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Abstract

We study the problem of making algorithmic statistical inferences about the dynamics of city traffic. Our data is based
on loop detector counts of observed vehicles in various roads in the city of Tampere, Finland. We show that
meaningful correlations can be found between traffic asymmetries at different measurement locations. The traffic
asymmetry is the difference of the traffic counts of the opposite directions of a road. The correlations can be further
quantified by estimating how much they effect on the average values of the traffic asymmetries at the neighbouring
locations. Conditional expectations, both sample and binormal model-based versions are useful tools for quantifying
this effect. The uncertainty bounds of conditional expectations of the binormal model distribution are extremely
useful for outlier detection. Furthermore, conditional expectations of the multinormal distribution model can be used
to recover missing data with bounds to uncertainty.
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1 Introduction
People’s travel behavior is initiated by the need to travel
and then choosing the mode, route and time for trips.
Travel behavior can be expressed in transport planning
and management by origin-destination matrices (OD),
[1]. OD-matrices have generally been estimated based on
travel behavior surveys and interviews. Loop detectors,
for example, allow short-term estimation by using real-
time data on the traffic situation. The accuracy of traffic
information is a key factor for road users’ decisionmaking.
Information on traffic dynamic predictions is benefi-

cial in traffic management centers (TMC) and operations.
Especially, with the development of Cooperative Intelli-
gent Transport Systems (C-ITS) and automated and con-
nected vehicles, traffic could be further optimized and
rerouted based on the current traffic situation. When a
risk for a congestion arises, the vehicles could be rerouted
either automatically or by providing real-time route infor-
mation to the drivers and vehicles [2].
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The motivation of this work is to provide a statistically
robust algorithmic framework for automated analysis of
loop detector data. This framework is applied to loop
detector counts of observed vehicles at various crossroads
in the city of Tampere, Finland. In our case, the traffic
counts are easily available data since non-intrusive loop
detectors are widely deployed, for example, near traffic
lights. There are more than 80 signalized intersections in
the city of Tampere. Counts of observed vehicles are, in
principle, unbiased as noted in Hazelton and Parry [3].
Finally, there are usually no privacy issues, therefore traf-
fic counts can bemade available as open data. Thus, traffic
count data are worth utilizing even when other data is the
primary data.
The fundamental observation in our work is that the

traffic counts at two different, sufficiently close, mutually
relevant locations in the same 15-minute time window
are correlated. This is because some vehicles are detected
in the two chosen places and are included in the counts
at these locations. If the correlations were only due to
the detection of the same vehicles, they would be linearly
proportional to the average amount of the common vehi-
cles. The real situation turned out to be more complicated
since the traffic volumes increase or decrease everywhere
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approximately simultaneously according to the time of the
day. There is a need to extract a detectable traffic stream
from the general traffic activity.
One way to identify detectable traffic streams is to

observe the asymmetry in the traffic streams in the oppo-
site directions of a road. We will show that positive results
can be achieved with statistically robust methods; the cor-
relations can be found and further quantified by estimat-
ing how much they affect on the average values of traffic
asymmetries at neighboring locations. Conditional expec-
tations, both the sample version and the analytical version
based on the binormal model, were found to be useful
tools for quantifying this effect. The binormal distribution
is a simple and transparent model for the observed traffic
asymmetry data and its parameters can be estimated with
well-known robust methods. Its application in this con-
text is justified by the Central Limit Theorem. The most
useful feature of the conditional expectation computed
from binormal model is that the uncertainty of it can be
quantified explicitly and efficiently.
The contributions of this paper are the following. First,

we change the focus from traffic counts to asymmetry and
volume, and use (multi)normal distributions as a baseline
model for them.We estimate themultinormal parameters,
including correlation, in a robust manner. We show three
applications of the proposed approach. First, the correla-
tion matrices of the asymmetries are used to restrict the
solution space of the OD matrix estimation problem. Sec-
ond, the conditional expectations of asymmetries are used
further to quantify how much asymmetry in one location
can be assumed to effect on the asymmetry in another
location. Third, the multinormal model can be used to
reconstruct missing data according to the traffic dynamics
of nearby locations. Especially, our proposed reconstruc-
tion can be equipped with confidence intervals. While our
research problem set-up has similarities with, for exam-
ple, [4], our contribution is complementary to existing
methodology and we focusmore on automated and robust
methods.
This paper is structured as follows. First, in Section 2

we discuss briefly the related work. A brief description of
the data is given in Section 3. Our suggested methodol-
ogy is explained in Section 4 and example applications of
the methodology are shown in Section 5. Conclusions are
drawn in Section 6. Additionally, for the convenience of
the reader, the formulae from the binormal and trinormal
models for the conditional expectations are presented in
the Additional file 1.

