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Abstract

transportation planning.

Background: GPS-based cycling data are increasingly available for traffic planning these days. However, the
recorded data often contain more information than simply bicycle trips. GPS tracks resulting from tracking while
using other modes of transport than bike or long periods at working locations while people are still tracking are
only some examples. Thus, collected bicycle GPS data need to be processed adequately to use them for

Results: The article presents a multi-level approach towards bicycle-specific data processing. The data processing
model contains different steps of processing (data filtering, smoothing, trip segmentation, transport mode
recognition, driving mode detection) to finally obtain a correct data set that contains bicycle trips, only. The
validation reveals a sound accuracy of the model at its’ current state (82-88%).

Keywords: Bicycle traffic planning; GPS data, Big data, Crowdsourcing, Data processing

1 Introduction

Area-wide cycling data are still hardly available and
rarely used for bicycle specific traffic planning these
days. Tracking cyclists routes using smartphone applica-
tions can help to fill this data gap. A big amount of data
can be collected within a very short period using crowd-
sourcing approaches that cover hundreds or thousands
of cyclists using their smartphones to track their rides.
This type of data collection is not new to scientists. First
approaches were made in 2007 using hand-held GPS de-
vices (e.g. [1, 15, 23]). More expanded studies emerged
with the development of more cheap GPS sensors and
their integration in smartphones and their increased dis-
tribution. The studies of Charlton et al. [8], Broach et al.
[5] and Jestico et al. [17] are some example in this
context.
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However, the collected data can contain many more
information than simply bicycle trips as desired by scien-
tists or traffic planners. Therefore, three major issues
need to be considered when using smartphone-based
crowd-sourced GPS data. First, the recorded data may
include ‘activities’ at a location (e.g. paper work in the
office) when cyclists or study participants forget to stop
tracking after their trip already ended. Second, the re-
corded tracks may contain trips of other modes of trans-
port (e.g. when people change the mode of transport
and keep on tracking). At least, the recorded data often
contains so-called ‘noisy data’, which occur because of
the functionality of the GPS system itself (e.g. loss of sig-
nals or diffraction of signals, which leads to GPS point
jumping). All these issues occur when cyclist record
their trips using GPS and smartphone applications.

Aim of the study was to develop a bicycle specific
data processing approach, which is capable to process
big GPS data sets and easy to use and to implement
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for practitioners. The goal was to create a method
which is highly transparent, flexible and interpretable
(no black box). Furthermore a high accuracy is an es-
sential requirement. Therefore, the article presents an
approach of comprehensive GPS data processing.
Existing work is briefly highlighted and discussed in
the following section (2). Section 3 contains method-
ology and the description of the data that has been
used to develop and to validate the developed data
processing approach. We present our main findings
in section 4 and close the paper by discussing the re-
sults and drawing further research opportunities in
sections 5 and 6.

2 State of research

Scientists and practitioners widely acknowledge the need
for data pre-processing of GPS-based and crowd-
sourced traffic data before further using the data, for in-
stance to estimate route choice models. In the most
common studies, data-pre-processing consists of three
main steps.

So-called noisy data (e.g. containing GPS outliers) is
reduced in a first step. This is mostly done with very
basic threshold filters using speed parameters to re-
duce GPS leaps (see for example the studies of [13,
16, 26, 28]).

As the recorded tracks may contain more than just
one trip, the tracks are segmented to single trips in
a second step. Stays or long stops at activity loca-
tions (e.g. office, shopping location etc.) are mostly
identified throughout low speeds, like in Axhausen
and Schiissler [1] or Menghini et al. [23]. There is
also a number of studies which use data pre-
processing in a very sparse way — or at least they do
not describe it sufficiently (see for example the stud-
ies of [18, 27, 34]).

In most studies, there is a third step, which treats the
recognition of the transportation mode. However, trans-
port mode recognition methods are mostly not used fo-
cusing on cycling as a mode of transport [4, 14, 24, 29].
Furthermore, mode recognition is achieved using differ-
ent methods (e.g. simple filtering, heuristic or machine
learning methods) and speed as the main input
parameter.

Apart from mode recognition and trip segmenta-
tion, every type of data filtering or data treatment ob-
served in previous studies that uses hard coded
thresholds is likely to eliminate many data points or
whole tracks, which should not be excluded from the
research data set. A very basic speed threshold, for
example, fails to detect weather the reason for stop-
ping is a traffic light or an activity, which reduces the
cyclists speed. If data is excluded from further data
treatment this way, it is lost for further steps like
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map matching or mode recognition. This can cause a
worse overall result in data treatment.

