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Modeling of vehicle CO2 emissions and
signal timing analysis at a signalized
intersection considering fuel vehicles and
electric vehicles
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Abstract

Background: An intersection is an area with more energy consumption and emissions by motor vehicles, and the
energy consumption and emissionsof vehicles at intersections should be reduced in road planning and traffic
control to improve the urban traffic environment.

Objectives: In order to analyze the influence of signal timing on CO2 emission of traffic flow under the mixed
traffic environment of fuel vehicles and electric vehicles.

Methods: A set of CO2 incremental emission models is established to estimate the CO2 emissions of fuel vehicles
and electric vehicles at signalized intersections. Then, a signal timing model with minimum CO2 emissions is
established, and the influence of signal timing with minimum CO2 emissions on vehicle control delay and stop
rates under different traffic conditions is analyzed.

Conclusions: The case study shows that optimizing of the timing parameters of intersections from the perspective
of vehicle CO2 emissions is different from the perspective of control delay or stop rate; the model’s timing
optimization will effectively balance the CO2 emissions generated by vehicles during the acceleration, deceleration
and idling stages, essentially achieving a comprehensive consideration of vehicle control delay and stop rates.
When the road section speed and the mixed proportion of electric vehicles are low, the timing results tend to
reduce the vehicle delay at intersections, but when the road section speed and the mixed proportion of electric
vehicles are high, the timing results tend to reduce the vehicle stop rate.
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1 Introduction
To date, series of studies on vehicle energy consumption
and emissions at signalized intersections have been per-
formed by several research groups; authors such as Liao
and Machemehl [1], Liao [2], Huang et al. [3], Zhang et al.
[4] and Li et al. [5] have put forward different mathematical
estimation models. However, although these results have
analyzed and estimated the CO2 emissions of vehicles at

signalized intersections, they were all obtained under spe-
cific assumptions, such as the acceleration and deceleration
of vehicles in the processes of acceleration and deceleration
at intersections remaining unchanged, respectively, or the
fuel consumption and emissions characteristics of vehicles
in the process of driving being characterized by equivalent
fuel consumption and emission rates; these overideal as-
sumptions limit the applicability. To solve this problem, Lv
and Zhang [6], Gao and Hu [7], Liu et al. [8] and Zhang [9]
et al. used the combination of traffic models and vehicle
fuel consumption and emission models to analyze vehicle
fuel consumption and emissions at signalized intersections.
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Although these works combined VISSIM traffic simulation
software with different fuel consumption and emissions
models to study vehicle fuel consumption and emissions at
signalized intersections, their research overcame the limita-
tions in the hypotheses of the works of Liao and Machem-
ehl [1], Liao [2], Huang et al. [3], Zhang et al. [4] and Li
et al. [5] that were too ideal. However, the combination of
VISSIM simulation software and fuel consumption and
emissions models is complex and requires a large amount
of data processing, resulting in some limitations of research
on the fuel consumption and emissions of traffic flow at
signalized intersections based on the combination of VISS
IM and vehicle fuel consumption and emission models.
Tang et al. [10] combined a car-following model and VT-
Micro model [11] to analyze the influence of the green
signal ratio on vehicle fuel consumption and emissions at
signalized intersections, and they obtained meaningful con-
clusions. In addition, in the work of Zhao et al. [12], the
combination of a car-following model and vehicle-specific
power emissions model was used to estimate vehicle emis-
sions, including the CO2, CO, HC, and NOX emissions at
unsaturated signalized intersections. However, Tang et al.
[10] and Zhao et al. [12] analyzed vehicle fuel consumption
and emissions at signalized intersections based on vehicle
trajectory simulations but did not provide a general estima-
tion model of vehicle fuel consumption and emissions at
signalized intersections.
Electric vehicles are considered to be an effective means

to alleviate traffic energy security and environmental pollu-
tion problems because they can achieve “zero emissions” at
the operation stage. To study and analyze the energy con-
sumption characteristics of electric vehicles in the course of
driving and to quantitatively analyze their specific effects on
energy savings and emissions reduction, some scholars have
proposed energy consumption estimation models of electric
vehicles from different perspectives, including the energy
consumption models of unit mileage proposed by Shankar
and Marco [13], Qi et al. [14], Yuan et al. [15], and Yuan
[16] and some instantaneous energy consumption estima-
tion models proposed by Yao et al. [17], Zhang and Yao
[18], Genikomsakis and Mitrentsis [19], Wu et al. [20], Ced-
ric et al. [21], and Abousleiman and Rawashdeh [22]. Based
on the research results of an instantaneous energy con-
sumption estimation model of electric vehicles, Yang et al.
[23] and Asamer et al. [24] analyzed the impact of different
factors on the energy consumption of electric vehicles. At
the same time, Ning et al. [25] and Wang et al. [26] analyzed
the use economy of electric vehicles from the perspectives
of energy consumption and emissions. With in-depth un-
derstanding of the problem of electric vehicle energy con-
sumption, some scholars have performed research and
explorations from the perspectives of electric vehicle trans-
portation path optimization and charging station planning
(e.g., [27–33]). In the existing research literature, research

on the energy consumption of electric vehicles has attracted
extensive attention from researchers. However, few scholars
have taken electric vehicles as their research object to
analyze their energy consumption and emissions character-
istics at signalized intersections and their impacts on mixed
traffic flow emissions. In addition, due to the differences in
energy consumption and emission characteristics between
electric vehicles and fuel vehicles, the problem of signal tim-
ing at intersections under a mixed environment of electric
vehicles and fuel vehicles deserves further study.
In summary, although some research results have pro-