2 Related work
Origin – destination (OD) traffic volumes in a transporta-
tion network are valuable information for traffic manage-
ment and development. However, the estimation of the
OD traffic volumes is a challenging task due to various

observability and identifiability problems, see [5]. Shao
et al. [6] reviews different models and assumptions uti-
lized in the literature in the context of estimating OD pairs
with day-to-day traffic counts. Castillo et al. [7] discuss
in detail traffic random variables and models. In the OD
estimation context Hazelton [8] proposed a multivariate
normal model for the link counts, based on the underly-
ing overdispersed Poisson process, in order to increase the
model flexibility with a moderate amount of parameters.
He applied the model in a Bayesian estimation framework
with the real data of 14 days. Lam et al. [9] modelled
hourly flows and flow increments in the city of Hong
Kong by normal distributions. In the context of traffic
equilibrium assignment problems Shao et al., [10] utilized
independent normal distributions for OD flows. Later
Duthie, Unnikrishnan andWaller, [11] utilized a truncated
multivariate normal model for OD pairs and addressed
dependencies in OD demands. Sun, Zhang and Yu, [4]
used mixtures of multinormal models and causal Bayesian
networks for short-term traffic forecasting.
Most of the conventional OD demand estimation mod-

els utilize only the first-order statistical properties, but
using the second-order property of the traffic counts can
alleviate the difficulty of identifiability, [6] and [12]. How-
ever, the use of the second-order statistics brings the
challenge of separating the correlation due to traffic flows
from the general correlation due to increased/decreased
activity during different hours of the day. Indeed, the
flow-induced correlation - the key information in OD
matrix estimation - can easily be hidden/overdriven by
the correlation due to other reasons than the traffic flows.
Therefore, OD demand estimation benefits from prelim-
inary studies of data that can identify potential flows
betweenOD pairs in a robust way. Ignoring the covariance
between different OD pairs leads to an overestimation of
the variance of traffic demand, [6], Section 4.1.4.
We foresee that combinations of various methods

yield the best outcomes in short-term traffic predic-
tions. Thus, we review shortly also recent develop-
ments using machine-learning techniques. Considering
machine-learning methods, both parametric and non-
parametric approaches have been applied in the literature.
Moussavi-Khalkhali and Jamshidi, [13] used similar loop
detector data and they attempt to predict traffic flows with
the use of Multi-Layer Perceptrons and Principal Compo-
nent Analysis. Recently, the most prominent approaches
have revolved around Bayesian Networks and, above all,
Neural Networks. Fusco et al. [14] use mobile GPS-based
data on travel speeds and concentrate on the application
of Bayesian Networks and Neural Networks to resolve
short-term traffic predictions. Morris, Antoniades and
Took [15] have car accident data and combine Bayesian
Networks andNeural Networks specifically for the predic-
tion of traffic accidents. Wang et al. [16] have traffic flow
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data and target the challenge of short-term traffic predic-
tion through the utilization of ensemble methods accom-
panied with Neural Networks to improve the robustness
and stability of their predictions. Tang et al. [17] attempt
to improve their predictions of traffic information by
employing a Fuzzy Neural Network accompanied with
k-means clustering and Takagi-Sugeno fuzzy rules.

3 Description of the data
The data we use consist of the number of vehicles per
time window observed in a few roads in the centre of
the city of Tampere, Finland. The data was derived from
traffic loop detectors embedded in the road surface. The
loop detectors are connected to sensors, registering the
amount of vehicles passing the location with the change
in inductance in the loop. The sensors detect a vehicle
by comparing the loop’s inductance to a pre-set thresh-
old. The original data produced by the loop detectors has
the unit vehicles/hour. The data is registered irregularly
in a few minute intervals. The data were preprocessed to
have constant 15-minute intervals, and are interpreted as
the number of cars per a 15-minute time slot. This inter-
pretation is roughly correct, but there have been some
interpolations and averaging in the process. The data was
prepared by the company InfoTripla (www.infotripla.fi).
InfoTripla also provided precise and valuable information
about traffic conditions like speed limits, locations of the
main construction works, parking lots and shopping areas
in Tampere during the years 2011-2017.
Figure 1 shows a part of the center of the city of

Tampere, Finland, surrounded by the six measurement
points located at Tampella, Satakunnansilta, Hämeen-
silta, Ratina, Pispala and Santalahti. There is a closed
area with these six measurement points at the boundary.
In this paper, the bounded city area will be referred to
as the area of interest (AoI). These measurement points
consist of loop detectors in both directions; therefore the
entering and exiting directions are separated.
These six measurement points should have captured

practically all vehicular traffic that entered or exited the
bounded area during the four-year data collection period
2011 – 2014. The availability of traffic count data from
Ratina was rather limited due to construction works,
instead we were forced to use data collected from nearby
locations, Satamakatu and Tampereen valtatie. Ratina is
in between these two alternative locations and we know
that the traffic characteristics at Ratina had to be simi-
lar to them. These alternative non-optimal locations did
not capture all of the traffic; we know that, on long-
term average, approximately 1-2 vehicles/minute were
non-detected.
Due to the geographical location of the AoI there is

some amount of east-west directed through-traffic. There
are only few main roads or streets inside the AoI.