The accuracy of mode recognition raised over the
last years. Chung and Shalaby achieved an accuracy
of 75% in 2005 realizing mode recognition after the
map-matching process and using a threshold for cyc-
ling speed. The database was comparatively low, as
they used only four bike rides of the same person [9].
In the same year, Stopher et al. [33] used a similar
approach reaching an accuracy of 72% of correctly
identified bike rides. They therefore combined GIS
data (bus stops) with simple speed thresholds. How-
ever, the size of the dataset remains unclear [33].
Bohte and Maat [4] also used speed thresholds and
applied a decision tree reaching 72% accuracy. In
2010 Reddy et al. [25] first used artificial intelligence
(AI) to identify bike trips. They reached an accuracy
of 88% of correctly identified trips [25], whereas Gong
et al. [14] and Zhang et al. [42] and others did not
include cycling as mode in their approach [14, 30,
42]. In contrast, Stenneth et al. [31] focused on the
identification of bicycle trips using GIS and GPS data.
They applied machine learning algorithms and
reached a rate of 89% of correct identified trips. Fol-
lowing the approach of using machine learning (ML),
the identification rate ranged from 82% to 100% using
sensor data fusion of GPS, acceleration, magnetometer
and further sensors [6, 10, 40, 41, 43]. Machine
Learning approaches have in common to abstain from
using GIS information; because of the problematic
data treatment, furthermore they are highly accurate
but hard to explain in their classification approaches.
Zhang et al. [42] used a two stage approach, which
firstly identified active modes of transport using heu-
ristics (decision tree) followed by a ML approach
(support vector machine) classifying the other modes.
They scored for 95% accuracy but used 19 bike trips,
only [42].

For the identification of bicycle trips, the utilisation
of heuristics instead of machine learning methods
seems to be sufficient and comparatively easy and with
less data requirements than ML approaches. It has to
be mentioned that the comparability of the referred
work is relatively low, as authors of other studies do
not state how validation was done. Furthermore, the
size of the dataset is even not reported, in some cases.
Another problem appears in the way trip segmentation
and mode recognition were treated as separate steps
of work: a high percentage of correct mode recogni-
tion (which is reported) in combination with a lower
percentage of trip segmentation is leading to signifi-
cantly lower values of correct trips [24].

The sections above illustrate that there are different
methods that have been applied to process GPS data.
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However, there are only few studies that combine and
adjust the different steps of GPS data processing specif-
ically to bicycle traffic. Menghini et al. [23] illustrates
the existing research gap perfectly as they refer to the
“the most probable mode bicycle” using bicycle unspe-
cific pre-processing from Schiissler and Axhausen ([23],
p.5). Another example for the need of a bicycle specific
pre-processing is the work of Ton et al. [35]. They devel-
oped a route choice model and refer to van de Coevering
et al. [37] for detailed description of data pre-processing.
Gaining insights into the work of van de Coevering et al.
[37] reveals that the pre-processing consists of anonymi-
zation (cutting of distances track start and end), exclud-
ing short routes (< 500 m) and a static trip segmentation
(when cyclists stay more than 180s. within a radius of
300 m). A mode detection has not been implemented or
rather described.

It can be summarized, that there are neither well
working heuristics nor ML approaches for the pre-
processing of bicycle data that comply with central
requirements, which are: (a) reducing the used data
because a high amount of (different) data can hardly
be handled. Furthermore, (b) the applied methods
need to be easy to use for practitioners and (c)
methods should reveal a high accuracy in terms of bi-
cycle trip recognition. All researched models have in
common that validation remains somehow blurred or
the number of used bicycle trips for model develop-
ment is comparatively low. Therefore, the presented
contribution reveals a bicycle specific approach, which
is based on a large dataset and clear validation
criteria.

3 Methodology

To overcome the major shortcomings described in
the previous section, we present an approach for
bicycle-specific data processing of smartphone-based
and crowd-sourced GPS track data. The multi-level
approach represents a comprehensive method of mo-
bility data processing focussing on bicycle transport
planning.

The data processing method has been developed
in two steps. At first, we designed a prototype based
on a small sample of labelled track data, which in-
cludes all modes of transport and some activities
(n=49). We secondly applied the method to a data
set containing more than 8900 GPS tracks that have
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been recorded within the scope of a large bicycle
research project. Figure 1 gives an overview over
the different levels of the data processing approach,
which will be described in the following sections in
more detail.

We evaluated the results after applying the data pro-
cessing approach, varied the model parameters and
processed the data again in a last step to get the final re-
sults regarding model accuracy.

3.1 Data collection

The data used in this approach has been recorded in the
city of Dresden (Germany). The city is located in eastern
Germany and is the capital of the federal state of Saxony.
About 560,000 inhabitants are living within the cities
borders (328.8km?) and the mode share of cyclists is
about 16% [12].