vided in-depth analyses of vehicle energy consumption and
emissions at road sections and intersections, there remain
many shortcomings, especially against the background of
the increasing popularity of electric vehicles, so the charac-
teristics of energy consumption and emissions of mixed
traffic flow require further study. Considering that electric
vehicles and fuel vehicles consume electricity and fuel, re-
spectively, in the course of driving, the energy consumption
of these vehicles cannot be directly compared horizontally.
Because the emissions from fuel vehicles and electric power
production include CO2 [12, 34–36], in this paper, under a
mixed traffic environment of fuel vehicles and electric vehi-
cles, the traffic flow CO2 emissions are considered as the
evaluation criterion, signal timing is performed at intersec-
tions, and the differences in timing results under different
road section speeds and mixed proportions of electric vehi-
cles are analyzed. We propose a statistical regression model
for fuel vehicles and electric vehicles to estimate vehicle
CO2 incremental emissions at intersection approaches
based on the stop rate and control delay. Due to the influ-
ence of many factors on vehicle CO2 emissions at signalized
intersections, some models have been obtained based on a
series of assumptions and specific methods in the existing
literature, but these models are very complex, and their esti-
mation accuracy must be further improved. The model pro-
posed in this paper can solve this problem well. The stop
rate and delay of vehicles are regarded as the direct variables
of the model, which can well describe the influence of road
conditions, such as vehicle arrival rate and signal timing, on
vehicle CO2 emissions and render the model sufficiently
simple under the premise of ensuring the accuracy of esti-
mation. Furthermore, the paper analyzes the signal timing
of intersections from the perspective of vehicle CO2 emis-
sions. The analysis results show that the signal timing of in-
tersections from the perspective of vehicle CO2 emissions is
essentially a balanced consideration of vehicle stop rate and
control delay. This conclusion gives scientific meaning to
the comprehensive evaluation of stop rate and delay when
conducting multiobjective timing optimization at signalized
intersections. It should be noted that electric vehicles can be
generally divided into pure electric vehicles, hybrid electric
vehicles and fuel cell vehicles. The electric vehicles in the
scope of this study are pure electric vehicles. Moreover, the
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CO2 emissions of electric vehicles referred to in this paper
are the CO2 emissions generated by the electric vehicle con-
sumption of power produced by power plants.

2 CO2 emissions model based on the vehicle-
specific power of fuel vehicles
Scholars have used the VT-Micro model [11] to conduct a
series of studies of vehicle fuel consumption and emissions
from different perspectives (e.g., [10, 37–40]), and meaning-
ful conclusions have been drawn. However, the VT-Micro
model does not consider the principles of engine operation
and emissions, and it is not suitable for vehicle fuel con-
sumption and emissions analysis in traffic scenarios with
considerable deceleration, such as signalized intersections.
Gao and Hu [7] found that the specific power method can
be used to determine the exhaust emissions of motor vehi-
cles at the microlevel because it considers factors such as
the instantaneous speed and acceleration/deceleration of a
vehicle. Lv and Zhang [6], Gao and Hu [7], Zhang et al. [9],
Abou-Senna et al. [41], Lv et al. [42], Li et al. [43] and
Coelho et al. [44] used the specific power method to evalu-
ate vehicle exhaust emissions on the road and at intersec-
tions. Therefore, this paper also uses the specific power
method to analyze the CO2 emissions of fuel vehicles at sig-
nalized intersections. The equation for calculating the spe-
cific power of a light vehicle under the condition of a road
slope is 0 can expressed as follows [45]:

VSP ¼ v 1:1aþ 0:132ð Þ þ 0:000302v3 ð1Þ

In Eq. (1), VSP is the vehicle-specific power; v is the ve-
hicle speed; and a is the vehicle acceleration/deceleration.
In this study, we use Eq. (1) to calculate the specific

power of a fuel vehicle at a signalized intersection.
Frey et al. [46] divided a light vehicle’s specific power into

multiple bins, each of which was called a specific power
bin. By considering major vehicle parameters, such as the
engine capacity and mileage, they reported the average
emissions rates of CO2 for different specific power bins of
different types of vehicles. In the following analysis of fuel
vehicle CO2 emissions, it is assumed that the engine cap-
acity of the vehicle is less than 3.5 L and that the mileage is
greater than 50,000miles; this assumption is more in line
with the actual traffic phenomenon, and it represents the
typical features of urban road traffic flow, which is mainly
composed of vehicles with mileage of more than 50,000
miles and an engine capacity of less than 3.5 L. The average
emissions rates of CO2 for different specific power bins of
such vehicles are shown in the Table 3 in Appendix.

3 Energy consumption model of electric vehicles
To study and analyze the energy consumption characteris-
tics of electric vehicles, Genikomsakis and Mitrentsis [19],
Wu et al. [20], Cedric et al. [21] and Abousleiman and

Rawashdeh [22] proposed different instantaneous energy
consumption estimation models of the same type of electric
vehicle from the point of view of vehicle energy conversion.
Based on the instantaneous energy consumption models
from the work of Genikomsakis and Mitrentsis [19], Wu
et al. [20], Cedric et al. [21] and Abousleiman and Rawash-
deh [22], we determine the CO2 incremental emissions of
electric vehicles according to the CO2 emissions factor of
the power grid. It should be noted that the electric vehicle
energy consumption model used in this paper is a mature
model in this research field, although there are other types
of models in this field (e.g., [17, 18]). However, through the
comprehensive analysis and experimental comparison of
various models, the results show that the model selected in
this paper is relatively reasonable, and its physical meaning
is clearer. Therefore, this model is chosen as the basic
model to analyze the CO2 emissions of pure electric vehi-
cles at signalized intersections.
According to the principle of force balance, the force act-

ing on a vehicle during driving can be analyzed as follows:

Ft ¼ CRmgacosαþmgasinαþ 0:5CDAρav
2

þ ð1þ εiÞma ð2Þ

In Eq. (2), Ft is the traction force on the vehicle; m is
the vehicle mass; CR is the coefficient of rolling resist-
ance; ga is the acceleration of gravity; α is the road gradi-
ent; CD is the aerodynamic drag coefficient; A is the
frontal area of the vehicle; ρa is the air density; εi is the
mass factor; and v is the vehicle speed.
When the vehicle travels at speed v, the battery output

power of the vehicle is estimated as follows:

Pout ¼ Ftv
ηpow

þ P0 ð3Þ

In Eq. (3), ηpow is the energy efficiency of the vehicle
power system, and P0 is the power of vehicle auxiliary
components.
Unlike fuel vehicles, electric vehicles can convert the kin-

etic energy of the vehicle into electrical energy during the
braking stage to realize battery charging. The battery char-
ging power in the braking stage is estimated as follows:

Pin ¼ kηpow Ftvþ P0 ð4Þ

In Eq. (4), k is the energy recovery efficiency of the ve-
hicle, which can be determined as follows [23]:

k ¼
0:5� v

5
v < 5m=s

0:5þ 0:3� v − 5
20

v≥5m=s

8><
>: ð5Þ

Then, according to Eqs. (3) and (4), the battery power
of the electric vehicle is determined as follows:
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P ¼ Pout Ft ≥0
Pin Ft < 0

�
ð6Þ

Therefore, the energy consumed by electric vehicles
from batteries during their journeys can be determined
as follows:

Wb ¼
Z T

0
Pdt ð7Þ

In Eq. (7), T is the travel time of the vehicle.
According to the standard GB-T 18386-2005, ISO

8714-2002 and the analysis of Yuan [15], the energy con-
sumption of electric vehicles should be defined as the
energy required to charge the batteries from the grid.
Therefore, the energy consumption of electric vehicles
can be determined as follows:

Wt ¼ Wb

ηgb
ð8Þ

In Eq. (8), ηgb is the charging efficiency of the electric
vehicle. Thus, according to the work of Yuan et al. [15],
the U.S. EPA [35], Jiménez-Palacios [45], Yang et al.
[23], Asamer et al. [24] and Ning et al. [25], the relevant
parameters for the electric vehicle model are determined
as shown in Table 4 in Appendix.

