

2×2 5×4 a1=4, a2=5, b3=7, b4=10 17 a1=21, a2=22, a3=17, a4=17,
b1=17, b2=17, b3=24, b4=27,
a5=8

7.10 (P13) 2×2 4×5 a1=8, a2=7, b3=3, b4=6 15 a1=23, a2=22, a3=15, a4=15,
b1=15, b2=15, b3=18, b4=21,
b5=6

7.11 Case-III
(P14)

2×2 4×5 a1=8, a2=12, b3=4, b4=7 20 a1=28, a2=32, a3=20, a4=20,
b1=20, b2=20, b3=24, b4=27,
b5=9

7.12 (P15) 2×2 5×4 a1=4, a2=10, b3=10
b4=15

25 a1=29, a2=35, a3=25, a4=25,
b1=25, b2=25, b3=35, b4=40,
a5=11
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O1

O2

D1

D2

dO3

15

10

5

3

Fig. 5 Test problem 7.3

Fig. 3 Test problem 7.1

O1

O2

D1

D2

dO3

8

1

5

7 2

Fig. 6 Test problem 7.4

O1

O2

D1

D2

dO3

4

5

5

2

Fig. 4 Test problem 7.2

Table 8 Optimal basic feasible solution of various test problems

Test problem
no.

Problem no./type Number of
iterations

Optimal objective
function value

Optimal basic feasible solution (ignoring the
allocations in diagonal cells)

7.1 Impaired Flow (P4) P ′=40 5 10 x14=1, x23=3, x15=3, x25=2, x54=5

7.2 Enhanced Flow (P6) P ′=48 6 40 x14=4, x34=2, x25=5, x53=5

7.3 Impaired Flow (P4) P ′=115 5 33 x12=3, x23=15, x15=5, x54=10

7.4 Enhanced Flow (P6) P ′=130 5 80 x14=8, x23=22, x34=2, x25=5, x53=10

7.5 Impaired Flow (P4) P ′=540 17 82 x23=8, x2,10=4, x38=9, x39=10, x43=6,
x45=9, x56=6, x57=11, x1,11=10

7.6 Enhanced Flow (P6) P ′=555 12 119 x12=10, x23=18, x2,10=4, x38=9, x39=23,
x43=9, x45=6, x56=8, x57=11, x11,6=5,
x3,11=13

7.7 Case-I (P8)
(P10)

3 30 x14=4, x23=5, x34=2, x15=3

7.8 5 23 x12=3, x14=1, x23=8, x54=5

7.9 Case-II (P12)
(P13)

5 24 x12=2, x14=2, x23=7, x54=8

7.10 4 30 x14=6, x23=3, x15=2, x25=4

7.11 Case-III (P14)
(P15)

4 36 x14=7, x23=10, x15=1, x25=8

7.12 6 36 x14=4, x23=10, x54=11
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Fig. 7 Test problem 7.5
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8 Conclusion

In the present paper the author has discussed various possible
cases arising in linear transshipment problem with their solution
methods. Sometimes, due to budget/political constraint, the de-
cision maker may specify the total flow and the optimal solution
of such problem is of practical interest to him. These solution
methods shall be useful for the production allocation problems
when the total flow in the market needs to be enhanced during
festive /marriage seasons or during fire / military services or
situations like financial problems which compels one to curtail
the flow. Inspired by such situations we have studied transship-
ment problem with impaired and enhanced flow. Algorithms to
solve the transshipment problems for the case of impaired and
enhanced flow are developed by transforming the original prob-
lem into an equivalent transportation problem by adding an ad-
ditional row and a column. It is shown that the optimal solution
of the transformed transportation problem is same as the optimal
solution of the original transshipment problem. Also there are
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many other situations emerging out of unbalanced transshipment
problem which have also been discussed in the paper. The solu-
tion methods for both balanced as well unbalanced transship-
ment problems are being provided. The author has considered
generalization of the standard transshipment model in which the
origin and destination constraints take not only the equality form
but also of inequality which is not covered in literature. The
solution procedure is quite simple from computational point of
view and is easy to understand and it serves the managers by
providing a solution to variety of distribution problems. Thus the

paper provides all potential variants of the transshipment prob-
lem with their solution methods. Numerical examples and com-
putational work have also been done to illustrate the theory.
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Annexure

GAMS program for transformed transportation problem of the Test problem 7.1

sets origins / 1*5 /, destinations / 1*5 /  ;

table C(origins, destinations) cost of transportation

1     2     3     4    5

1   0     1     5     4    0

2   1     0     2     6    0

3   5     2     0     2    0

4   4     6     2     0    0

5   0     0     0     0  0

PARAMETER

destsum(origins)

/

1 13

2 14

3 9

4 9

5 5 /

originsum(destinations)

/

1 9

2 9

3 12

4 15

5 5 /

nonnegative VARIABLES X(origins,destinations) ;
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VARIABLE

Z   objective function ;

EQUATIONS

obj

destsumequ(origins)

originsumequ(destinations) ;

obj.. Z =e= sum((origins,destinations),x(origins,destinations)*C(origins,destinations)) ;

destsumequ(origins).. sum(destinations,x(origins,destinations)) =e= destsum(origins);

originsumequ(destinations).. sum(origins,x(origins,destinations)) =e= originsum(destinations);

model impairedflowcosttransportation /all/

option solprint = off;

option rmip = cplex;

option mip = cplex;

option limrow = 800;

option limcol = 600;

option optca = 0;

option optcr = 0;

option reslim = 5000;

option iterlim = 10000000;

option decimals = 3;

solve impairedflowcosttransportation minimizing Z using MIP ; 

display x.l 

GAMS program for transformed transportation problem of the Test problem 7.2

sets origins / 1*5 /, destinations / 1*5  /  ;

table C(origins,destinations) processing time

1     2     3     4    5

1   0     1     5     4    4

2   1     0     2     6    2

3   5     2     0     2    2

4   4     6     2     0    4

5   4     2     2     4   1000

PARAMETER

destsum(origins)

/

1 13

2 14

3 9

4 9

5 5 /

originsum(destinations)

/

1 9

2 9

3 12

4 15

5 5 /
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