The used data has been recorded between March
and June 2018. In a first step, a small data sample
containing 49 tracks of different modes of transport
have been recorded and manually labelled by re-
search group members. They contained tracks from
car trips (4) as well as tram (5), walking (17), train
(1), cycling (15) and sports cycling (4) trips. Trip
length ranged between ten minutes (walking) and 3
hours (sports cycling). The data was analyzed and
used to derive a first data processing approach. The
labelled test data were analysed using a spreadsheet
(MS Excel).

To evaluate and improve the developed approach
another data set was used. The second data set was
recorded by 187 volunteer cyclists, which partici-
pated in a bicycle research project covering the city
area of Dresden (Germany). The participants were
selected out of 10,000 people taking part in an on-
line survey to determine types of cyclists [11]. The
data set has also been collected in 2018 (June/July).
The sample consists of 80 female and 100 male
riders aging from 16 to 88 years. We used the Cyface
smartphone application (for iOS and Android) for
data collection, which provided the possibility to im-
port the data manually and automatically. Data col-
lection was performed with a frequency of 1Hz,
which was the case for all values 99.7%. The trans-
ferred data contained information regarding latitude
(lat), longitude (lon), speed and accuracy. The cy-
clists recorded 8909 measurements resulting in 5300

GPS raw data Filtering Smoothing

Fig. 1 Steps of data processing

Trip
Segmentation

Processed
GPS data

Mode
recognition

Driving mode
detection
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valid bicycle trips after data preprocessing. Mean
speed over all recorded measurements in the unpro-
cessed dataset was 3.1 m/s. Mean speed over all
processed bicycle trips was around 3.96 m/s [21].

3.2 Data import

The data recorded by cyclists using the Cyface
smartphone application during the research project
was automatically transferred from the study partici-
pants’ smartphone to a PostgreSQL database on a
SSH secured virtual machine in the universities net
via WLAN connection. The data contained latitude,
longitude, signal accuracy and speed values. Due to
technical issues, not all GPS points were in correct
chronologic order regarding so that the indexing,
which was initially done be the app, was rearranged
to gain the proper time series of GPS point within a
track.

3.3 Filtering

In a first and very basic step of data processing, all
tracks with a timespan less than 30s are eliminated
because these tracks are likely to not contain any
reasonable information. We experienced that such
data occur because people often tested the record
function of the application, initially. A further filter
treats GPS leaps and excludes GPS points in the
track data whose speed is higher than 25m/s (90
km/h) - a speed, which is not very likely to be
reached, even not by motorized vehicles on inner
city highways. This threshold can be varied for dif-
ferent data processing tasks as it is not hard coded.
The goal is only to eliminate data points, which are
very unlikely to occur because of cycling behaviour
or to be recorded from cyclists. Speed is calculated
in a further step because calculation methods for
GPS speeds differ between different smartphone (or
rather software) and sensor manufacturers, which
could lead to inequalities in data. The calculation
follows

S,_ .
y— <’7’+;> and s; i1 = Z?Havi*”l ()

tiv1—t

Whereas v is the speed calculated with distance s be-
tween timestamp ¢; and ¢;, ; of the GPS point i and i+
1.The distance s is determined calculating the haversine
distance following eq. (2).
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With Hav as the haversine distance between GPS
points P; and P;,; and Lat/Lon as the coordinates in
terms of latitude/longitude of the referring points.

Another filter treats GPS accuracy. If accuracy is below
50 m, which means that there are GPS points with a po-
tential error bigger than a diameter of 50 m around the
original position, GPS points are excluded. This is an ef-
fective way to react on GPS errors such as reflection or
signal refraction like the multipath problem.

3.4 Smoothing

Calculated raw speeds values show highly erratic gradi-
ents so that data smoothing is essential for the next
steps of data processing. We use an already established
method called Gaussian Smoothing for that [26]. In con-
trast to a sliding average, the degree of smoothing is
weighted by the distance between the processed point
and all other points within a 15-s time window using
Gaussian distribution. The calculation follows

(3)

(t-1t))2
202

w(t;) = exp- (4)

0 =10Parameter o represents the kernel bandwidth,
which is set at 10s (o = 10) similar to previous research
[1]. C is the resulting smoothed speed value of the GPS
point at i at time t. C is the raw speed value at the GPS
points at j at time £. A further dynamic filter is imple-
mented, which reduces the span of smoothing when the
smoothing window is running towards a stop (for ex-
ample at a traffic light) to preserve the sharpness of the
original data instead of overwriting it.