4 CO2 incremental emissions model for vehicles
arriving at an intersection approach
4.1 CO2 incremental emissions analysis of arrived vehicles
In actual traffic, vehicles passing through signalized intersec-
tions can be divided into three modes: complete stop, incom-
plete stop and normal driving. A complete stop means that,
due to the influence of signal lights and queuing vehicles, the
vehicle must slow and stop to wait and then follow the accel-
eration to a certain speed when the vehicle in front begins to
accelerate. An incomplete stop means that the front vehicle
has not completely accelerated when the vehicle arrives and
must decelerate to a certain speed and then follow the front
vehicle to accelerate again. Normal driving means that the
arriving vehicle is not affected by the signal lights and
queuing vehicles and will pass through the intersection at
the road section speed. Since the root cause of the increase
in the CO2 emissions of vehicles at intersections is the
change in vehicle driving trajectory, only the CO2 emissions
of acceleration, deceleration and idling stage of complete
stop and incomplete stop vehicles must be considered in the
analysis process. Then, in the analysis process, we assume
that the incomplete stop behavior is a complete stop behav-
ior without an idling process, and the sum of CO2 emissions
generated by a vehicle at deceleration and acceleration stage
is ER. Because it is difficult to determine the deceleration
amplitude of the vehicle with incomplete stops in the signal
cycle, we consider the incomplete stop a complete stop

behavior without an idling process. In addition, we assume
that the average sum emissions of each vehicle during decel-
eration and acceleration stage is ER. However, this parameter
will be affected by many traffic conditions; there are great
differences in the value of this parameter under different traf-
fic conditions, making it difficult to calibrate accurately.
Therefore, there are some differences between the assump-
tions here and the actual traffic scenarios. However, we make
such assumptions only to facilitate the theoretical analysis of
vehicle CO2 emissions and qualitatively understand the rela-
tionship between vehicle CO2 emissions and the delay and
stop rate. The model established in section 4.2 of this paper
has no relationship with this assumption. Thus, regardless of
fuel vehicles or electric vehicles, the average incremental
CO2 emissions per vehicle in a signal cycle can be approxi-
mately estimated as Eq. (9). It is worth noting that although
the electric vehicle can achieve energy recovery in the decel-
eration stage, and it is affected by the energy recovery effi-
ciency, the energy recovery in the braking stage is less than
the consumption of the vehicle accelerating to the road sec-
tion speed again.

Afe ¼ St � qC � ERþ It � qC � FR − St � qC � SR
qC

¼ St � ER − SRð Þ þ It � FR

ð9Þ
In Eq. (9), FR represents the vehicle CO2 emissions rate in

the idling stage; SR represents the average CO2 emissions of
the vehicle passing through the distance of deceleration and
acceleration processes at road section speed; C is the signal
cycle of the intersection; q is the vehicle arrival rate of the
intersection approach; St is the stop rate of the intersection
approach; and It is the average vehicle idle time at the inter-
section approach. According to the analysis of Shao [47], the
control delay of vehicles at intersections is equal to the sum
of the lost time in the process of acceleration and deceler-
ation and idle time (stopped delay), and the U.S. Road Cap-
acity Manual proposes that the average stopped delay is
approximately 0.76 times the average control delay through
repeated observations and measurements of actual traffic
phenomena. Thus, St and It can be calculated as follows
[48]:

St ¼ f
1 − η
1 − q=s

þ No

qC

� �
ð10Þ

It ¼ 0:76� d ð11Þ

d ¼ C 1 − ηð Þ2
2 1 − ηxð Þ þ

xNo

q
ð12Þ

No ¼
QT
4

x‐1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x‐1ð Þ2 þ 12 x − x0ð Þ

QT

s !
; x > x0

0; x≤x0

8><
>: ð13Þ
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x0 ¼ 0:67þ sg
600

ð14Þ

In Eqs. (10) to (14), g is the effective green light time of the
intersection approach; η is the green time ratio of the inter-
section approach; s is the vehicle saturation flow rate of the

intersection approach; x ¼ qC
.
sg

is the saturation level of

the intersection approach; No is the average number of vehi-
cles held up at the intersection approach in one signal cycle;
Q is the traffic capacity of the intersection approach; T is the
time duration for which the vehicle arrival rate is equal to q;
f is the correction factor for a complete stop; and d is the
control delay of the intersection approach.
Through the analysis of Eq. (9), it can be seen that, on

the premise that parameters ER, FR and SR have been
determined, the average incremental CO2 emission per
vehicle of a signal cycle can be determined by the stop
rate and idle time. At the same time, according to ana-
lysis of the work of Zhao et al. [12] and actual traffic
phenomena, we can draw the general conclusion that
the changes in vehicle CO2 emissions at an intersection
approach are caused by the different stop behaviors and
idle times of vehicles. The incremental emissions of a ve-
hicle will change with changes in the stop rate and idle
time. When the idle time is similar, the incremental
emissions will increase with an increase in the stop rate.
In the case of a similar stop rate, the incremental emis-
sions will increase with an increase in the idle time.
However, the average incremental CO2 emissions of ve-
hicles at signalized intersections will be affected by many
factors, such as the random arrival of vehicles, speed
fluctuations, incomplete stop behaviors, etc., and the ac-
curacy of incremental CO2 emission of vehicles cannot
be guaranteed through the method of equivalent aver-
ages of parameters ER, FR and SR. Therefore, it can be
explained to some extent that there is a specific mapping
relationship between the changes in incremental emis-
sions and the stop rate and delay, but the estimation ac-
curacy of the model must be further improved if
establishing a simple linear relationship, as in Eq. (9).

4.2 Modeling
According to the polynomial combination of vehicle speed
and acceleration/deceleration, Ahn et al. [11] used a statis-
tical regression method to determine the instantaneous fuel
consumption and emissions model of fuel vehicles. Yao
et al. [17] and Zhang and Yao [18] also used the same
method to study a statistical model of the instantaneous en-
ergy consumption of electric vehicles. Inspired by this idea,
we analyze the different polynomial combinations of stop
rate and control delay based on the data of vehicle average
CO2 incremental emissions under different traffic condi-
tions and establish a statistical model of vehicle CO2

incremental emissions. It should be noted that the delay in
vehicles at intersections mainly includes three stages—de-
celeration, idling, and acceleration—for comprehensively
evaluating the operating efficiencies of signalized intersec-
tions in actual traffic, and researchers have conducted a
series of studies based on the control delay rather than the
stopped delay [49], and the control delay and stopped delay
approximately follow a linear relationship. Therefore, we
use the stop rate and control delay models shown in Eqs.
(10) and (12), respectively, to establish incremental emis-
sions models from the perspective of regression statistics.
The establishment of a vehicle emissions model eventually

turns to practical applications. Although it is possible to build
a more realistic model relying only on the relevant data ob-
tained from a large number of observations and in-depth
analysis of actual traffic phenomena, the CO2 emissions of
vehicles at signalized intersections are affected by many fac-
tors, such as signal timing and vehicle arrival rate, resulting
in vehicle energy consumption and emissions that will also
differ under different traffic conditions. Therefore, it is diffi-
cult to collect the actual emissions data of different vehicles
at signalized intersections, and the vehicle emissions under
different traffic conditions are difficult to cover comprehen-
sively. In addition, it is easy to cause certain deviations in
many data processing processes. To overcome the difficulty
of data collection, Zhao et al. [12] used the full velocity differ-
ence (FVD) car-following model to simulate vehicle trajector-
ies at signalized intersections and combined the model with
vehicle-specific power emissions model to analyze the influ-
ences of signal timing, arrival rate and road section speed on
fuel vehicle emissions. This approach provides a simple and
convenient way to analyze vehicle energy consumption and
emissions at signalized intersections. Therefore, we use the
FVD car-following model combined with the instantaneous
emissions model of fuel vehicles in section 2 and the instant-
aneous energy consumption model of electric vehicles in sec-
tion 3 to simulate the CO2 emissions of fuel vehicles and
electric vehicles under different traffic conditions, respect-
ively. The simulation conditions in the process of data acqui-
sition are shown in Table 5 in Appendix.
We set the road section speed at 10m/s, in line with the

actual speed of most urban roads. For fuel vehicles and elec-
tric vehicles, the simulations are conducted separately. It is
worth noting that under these conditions, the vehicle arrival
rate has 51 situations, the signal cycle has 35 situations, and
the green signal ratio situations for each traffic condition
composed of vehicle arrival rate and signal cycle are different
and can be determined by the upper and lower bounds and
the step size. Finally, the number of traffic situations, com-
posed of different vehicle arrival rate, signal cycle and green
signal ratio, is 17,010. In addition, in Zhao et al. [12], to sim-
plify the analysis process, under the condition that the ve-
hicle arrival rate is determined, it is assumed that the time
intervals of all vehicles arriving at the intersection are the
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same, but this assumption condition is too strong, making it
insufficient for describing actual traffic phenomena. To over-
come this shortcoming, this paper assumes that the time
headway of a vehicle arriving at an intersection approach
obeys a shifted negative exponential distribution when simu-
lating the vehicle trajectory under different traffic conditions,
considering the randomness of vehicle arrival at the intersec-
tion approach to render the model more applicable to actual
traffic analysis. At the same time, the signal cycle average ve-
hicle emissions within 1 h of each traffic situation are consid-
ered the simulation value of the corresponding traffic
situation. Then, based on a large number of simulation data
in different traffic situations, which almost achieve compre-
hensive cover of different traffic situations, we uses SPSS
statistical software to analyze the different polynomials of the
stop rate and control delay and determine the structure of
the statistical model of average CO2 incremental emissions
of fuel vehicles and electric vehicles as follows:

Afe ¼
X3
i¼0

X3
j¼0

li; jSt
id j ð15Þ

Table 6 in Appendix shows the regression coefficients of
the statistical model. To simplify the model and avoid the
influence of multicollinearity between explanatory variables
in the model as much as possible, when determining the
corresponding model, a polynomial combination that can-
not explain the changes in the model significantly is not
considered. Through SPSS analysis, the adjusted R2 values
of the CO2 incremental emissions statistical models of fuel
vehicles and electric vehicles are both 0.932, and the regres-
sion equation and explanatory variables pass the significance
test at the 95% confidence level. To evaluate the accuracy of
the model more intuitively, based on the simulation results
of incremental emissions under different traffic situations,
the model-calculated values of Eq. (15) are compared with
the simulation values. The statistics of the comparison re-
sults show that the mean absolute percentage errors of the
statistical models of CO2 incremental emissions of fuel vehi-
cles and electric vehicles are 10.62% and 8.56%, respectively,
and the standard deviations of the absolute percentage er-
rors are 0.10 and 0.07, respectively. It can be concluded that
the statistical models of CO2 incremental emissions are rea-
sonable through the linear regression of different polyno-
mials of the stop rate and control delay, and the estimation
accuracy of the statistical model can be guaranteed.
However, in this paper, the model is established on the

premise that the road section speed is 10m/s. According to
the simulation analysis in the work of Zhao et al. [12], when
the vehicle has different road section speeds, the driving
trajectory of the vehicle under the intersection approach
will change, rendering the CO2 emissions generated in the
processes of vehicle deceleration and acceleration different.
Therefore, there are some deficiencies in calculating the

incremental emissions using the above model under differ-
ent road section speeds. In actual traffic, the speed of differ-
ent urban road intersections will be different, and the speed
limit range is mostly between 30 km/h and 50 km/h. Thus,
to render the statistical model proposed in this paper more
general, it is assumed that the range of vehicle road section
speeds is from 8m/s to 14m/s. The incremental emissions
results of fuel vehicles and electric vehicles under different
traffic situations, comprising different road section speeds,
signal cycles, green signal ratios and vehicle arrival rates,
are obtained by the above simulation method and condi-
tions. Based on Eq. (15), under the premise of considering
the road section speed, SPSS statistical software is used to
test different polynomial combinations of the stop rate,
control delay and road section speed. The statistical model
structure of the average CO2 incremental emissions in one
signal cycle is reestablished, as shown in Eq. (16), and the
regression coefficient is shown in Table 7 in Appendix.