3.5 Trip segmentation

The trip segmentation identifies the actual trips within
an uploaded GPS track. This step is necessary because
one uploaded GPS track may contain several trips (e.g.
when a user keeps on tracking while doing paper work
in the office). Thus, the tracks have to be evaluated and,
if necessary, segmented into several parts (e.g. bike — of-
fice — bike). Different variables, such as speed, track
point density or directional change can be used for the
evaluation. Gong et al. [14] give an overview over useful
variables that can be considered for the segmentation.
Further variables and methods can be found in Kohla

Lati; 1

Havi_i+1 = 2 * Regen % sin ~ 1 sin( 5

2
- Lat;
71> + cosLat; * cosLat;; * sin(

(2)

2
Lon;,; — Lon;
2
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[19, 20], Schiissler & Axhausen [26], Zong [43] Zhang et
al. [42] Biljecki [2, 3], and Shen & Stopher [28].

The developed trip segmentation algorithm determines
for each GPS point whether it belongs to a trip (e.g. cyc-
ling) or to an activity at a location (e.g. office). The de-
veloped algorithm therefore comprises speed, travelled
distance and changes in the directional vectors for each
individual point of a track. These are proper indicators
to detect activities due to several reasons:

10 - 1. Speed value distribution varies significantly between
a stay at a location and a ride. Figure 2 exemplifies
5 | the speed distribution of a typical bicycle trip and
an uploaded track of an activity from the labelled
test data set.
e S i o S0 1005 2. Staying at a location often causes signal loss or
interferences through shield and reflection effects
Share caused by walls etc.. This leads to hopping of GPS
Bicycle Activity Total points and, thus, disproportionate change of
Fig. 2 Example of differing speed distribution directional vectors. Figure 3 exemplifies the change
GPS point
®  Activity location
—>  Current directional vector
--=  former directional vector
@ (Change of directional vector

Fig. 3 Change of directional vectors
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of the directional vectors while cycling (3a) and for
activities at a location (3b)

3. In contrast to a trip there is only little gain in
distance while staying at a location (distance gain
caused by GPS point hopping is significantly lower
than distance covered while cycling). This, of
course, comes along with lower speeds (see 1.).

As the input variable may vary significantly and the
variation may occur during activities as well as during
trips, a new variable 1 is computed to improve the iden-
tification of activity points. The variable T combines the
mentioned input variables and is calculated as followed:

1
Ahead; ()
with v; as smoothed speed at point i, d; as smoothed dis-
tance at point i and Ahead; as change of the directional
vector at point i. Thus, the variable t; (tau) improves the
determination through exaggerating.

The smoothed speed s; as well as the smoothed dis-
tance d; at point i are results of former calculations. The
change of the directional vector at point i is calculated
following the equations

T, = Vi*di*

1 n
Ahead; = sz: _Ahead; (6)
and
|0.!1 —C.Kj‘ asAéc,;SlSO
Ahead; = . .
|la: - aj|, —,360]  asAdy > 180
(7)
and
90 -« yasa > 0na<90
ay 360 - (a — 90) ,asa > 90na <180
\/(a-90)>  asa<Ona> - 90ua < —90na> — 180
(8)
and

a = ARCTAN? (x,y)* (?) 9)

and

x = (l tix )* i (l * ) lon;*

— LT in LN L

cos| lat; 180 S on,; 130 on; 130
(10)

and

= COS(lﬂt'*l>* sin(latr*l) sin(latr*i)* cos(lat*i)* cos((lonf*l) (lonf*l))
r= 180 77180 " 180 77180 77180 " 180
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Following the calculation, there finally is a t for each
GPS point of an uploaded track. To determine if a GPS
point is part of a trip or part of an activity at a location
the algorithm checks the t value for each point within a
gliding time window of 180 s. This value is then checked
against a modifiable threshold value. If T of a point
within the time window is < 1.5 the point is identified as
part of a trip (otherwise as part of an activity). The t
value has been derived from data analysis using the test
data set (see section 3). The algorithm developed here
uses a time window of 180s. Other approaches also
used a gliding time window for determination but the
length of windows varies over the different studies
between 120s (see for example [22, 33, 36, 38]) and
up to 300 s (see for instance Wolf et al. 2004 [4, 14,
39];). For the event of a lost GPS signal, we decided
to keep the time window and split trips after 180s
without data input. If the signal loss is shorter, we
keep the methodology of averaging the existing t
values, following the thesis, that in doubt a standstill
is less likely than a continuing ride.

Figure 4 illustrates how speeds, changes of the heading
of the directional vector as well as the covered distance
develop over time. It reveals that using the new param-
eter T is by far more adequate to identify if a part of the
GPS tracks belongs to a trip or an activity. Trip and ac-
tivity sections are displayed in red (1 = trip, O = activity).
The dashed line represents the transition from trip to
activity in this example. Functionality and validity is pre-
sented in section 4.

3.6 Mode recognition
In order to determine the used mode of transport, a
rule-based heuristic mode recognition model has been
developed based on in-depth GPD data analysis and
existing approaches. We implemented the developed
heuristic as a decision tree with different decision levels.
Passing the model, each trip is assigned to one of four
possible traffic modes (walk, bicycle, leisure bicycle,
other). In the following sections, we describe the input
data, the processing as well as the output of the model.
To determine the transport mode, the model needs
mode-specific values that represent the characteristics of
the used mode. These values have been identified by
analysing labelled tracks (known mode of transport)
from the test data set (see section 3). The analysis re-
vealed that there are different values, which may be
properly used for mode recognition, such as different

(11)
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Fig. 4 lllustration of speed, heading, distance and TAU values over a trip and activity section

acceleration and speed percentiles, distances or detour
factors. Figure 5 shows examples of speed distributions

useful for mode recognition. The mode ‘walk’, for ex-
ample, shows very low speeds (80% percentile < 10 km/

(a) and distribution of acceleration (b) of different modes
of transport.

The figure reveals that speed distribution (Fig. 5a) sig-
nificantly differs between different modes and, thus, is

-

h) whereas speed of ‘bicycleis significantly higher in the
first percentiles (e.g. 30% percentile > 10 km/h). On the
other hand, the distribution of acceleration does not
show distinct characteristics. They, therefore, can hardly

a) 80
70
60
50
40

30

speed [km/h]

20

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
Percentile

—walk  —bicycle —car —tram  —rail (inner-city)

Fig. 5 Distribution of a) speed and b) acceleration of different modes of transport

b) 10

Acceleration [m/s2]

“)

(6)

@®)

(10)

Percentile

—walk —bicycle —car —tram —rail (inner-city)




LiBner and Huber European Transport Research Review (2021) 13:8

be used for mode recognition — especially because mini-
mum and maximum valued depend on GPS signal qual-
ity. Errors occur through reflection or signal loss and,
thus, influence acceleration and maximum speeds.
Hence, high (e.g. 90%) or low (e.g. 10%) percentile
should be used for mode recognition, only.

A further and very important variable is the distance
and the detour factor. Distance and detour can signifi-
cantly improve mode recognition because the distances
covered by different modes and the corresponding de-
tour differ considerably. Table 1 shows some examples
of detour factors for different modes.

The detour factor is especially important to detect e.g.
leisure and sport trips of cyclist but it can also be useful
to distinguish e.g. between rail and other modes, as its
detour factor is normally very low. As we are not consid-
ering road networks or other GIS data, the detour factor
is calculated as the beeline. This is mandatory, because
using shortest paths instead would mean to make a pre
assumption for a specific mode for each trip because
searching the shortest route is restricted by using mode-
specific (allowed) infrastructure.

A decision tree is used to test and implement the
mode recognition model. The rules implemented at each
node of the tree are based on the results of data analysis.
The implemented multi-level decision tree contains
three decision levels. The main input is the calculated
values for the following variables:

e 20% percentile of speed of a trip
e 80% percentile of speed of a trip
e 90% percentile of speed of a trip
e Trip distance

e Detour factors of a trip

The mentioned values of the variable are calculated
for each trip. The computation of the n-% percentile ex-
ecuted by outputting the value at point n-% of the or-
dered set of values. Trip distance is computed
cumulating the distances between the GPS points as

n
Apip = E Si—i
trip x=1"¢ i+1

with d,,;, as trip distance and s, ;, ; as distance between
two points P; und P;, ; of a trip. The detour factor of a
trip is computed using the trip distance and the beeline

(12)

Table 1 Examples of typical detour factors from the data set
Mode

Detour factor

Bicycle 14
Bicycle (leisure) 243
Walk 14

Train 11
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(distance between the first and the last GPS point). The
calculation is carried out as

d trip
d ltrip

with DF,,;, as detour factor of a trip and dl,,;, as beeline
between first and last point of a trip. The computation
of dl;, is carried out following the calculation of Hav
(see section 3). If original coordinates of the points are
used, they have to be converted from degree to radian
measure following

DFtrip = (13)

T
Lat = Latppgx ——
ALRAD ALDEG 180

As all values for the presented variable are calculated,
they can be used for the mode recognition decision tree
model. Starting with the root node, the calculates attri-
butes/values of each trip are checked at every node of
the decision tree. Figure 6 illustrates the used decision
tree for mode recognition.