Afe ¼
X1
i¼0

X3
j¼0

X3
k¼0

li; j;kvol
iSt jdk ð16Þ

Through SPSS analysis, the adjusted R2 values of the CO2

incremental emissions statistical models considering the
road section speed of fuel vehicles and electric vehicles are
0.916 and 0.899, respectively, and the regression equation
and explanatory variables pass the significance test at the
95% confidence level. Through analysis of the vehicle incre-
mental emissions results, it is found that, when the vehicle
road section speed increases, although it can reduce the
travel time of the vehicle on the road, the duration times of
deceleration and acceleration at the intersection will in-
crease, resulting in an increase in incremental emissions at
the intersection. To describe the influence of the road sec-
tion speed on the CO2 incremental emissions of vehicles at
the intersection approach, the statistical model shown in
Eq. (16) considers the road section speed. It can be seen
from a comparison with Eq. (15) that although the com-
plexity of the model structure shown in Eq. (16) is in-
creased under the premise of considering the road
section speed, the adjusted R2 values of the models of
fuel vehicles and electric vehicles are reduced corres-
pondingly but still close to 1. This outcome shows
that the statistical model considering road section
speed is relatively reasonable, making it more general
and broadening the application scope of the model. It
is worth noting that the model in this paper aims to
study the average vehicle CO2 incremental emissions
under the whole intersection approach rather than a
single vehicle. Therefore, for an intersection approach,
the road section speed of vehicles can be determined
by the average speed of all of the vehicles before the
change in vehicle speed. When the vehicle speed of
different intersection approaches is different, leading
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to changes in vehicle CO2 emissions, the vol of the
model is a description of this situation.

5 Signal timing analysis of intersections
considering vehicle CO2 emissions
Based on the stop rate and vehicle delay, an estimation
model of vehicle CO2 incremental emissions at a signalized
intersection approach is established. Considering that signal
control can significantly affect the vehicle stop rate and delay
of signalized intersections, Liao and Machemehl [1], Liao
[2], Zhang et al. [4] and Li et al. [5] found that optimizing of
signal timing at intersections will have positive significance
for reducing energy consumption and emissions generated
by vehicles passing through intersections. However, as in the
previous analysis, the research conclusions of the work of
Liao and Machemehl [1], Liao [2], Zhang et al. [4] and Li
et al. [5] were all obtained under specific assumptions that
were too ideal, resulting in certain deficiencies. In addition,
in the previous research process, the analysis of the emis-
sions characteristics of electric vehicles at signalized inter-
sections and their impact on signal timing was ignored.
Therefore, in this section, considering the mixed driving en-
vironment of fuel vehicles and electric vehicles, we analyze
the signal timing of signalized intersections from the per-
spective of reducing vehicle CO2 incremental emissions
while emphasizing the influence of the road section speed
and mixed proportion of electric vehicles.
Because different types of intersections have different ap-

proach components, the method in this paper needs only to
consider the different approaches separately, and then the
comprehensive calculation can realize the estimation of ve-
hicle CO2 emissions for the whole intersection, with no spe-
cial requirements for the type of intersection. Therefore, this
paper chooses a more common intersection as the following
research case, and the intersection geometry is shown in
Fig. 1. It should be noted that the car-following model is
used to simulate the vehicle driving trajectories at the inter-
section in this paper. To simplify the analysis process, the
simulation method of the car-following model for the driv-
ing trajectories of conflicting traffic flow at the intersection
is not involved. Therefore, the model proposed in this paper
is not applicable for estimating the CO2 emissions of traffic
flow in each direction under a conflicting environment.
As shown in Fig. 1, lanes 1, 4, 6 and 9 are the south, east,

north and west straight vehicle inbound approaches, respect-
ively; lanes 2, 5, 7 and 10 are the south, east, north and west
right-turning vehicle inbound approaches, respectively; and
lanes 3 and 8 are the east and west left-turning vehicle in-
bound approaches, respectively. In actual traffic, to improve
the traffic efficiency of signalized intersections, the right-turn
approach is not controlled by a signal in most cases. There-
fore, in the subsequent analysis process of this paper, the
CO2 emissions of vehicles turning right at the intersection
are not considered; only the CO2 emissions of vehicles

arriving in intersection lanes 1, 3, 4, 6, 8 and 9 are analyzed,
and then the signal timing of the intersection is realized by
integrating the CO2 emissions of vehicles in different lanes.

5.1 Objective function of the signal timing model
The mathematical model of the objective function should be
determined first during signal timing. Although the incre-
mental emission models of fuel vehicles and electric vehicles
determined in section 4 have the same model structure, the
explanatory variables and their coefficients in the different
models are not the same. Therefore, in an environment of
mixed traffic of fuel vehicles and electric vehicles, when cal-
culating the CO2 emissions generated by the traffic flow
passing through the intersection, it is necessary to calculate
the average CO2 emissions of fuel vehicles and electric vehi-
cles according to the CO2 incremental emissions models of
fuel vehicles and electric vehicles in section 4, respectively.
Then, based on the mixed proportion of fuel vehicles and
electric vehicles, the sum of the CO2 incremental emissions
generated by the traffic flow in the lanes is determined, and
the average vehicle CO2 incremental emissions of the whole
intersection are calculated by combining the traffic flow in
different lanes. Under the condition that the mixed propor-
tion of electric vehicles in the lanes is α, the average CO2 in-
cremental emissions of the intersection in a signal cycle are
calculated as follows:

Z ¼

Xn
i¼1

qi 1 − αð ÞIAfei þ αEAfeið Þ
Xn
i¼1

qi

ð17Þ

In Eq. (17), i denotes the intersection approaches, n is
the number of controlled approaches at the intersection,
qi is the vehicle arrival rate of the i th approach, and IAfei
and EAfei represent the average CO2 incremental emis-
sions of fuel vehicles and electric vehicles in the i th ap-
proach, respectively, which can be determined by Eq. (16).

5.2 Constraint conditions of the signal timing model

(1) Constraint of the saturation level

In the previous analytic process, the research object
was the unsaturated intersection. To ensure the validity
of the model analysis, the saturation of the intersection
approach should be considered when optimizing signal
timing. In this model, the saturation of each approach
should meet the requirement of xi < 0.9.