The modes are defined as follows:

(14)

— Mode 1: walk

Mode 2: bicycle (leisure)
Mode 3: bicycle

— Mode 4: other

The decision rules at each node consider speed values,
distances and detour factors of each trip. The rules or
requests at each node are defined as:

1. if A =true, then M =1, else 2.
2. if BN (CU D) N F=true, then M =2, else 3.
3. if E=true, then M =3, else M =4

with:

A= Vsomp <aan

B = v20uip 2 am2.1
C = Duip > Sm2

D =DFuip > Y2
E= V90trip <oM3

F = v80uip < am2.2

and:
v80,.;, — 80%-percentile of trip speed.
ayi; — Threshold for the 80%-percentile for mode 1.
V20, — 20% percentile of trip speed.
anp.1 — Treshold for the 20%-percentile for mode 2.
oy — Treshold for the 80%-percentile for mode 2.
Dyip — Trip distance.
Ono — Treshold for trip distance of mode 2.
DFi, — Detour factor of the trip.
Y2 — Treshold for the detour facor for mode 2.
V904, — 90%-percentile of trip speed.
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true
A —> Mode 1
l false

true

Bn(CuD)n F — Mode 2

l false

wahr
E Modue 3

false
> Mode 4
Fig. 6 Decision tree for mode recognition

apys — Treshold for the 90%-percentile for mode 3.

The following values (see Table 2), which have been
identified in the analysis of the trips data, are input pa-
rameters for the decision tree.

The recognition of further modes is, of course, pos-
sible and feasible. However, the focus of the investiga-
tion is not the perfect mode recognition of all
existing modes. Therefore, an aggregation of modes
like car or bus to mode 4 (other) seems to be viable.
The result of the decision tree is an assigned mode
for each trip passing it. Accuracy of the method is
described in chapter 4.

3.7 Driving mode detection

In order to provide information about the cycling behav-
iour, this step determines the driving mode of cyclists
during the trip. The model distinguishes between four
different driving modes (stop, acceleration, constant
movement, deceleration). The driving mode is mainly
defined by speed (constant movement vs. no movement)
and acceleration (acceleration vs. deceleration), which is
calculated for each GPS point of a trip. Mode detection

Table 2 parameter threshold values used in pre processing

Threshold Value Unit
A 80 km/h
Ao 10.0 km/h
Ao 50.0 km/h
Sz 300 Km
Ym2 30 -
a3 40.0 km/h

is essential to detect real acceleration and deceleration
processes. The following equations were used to define
the four driving modes:

if MAX (vi..vj) < 0,2Z then” Stop” (15)
s

with

i=1andj=180 (16)
and

) m

ifa; < -0,2— then (16)

s

and

. m ” s »

if a; > 0’2s_2 then”acceleration (17)
and

else “constant movement” (18)

Driving mode detection can be seen as part of the data
pre-processing for further research items like specifying
the behaviour of different types of cyclists.

3.8 Validation

To validate the data processing, systematic and random
errors need to be assessed. Systematic errors are part of
the data collection and processing, whereas random er-
rors occur more often on the participants side of a study.
As this paper is about the data processing, we mainly
focus on systematic errors.

We used initial model parameters derived from data
analysis to test and validate the model for the GPS
cycling data set (see sections above). The validation
of the model results was then carried out in two
steps. We firstly examined about 150 tracks that
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Table 3 Altering of parameter combinations for different steps of data pre processing

Version Speed Speed T Speed Time Acc. v20- v80- v80- v90- Distance Detour
[m/s] [m/s] (tau) “Stop” Gap Threshold percentile percentile percentile percentile (5y2) Factor
Upper Lower Threshold [s] [m/s?] (apn2.1) (ap2.2) (apm) [km/  (ays) [km/  [km] (Ym2)
Boundary Boundary [m/s] [km/h] [km/h] h] h]

1 25 0.2 3 0,2 60 0,1 10 - 8 30 30 3

2 25 0.2 3 0,2 60 0,1 10 - 8 35 30 3

3 25 0,2 3 0,2 60 0,1 10 - 8 40 30 3

4 25 0.2 1 0,2 180 02 10 - 8 40 30 3

5 25 0.2 35 02 180 02 10 - 8 40 30 3

6 25 02 3 0.2 180 02 10 - 8 40 30 3

7 25 0.2 3 0,2 180 02 10 50 8 40 30 3

showed striking characteristics (e.g. very high speeds,
very long or short tracks or tracks with few points).
Secondly, we selected 150 tracks randomly for valid-
ation. Additionally, we examined the track samples
visually to evaluate the performance of trip segmenta-
tion and mode recognition. We used QGIS and a Python
plug-in for the last step.

After the evaluation of one combination of parameters,
we altered the parameters with impact on segmentation
or mode recognition. After verifying the combination for
a couple of tracks using the Python plug-in, we ran the
data pre-processing on the whole data set again and
restarted the evaluation for another 150 randomly se-
lected tracks. Table 3 shows the different parameter
combinations of our iterative pre-processing attempts.
The percentage of “valid trips” shows the value of trajec-
tories, which are not marked as activities and are not
discarded due to little amounts of time or GPS-points.

In addition to potential errors in the data processing,
the dataset had to be checked for systematic errors in
data collection. A number of errors occurred in the data
regarding the different smartphone devices. As they
could result from hardware specifications as well as soft-
ware issues, we checked for high amounts of segmented

trips after data pre-processing and additionally for a low
number of GPS points compared with the trip length. A
big number of trips is an indicator for a) a very ambi-
tious cyclist or b) a smartphone, whose recorded tracks
caused problems in the trip segmentation step due to
non-adjacent GPS-trajectories. However, a very low
number of GPS points in combination with great trip
length is an indicator for power saving modes. This shut
down in data collection occurs when the operating sys-
tem software of the smartphone moves the activity of
the application to the background, which disables the
app to collect data. Both kind of errors may not precisely
be linked with a special smartphone type or model. There
was a slight tendency for Chinese fabricates (e.g. Huawei
and Xiaomi), which was not significant so far. Corrupt
data sets were deleted after the validation process.

4 Results

The result of the data processing model is supplemen-
tary information for each GPS point within a track:
whether it belongs to an activity or a trip, the corre-
sponding mode of transport and driving mode). Figure 7
illustrates how real behaviour and the referring trip and
mode information within the processed data look like.

Start Trip ® Activity

Fig. 7 Graphical result of data processing
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The validation of the trip segmentation model shows
high accuracy, over all. Using adapted parameters de-
rived from the first iteration, about 82% of the tracks of
the GPS bicycle data sample were segmented 100% cor-
rectly in the second iteration (see Fig. 8). Only about
18% of the tracks have not been segmented correctly
(15% of them segmented once and 3% segmented several
times). However, there is huge potential to diminish the
remaining errors through further model adaptations.
Doing further iterations and adapting the gliding time
window (especially widening it) or adapting the T value
may help to increase the accuracy of the trip segmenta-
tion up to around 95% (see Fig. 8).

The validation of the transport mode recognition re-
vealed that the initial calculation already produced good
results. About 85.4% of the transport modes were cor-
rectly classified. Around 7.8% of the trips were incor-
rectly classified due to errors in the trip segmentation
(partially correct) and only 6.8% were classified incor-
rectly because of inaccuracy of the mode recognition
model (see Fig. 9). After altering model parameters
nearly 87.8% of all cycling trips in the sample were de-
tected correctly. Only about 12% of the trips have not
been assigned correctly. The incorrect classification are
partially (about 4.9%) traced back to errors within the
trip segmentation because trip length, for instance, indir-
ectly influences transport mode recognition.

However, the overall results can be assessed as good.
There, furthermore, is huge potential to improve the
mode recognition. An improvement of trip segmenta-
tion, for instance, directly affects the accuracy of the
mode recognition — this close connection has already
been identified between the different iterations (see Fig.
9). The potential through trip segmentation improve-
ments is around 3.9%. Thus, a total accuracy of 91.7%
can be achieved (potential 1). Further improvement can
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also be achieved adapting the parameters of the trans-
port mode recognition model itself. A revision of the
model itself or an adaptation of model parameters could
lead to an improvement of 8.3%, which finally results in
an accuracy of 96.1% (see Fig. 9, potential 2).

The model accuracy and the different potentials were
cross validated using another sub sample of the dataset
after the parameter fitting to avoid overfitting.

5 Discussion

The presented data processing model represents an ad-
equate approach to overcome the still existing weakness
in GPS-based cycling data (see section 0 and 13). It
therefore represents an important contribution in the
field of bicycle-specific data processing.

Since trip segmentation and transport mode recogni-
tion show high accuracies (81% and 88%), the overall re-
sults of the data processing model can be assessed as
pretty good — especially because the presented model is
based on GPS data, only. Additionally it has to be men-
tioned, that we trained our model with complex inter-
modal mobility chains, where walking trips (mostly
under 180s.) at the begin or end of bicycle trips where
the main cause for incorrect segmentation or mode
detection.