(2) Constraint of the signal cycle

In traffic control, the signal cycle should be flexibly
controlled in accordance with traffic flow. Generally,
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when the traffic flow is low, the signal cycle is set
short. However, if the signal cycle is too short, vehi-
cles and pedestrians cannot cross the intersection
safely. When the traffic flow is high, to improve the
traffic capacity of the intersection, the signal cycle is
set relatively long. However, if the signal cycle is too
long, it will lead drivers and pedestrians to attempt to
run the red light. Therefore, to implement traffic con-
trol scientifically, research has shown that the signal
cycle should meet 15k ≤ C ≤ 200, where k is the num-
ber of signal phases [34, 36].

5.3 Establishment and solution of the signal timing model
Based on the above analysis, the signal timing model is
established under specific constraints as follows:

min Z ¼

Xn
i¼1

qi 1 − αð ÞIAfei þ αEAfeið Þ
Xn
i¼1

qi

ð18Þ

xi < 0 ð19Þ
15k≤C≤200 ð20Þ

Lþ
Xk
j¼1

g j ¼ C ð21Þ

where L = 3k is the lost time of the signal cycle. Equation
(18) minimizes the objective functions of the signal tim-
ing model, Eq. (19) is the constraint of the saturation
level per intersection approach, Eq. (20) is the constraint
of the signal cycle, and Eq. (21) constrains the sum of
the signal lost time, with the green time of each phase
equal to the signal cycle.
Considering that the optimization model includes a

total of k decision variables, including the signal cycle
and green light time of different signal phases, and the
range of different variables is also limited, the enumer-
ation method used to solve the model for the quality
and efficiency of solution can thus be guaranteed.

5.4 Case study
When the road section speed varies, the CO2 incremental
emissions generated by vehicles passing through the inter-
section will be different. To explain the influence of the
road section speed on the optimal signal timing consider-
ing vehicle CO2 incremental emissions, the road section

Fig. 1 Geometric configuration of the intersection

Zhao et al. European Transport Research Review            (2021) 13:5 Page 8 of 15



speed of vehicles is considered in the case study process.
In addition, from the analysis of the CO2 incremental
emission models of fuel vehicles and electric vehicles, it
can be seen that the different mixed proportions of elec-
tric vehicles will lead to differences in the average CO2

emissions of vehicles at intersections. Therefore, this
paper considers the intersection shown in Fig. 1 as a case
study, in which the vehicle arrival rate and saturation flow
rate of each approach are shown in Table 1. It is assumed
that the road section speeds of the intersection approach
are 10, 12 and 14m/s and the mixed proportions of elec-
tric vehicles are 0, 0.5 and 1. Different traffic situations
comprise different road section speeds and different
mixed proportions of electric vehicles. The enumeration
step size of the signal cycle and green light time of each
signal phase are 1 s when solving the model, and a smaller
enumeration step size can guarantee the final solution
quality. The results of the model solution under different
traffic situations are shown in Table 2.
Table 2 shows that the optimal objective function values

under different traffic situations are not the same due to
the influence of the road section speed and the mixed pro-
portion of electric vehicles. According to different traffic
situations, to minimize the CO2 incremental emissions of
vehicles at intersections, there are certain differences in
the signal cycle and green light time of each phase from
the model solution. The comparison of timing results
under different traffic situations is shown in Fig. 2.
From Fig. 2, we can see that when the road section

speed is low, the signal cycle and green light time of each
phase from the model solution are relatively short, and
when the road section speed is high, the signal cycle and
green light time of each phase will increase. It can be seen
from the analysis of the causes that for both fuel vehicles
and electric vehicles, when the road section speed of the
vehicle is high, the CO2 incremental emissions generated
by the vehicle experiencing a track change will increase
accordingly. To reduce the total CO2 emissions of the
intersection, the signal cycle and the green light time of
each phase calculated by the model will increase, although
the vehicle delay will increase, and the vehicle stop rate
will be relatively reduced, so the CO2 incremental emis-
sions generated in the processes of acceleration, deceler-
ation and idling can be effectively balanced. Additionally,
because the proportion of CO2 emissions generated dur-
ing the idling period of electric vehicles among the total

emissions is less than that of fuel vehicles through the
analysis of energy consumption and the emissions charac-
teristics of fuel vehicles and electric vehicles, the signal
cycle and green light time of each phase calculated by the
model will increase with an increase in the mixed propor-
tion of electric vehicles. Although the CO2 emissions gen-
erated during the idling period of vehicles increase, this
increase can effectively reduce the increase in CO2 emis-
sions caused by acceleration and deceleration.
It can be seen from the above analysis that, according

to different situations, the signal timing model compre-
hensively considers different traffic conditions, which
will effectively balance the CO2 emissions generated by
vehicles during the acceleration, deceleration and idling
stages to effectively reduce the average CO2 emissions of
vehicles at the intersection. It shows that the signal tim-
ing based on the vehicle CO2 emissions is different from
the signal timing based on control delay or stop rate.
Then, we compared the changes in vehicle delay and
stop rate under different traffic conditions when the
CO2 emissions of vehicles are at a minimum. The com-
parison results are shown in Figs. 3 and 4, respectively.
Based on existing achievements, when the vehicle average

control delay and stop rate are considered the objective
functions to optimize the signal timing, the timing results
cannot be affected by the road section speed and the mixed
proportion of electric vehicles, indicating that the optimal
delay and stop rate of all traffic situations in this paper are
consistent. It can be seen from Figs. 3 and 4 that the vehicle
delay and stop rate under different traffic conditions is
changed under different traffic conditions when the CO2

emissions of vehicles are at a minimum, indicating that, for
the same traffic situation, it is difficult to guarantee the sim-
ultaneous optimization of vehicle CO2 emissions, delays
and stop rates during signal timing, and it is necessary to
have signal timing for intersections from the perspective of
vehicle CO2 emissions. In addition, we can see from the
comparison of delay and stop rates under different traffic
conditions in Figs. 3 and 4 that when the mixed proportion
of electric vehicles remains unchanged, with the increase in

Table 1 Vehicle arrival rate and saturation flow rate of each
approach
Signal phase 1 2 3