Although there are still incorrectly segmented tracks
and wrongly recognized transport modes, there is a high
potential to eliminate the remaining errors by further
model adjustments. Implementing appropriate measures,
we found that the trip segmentation accuracy could be
further increased up to approximately 95% by adapting
model parameters. Comparing the results from the ini-
tial calculation with the results from the second iteration
also revealed that an improved trip segmentation directly
effects the transport mode recognition. We found that
improving the trip segmentation could increase the

100%
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80%
70.4%

60%

accuracy

40%

20%

0%
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Fig. 8 Accuracy and potential accuracy of trip segmentation
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accuracy of transport mode recognition up to 91.7%. Ad-
justments of model parameters of the transport mode
recognition can further lead to improvement. We found
that adapting the parameters could lead to an overall ac-
curacy of 96.1%.

Comparing the potential loss of data (3.9%) with the
loss when simple threshold-based filtering models are
applied, illustrates the potential of the presented ap-
proach. From 11.397 million GPS points in the raw data
set, the initial data processing led to around 11 million
remaining points (3% loss in data). In comparison to the
used approach, a threshold filtering with a lower bound-
ary of 0.1 m/s and an upper boundary of 10 m/s resulted
in 7.7 mil data points and a loss of 32% of information
without knowing the mode and trip length of the proc-
essed data. Introducing a filter of 1.4 m/s (5 km/h; walk-
ing speed) without an upper boundary results in 6.945
mil data points and therefor a loss of 39% of the initial
data while excluding walking (almost completely), activ-
ities and stops of cyclists. On the other hand, our pre-
processed data contained only 7.35 mil. Data points
which were valid and had the mode “bike” or “sports
bike”. It can be considered, that there is an amount of
about 30% noisy data, which has to be filtered. However,
our processed bike trips contained more than 892,000
data points with a speed lower than 0.1 m/s, which is
about 11% of the whole bicycle dataset that would be
lost using a 0.1 m/s threshold.

According to model accuracy can be stated that in
comparison to the reviewed studies (see section 2), the
presented model shows a high accuracy while using few
data or rather no further data than GPS. At the same
time, the used heuristic represents a transparent and
comprehensible, which is easy to implement. Other
studies using heuristics, such as the ones of Chung &
Shalaby [9], Bohte & Maas [4] or Stopher et al. [32] for

instance, show least accuracy values of all studies (be-
tween 72% and 75%) in identifying bicycle trips, al-
though they used further information (GIS data). In
contrast, the heuristic developed by Zhang et al. [42] re-
veals a high accuracy (95%) using GPS data only. They
identify cycling trips by taking into account values of
speed, acceleration and heading. However, Zhang et al.
[42] consider 19 bike trips, only, which is very little. Fur-
thermore, the study aimed on identifying car trips using
machine-learning methods and the bicycle mode detec-
tion was achieved in a upstream step. There is no further
information regarding model accuracy for the other
studies using heuristics (e.g. [14] and [30]).

Other studies use different methods (machine learn-
ing) and different data. The studies, which use machine-
learning methods generally achieve higher accuracy
values (between 82% and 93%) than models that use
heuristics (e.g. [6, 7, 10, 31, 41]). However, the men-
tioned studies use further data such as GIS data or fur-
ther data from smartphone sensors (e.g. accelerometer,
gyroscope or magnetometer). This increases data pro-
cessing complexity and, therefore, hampers model im-
plementation. Studies using ML, which do not use
further data for bicycle trip identification show accuracy
values between 88% (e.g. [25, 40]) and 100% [43]. How-
ever, the underlying machine learning models are very
complex and can hardly be reproduced (see for instance
[43]), which hampers model implementation and
utilization, especially for practitioners. Additionally small
homogeneous datasets can cause model overfitting.

6 Conclusion

Aim of the study was to develop a bicycle specific data
processing approach, which is capable to process big
GPS data sets and easy to use and to implement for
practitioners. The goal was to create a method which is
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highly transparent, flexible and interpretable (no black
box). Furthermore a high accuracy was an essential re-
quirement. The study results can be compared with
other studies that focussed on using and identifying bi-
cycle trips (see section 2). The most important criteria
for comparison are a) the used data, b) the developed
model and c) the accuracy of bicycle trip identification.
Comparing these parameters is important towards
implementing a manageable model (criterion b), which
is able to identify bicycle trips with little or no further
input data than GPS tracks (criterion a). It is further
supposed to show a high accuracy (criterion c) to assure
a minimum loss of bicycle trips for further data analysis.

We summarize that the developed data processing
model generally represents an adequate approach to
overcome the gaps in bicycle data processing — espe-
cially because it represents a simple but robust approach
that is easy to implement and has low data require-
ments. In contrast to other approaches the method can
be considered as novel at the data filtering stage because
data loss can be reduced effectively. Furthermore the
model is very flexible because key values can be adopted
to different context. The focus on bicycle transport and
the bicycle specific thresholds contributes to research in
this field. However, there is still potential for improve-
ment achieved by both, smaller model adaptations and
applying other classification methods.
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