Approach 1 6 3 8 4 9

Vehicle arrival rate (pcu/h) 280 280 350 350 480 480

Saturation flow rate (pcu/h) 1670 1670 1600 1600 1780 1780

Table 2 Timing results of the intersection in different traffic
situations
Traffic situations vol α C (s) g1 (s) g2 (s) g3 (s) Emissions (g)

1 10 0 66 15 19 23 46.2238

2 0.5 70 16 20 25 27.9984

3 1 87 20 26 32 9.5688

4 12 0 73 17 21 26 51.3620

5 0.5 78 18 23 28 31.3029

6 1 107 25 32 41 10.8897

7 14 0 78 18 23 28 56.0918

8 0.5 85 20 25 31 34.3648

9 1 118 28 36 45 12.0676
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vehicle speed (Fig. 3), the vehicle delay corresponding to
the optimal timing result of vehicle CO2 emissions as
optimization function will increase, and the stop rate will
decrease. When the road section speed remains unchanged,
with an increase in the mixed proportion of electric vehicles
(Fig. 4), the vehicle delay corresponding to the optimal tim-
ing results of vehicle CO2 emissions will increase, while the
stop rate will decrease. Thus, the conclusion can be drawn
from the above analysis that the timing parameters of inter-
sections should be optimized from the perspective of min-
imizing vehicle CO2 emissions, which essentially achieves a
comprehensive consideration of vehicle control delay and
stop rate, and with an increase in road section speed and
the mixed proportion of electric vehicles, the equilibrium
effect of vehicle control delay and stop rate will be more

obvious, providing a scientific reference for the comprehen-
sive evaluation of stop rate and delay when conducting
multiobjective timing optimization at signalized
intersections.

6 Conclusion and discussion
Due to changes in the speed trajectory (complete stop and
incomplete stop), the CO2 emissions generated by vehicles
passing through an intersection are increased. In this paper,
the CO2 incremental emissions models of fuel vehicles and
electric vehicles are established from the perspective of re-
gression statistics according to the stop rate and control
delay of the approach. The statistical model of CO2 incre-
mental emissions of fuel vehicles and electric vehicles is de-
termined using SPSS statistical software to test different

Fig. 2 Comparison of the timing results under different traffic situations. a Comparison of the timing results of different road section speeds with
the same mixed proportion of electric vehicles. b Comparison of the timing results of different mixed proportions of electric vehicles with the
same road section speed

Fig. 3 Comparison of vehicle delays and stop rates at different road section speeds with the same mixed proportion of electric vehicles. a
Comparison of vehicle delay. b Comparison of vehicle stop rate
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polynomials of the stop rate and control delay, and the
adjusted R2 values of the statistical models of fuel vehi-
cles and electric vehicles are both 0.932. The results
show that it is more reasonable to establish the model
from the perspective of regression statistics according
to the stop rate and control delay. In addition, to ren-
der the statistical model established in this paper more
generally, the incremental emissions model considering
the road section speed is further given. Through SPSS
analysis, the adjusted R2 values of the incremental
emission statistical models of fuel vehicles and electric
vehicles considering the road section speed are 0.916
and 0.899, respectively. This outcome shows that the
estimation accuracy of the statistical model can still be
guaranteed under the premise of broadening the appli-
cation scope of the model.
Based on the CO2 incremental emissions model pro-

posed in this paper, an intersection signal timing model
considering vehicle CO2 emissions is established. Under
the conditions of different road section speeds and a
mixed proportion of electric vehicles, the case study
shows that the optimization model can solve the optimal
timing scheme with the minimum CO2 incremental
emissions according to the different road section speeds
and mixed proportions of electric vehicles. It is found
that the solution is essentially a comprehensive consider-
ation of vehicle control delay and stop rate, which can
effectively balance the CO2 emissions generated during
the acceleration, deceleration and idling stages. The ana-
lysis results also show that the vehicle CO2 incremental
emissions, control delay and stop rate cannot be guaran-
teed to be optimal simultaneously, nor can the time
optimization for signal intersections from the perspec-
tive of CO2 incremental emissions, which is essentially

comprehensive consideration of vehicle control delay
and stop rate under different traffic conditions.
In this paper, the CO2 incremental emissions model

of vehicles at an intersection approach is established
from the perspective of regression statistics, and the sig-
nal timing analysis of intersections is realized based on
this model. The research results of this paper can pro-
vide a good idea for the estimation of vehicle emissions
at intersections and on urban road networks and can
also provide a certain reference for the optimization of
urban traffic control. However, this paper establishes
the model based on simulation data. Although this
method can fully cover vehicle emissions under differ-
ent traffic conditions, the simulation results cannot fully
describe actual traffic phenomena. In future work, we
will gradually collect the CO2 emissions data of vehicles
at signalized intersections and perfect the incremental
emissions model proposed in this paper. Additionally,
we will continue to analyze the timing optimization
methods of a single intersection, coordinated control of
the main lines of communication and regional collab-
orative control from the point of view of reducing ve-
hicle CO2 emissions. In addition, with the development
of intelligent transportation systems and autopilot tech-
nology, vehicles with different cruise control modes will
become increasingly popular. The impact on vehicle
CO2 emissions when a vehicle passes through an inter-
section in different driving modes deserves further
study. In the future, we will also analyze the CO2 emis-
sions generated by vehicles with different control modes
passing through intersections and constantly improve
the vehicle CO2 incremental emissions model based on
the analysis results so that the research results of this
paper are more reasonable and applicable.

Fig. 4 Comparison of vehicle delays and stop rates of different mixed proportions of electric vehicles with the same road section speed. a
Comparison of vehicle delay. b Comparison of vehicle stop rate
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7 Appendix

Table 3 Average emissions rates of CO2 of fuel vehicles in different specific power bins

Specific power bin
(kW·ton− 1)

Emissions rate
(g·s− 1)

Specific power bin
(kW·ton− 1)

Emissions rate
(g·s− 1)

Specific power bin
(kW·ton− 1)

Emissions rate
(g·s− 1)

VSP < − 2 1.543686 7≤ VSP < 10 3.957732 23 ≤ VSP < 28 7.065985

−2≤ VSP < 0 1.604406 10≤ VSP < 13 4.752012 28 ≤ VSP < 33 7.617703

0≤ VSP < 1 1.130833 13≤ VSP < 16 5.374221 33 ≤ VSP < 39 8.322442

1≤ VSP < 4 2.386260 16≤ VSP < 19 5.940051 39 ≤ VSP 8.475028

4≤ VSP < 7 3.210249 19≤ VSP < 23 6.427506 –

Table 4 Relevant parameters for the simulation of electric vehicle emissions

Parameters Symbols Values Parameters Symbols Values

Vehicle mass m 1400 kg Air density ρa 1.207 kg/m3

Coefficient of rolling resistance CR 0.0135 Mass factor εi 0.1

Acceleration of gravity g 9.81 m/s2 Energy efficiency of the vehicle power system ηpow 0.78

Road gradient α 0 0 Power of vehicle auxiliary components P0 750 W

Aerodynamic drag coefficient CD 0.35 Charging efficiency of electric vehicle ηgb 0.97

Frontal area of the vehicle A 1.91 m2 CO2 emissions factor of power grid EerCO2 452.867 g/kWh

Table 5 Simulation conditions in the process of data acquisition

Relevant
indices

Change range and step length Setting remarks

Vehicle
arrival
rates

Change range: 250 pcu/h-750 pcu/h;
Step length: 10 pcu/h.

(1) Under-saturated intersection is considered the research object.
(2) Vehicle arrival rates in the range of 250–750 pcu/h can cover most of the
variation range of vehicle arrival rates at urban intersections.
(3) Signal cycle in the range of 30–200 s can cover most of the variation range
of signal cycles at urban intersections.
(4) Small simulation step length can cover almost all traffic situations; a large
number of simulation data can ensure the accuracy of the model.

Signal
cycle

Change range: 30 s–200 s;
Step length: 5 s.

Green
signal ratio

Upper bound: 0.8;
Lower bound: determined according to saturation of
the intersection approach less than 0.9;
Step length: 0.05.
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Table 6 Regression coefficient of the statistical model of CO2 incremental emissions of fuel vehicles and electric vehicles

Fuel vehicle Electric vehicle

Parameters Values (P-value) Parameters Values (P-value) Parameters Values (P-value) Parameters Values (P-value)

l0, 0 1.3893E+ 01 (0.000) l2, 0 1.8799E+ 02 (0.000) l0, 0 2.3652E+ 00 (0.000) l2, 0 2.4473E+ 01 (0.000)

l0, 1 1.2201E+ 00 (0.000) l2, 1 – l0, 1 -1.2291E-01 (0.000) l2, 1 1.1269E-01 (0.000)

l0, 2 2.7522E-02 (0.000) l2, 2 – l0, 2 9.0985E-03 (0.000) l2, 2 –

l0, 3 −4.3807E-04 (0.000) l2, 3 5.5512E-04 (0.000) l0, 3 −3.0337E-05 (0.000) l2, 3 –

l1, 0 −7.1173E+ 01 (0.000) l3, 0 −8.8988E+ 01 (0.000) l1, 0 −1.3992E+ 00 (0.000) l3, 0 −1.5379E+ 01 (0.034)

l1, 1 −1.9095E+ 00 (0.000) l3, 1 4.2620E-01 (0.000) l1, 1 – l3, 1 –

l1, 2 – l3, 2 – l1, 2 −8.5649E-03 (0.000) l3, 2 1.1612E-03 (0.000)

l1, 3 – l3, 3 −2.6285E-04 (0.000) l1, 3 – l3, 3 2.3111E-05 (0.000)

“-” means that the corresponding polynomial is not involved in the interpretation of the model

Table 7 Regression coefficient of the statistical model considering road section speed

Fuel vehicle Electric vehicle

Parameters Values (P-value) Parameters Values (P-value) Parameters Values (P-value) Parameters Values (P-value)

l0, 0, 0 5.2868E+ 00 (0.000) l1, 0, 0 1.2414E+ 00 (0.000) l0, 0, 0 2.9775E+ 00 (0.000) l1, 0, 0 –

l0, 0, 1 7.2794E-01 (0.000) l1, 0, 1 – l0, 0, 1 5.0576E-01 (0.000) l1, 0, 1 −7.3529E-02 (0.000)

l0, 0, 2 – l1, 0, 2 5.3589E-03 (0.000) l0, 0, 2 – l1, 0, 2 1.3056E-03 (0.000)

l0, 0, 3 – l1, 0, 3 −4.4353E-05 (0.000) l0, 0, 3 −2.4177E-05 (0.000) l1, 0, 3 –

l0, 1, 0 −4.3139E+ 01 (0.000) l1, 1, 0 −4.7234E+ 00 (0.000) l0, 1, 0 −2.8401E+ 01 (0.000) l1, 1, 0 2.4590E+ 00 (0.000)

l0, 1, 1 3.4846E+ 00 (0.000) l1, 1, 1 −4.7815E-01 (0.000) l0, 1, 1 – l1, 1, 1 1.2375E-02 (0.000)

l0, 1, 2 −6.2582E-02 (0.000) l1, 1, 2 – l0, 1, 2 −8.3109E-03 (0.000) l1, 1, 2 −3.9900E-04 (0.000)

l0, 1, 3 4.0231E-04 (0.000) l1, 1, 3 – l0, 1, 3 – l1, 1, 3 −9.1665E-06 (0.000)

l0, 2, 0 −2.0361E+ 01 (0.000) l1, 2, 0 2.5328E+ 01 (0.000) l0, 2, 0 2.8214E+ 01 (0.000) l1, 2, 0 1.8262E-01 (0.004)

l0, 2, 1 – l1, 2, 1 – l0, 2, 1 – l1, 2, 1 –

l0, 2, 2 – l1, 2, 2 2.9694E-03 (0.000) l0, 2, 2 – l1, 2, 2 –

l0, 2, 3 – l1, 2, 3 – l0, 2, 3 7.3183E-05 (0.000) l1, 2, 3 4.2764E-06 (0.000)

l0, 3, 0 – l1, 3, 0 −1.2805E+ 01 (0.000) l0, 3, 0 −1.3939E+ 01 (0.000) l1, 3, 0 −5.7155E-01 (0.000)

l0, 3, 1 1.7337E-01 (0.002) l1, 3, 1 8.9991E-02 (0.000) l0, 3, 1 1.3060E-01 (0.000) l1, 3, 1 –

l0, 3, 2 – l1, 3, 2 −1.0256E-03 (0.000) l0, 3, 2 – l1, 3, 2 –

l0, 3, 3 – l1, 3, 3 – l0, 3, 3 – l1, 3, 3 –

“-” indicates that the corresponding polynomial is not involved in the interpretation of the model
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