4 Methodology
In this section, we describe our methodologies for the
automated analysis of traffic counts. We start with some
notations.
The notations x(j)

i and y(j)
i are used for the number of

vehicles per the i:th time slot and at the location j, j =
1, . . . , 6. The x(j)

i always indicates the number of vehicles
that enter the AoI and y(j)

i always refers to exiting vehi-
cles. Since all locations are handled in a similar way, the
location index (j) is sometimes dropped in the notation
unless different locations are considered simultaneously.
The time of the i:th slot is denoted by ti with the inter-
pretation that the time stamp represents the end time
of the slot. For example, ti = 16 : 15 refers to the
number of vehicles observed at the given day between
16 : 00 − 16 : 15.

4.1 Transformation of the data
At each location j we study the transformed data

(
x(j)
i , y(j)

i

)
�→

(
x(j)
i − y(j)

i , x(j)
i + y(j)

i

)
(1)

The transformation (1) is bijective
{
xi + yi = vi
xi − yi = zi

if and only if
{
xi = (vi + zi)/2
yi = (vi − zi)/2

so there is no loss of information in this step. The differ-
ence zi = xi − yi is called the (traffic) asymmetry and the
sum vi = xi + yi is called the (traffic) volume. Since xi ≥ 0
and yi ≥ 0 the inequality −yi ≤ zi ≤ xi always holds. Due
to limited space, in this paper we concentrate on applica-
tions of asymmetry but the samemethodology framework
can be applied to volumes as well. Figure 2 shows a scatter
plot example of the transformation (1). The data in Fig. 2
consist of the first 10 000 available pairs

(
x(j)
i , y(j)

i

)
from

location j = Tampella.
If z(j)i = x(j)

i − y(j)
i > 0, the number of the vehicles inside

the AoI increased during the time slot ti at location j and,
if z(j)i < 0, the number of the vehicles inside decreased.
Thus, asymmetry is a measure of excess/shortfall at loca-
tion j during the time slot ti when the AoI is considered as
a reservoir of vehicles. If z(j)i ≈ 0 then, no matter how big
the volume x(j)

i + y(j)
i is, the total of the vehicles inside AoI

is not essentially affected by the traffic at j. Another justi-
fication behind this transformation is explained in Section
4.4. In [18] the asymmetry and the volume transform were
utilized with a similar data but in a different problem
set-up.

4.2 The Normal distribution as a baseline model
The empirical distributions of the asymmetries zi (and
volumes) are typically unimodal, symmetric, light tailed
and well approximated by the normal distribution. This is
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Fig. 1 Locations of the measurement points. The AoI is located on the isthmus between two large lakes. The red dots without a name indicate
measurement points inside the AoI

not a coincidence since the observed asymmetry values zi
at any location j and at any time ti can be considered as
sums of large number of possibly slightly correlated ran-
dom variables with bounded small variances. The Central
Limit Theorem (CLT) dictates that the distributions of zi
should be approximately normally distributed [19]. There-
fore, the normal distribution will be used as a baseline
model for the asymmetries.
In an automated analysis, the parameters of the normal

distribution model must be estimated in a robust manner.

The reason for this is that the CLT-based argument for the
normal distribution model covers only non-mixed cases.
The observed data includes also observations that are
mixed in the sense that any incident that restricts traffic
anywhere nearby a loop detector can increase or decrease
the number of observed vehicles in the detector. Thus,
the observed data is a mixture of at least two qualitatively
different sources of randomness and the use of ordinary
sample means and sample variances is not justified for
data from contaminated distributions, see [20] for further

Fig. 2 A visual example of the transformation (1)
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reasons. The next section discusses some technical details
about robust estimation used in the proposed framework.

4.3 Robust estimation of the parameters of the Normal
distribution model

Robust statistics is a well-developed area of statistics. In
[20] robust estimators are heuristically defined as fol-
lows. Robust estimators should be statistically efficient at
the assumed model, stable in the sense that small devia-
tions in the model assumptions should impair the perfor-
mance only slightly, and they should have high breakdown
point meaning that somewhat larger deviations from the
assumed model do not cause a catastrophe (see Section
1.2 in [20]). Any chosen robust estimator is always a com-
promise of these properties, including also conceptual
clarity and computational issues.
The sample median is a well-known robust estimate of

the mean μ of the normal distribution. If the data vary
symmetrically around μ it is also reasonably efficient.
Well-known robust estimators of the scale parameter σ

(standard deviation) include the interquartile range (IQR)
that has the following justification. If �μ,σ is the cumula-
tive distribution function (CDF) of the normal distribution
N

(
μ, σ 2) and �0,1 is the CDF of N(0, 1), then the ratio of

IQRs of these distributions is

�−1
μ,σ (0.75) − �−1

μ,σ (0.25)
�−1

0,1(0.75) − �−1
0,1(0.25)

= σ ,

and, since�−1
0,1(0.75)−�−1

0,1(0.25) ≈ 1.3489795, an estima-
tor of the σ is just IQRn/1.3489795 where IQRn = Q3−Q1
is the sample IQR. The sample IQR is the difference of
the 3rd sample quartile Q3 and the 1st sample quartileQ1.
Again, symmetric variation around the mean is benefical
for the efficiency of this simple estimator. The 2nd sample
quartile Q2 is the sample median.
Conceptually three robust values, the sample quartiles

Q1,Q2 andQ3, provide robust estimates of the two param-
etersμ and σ of the normal distribution, if the assumption
of the normal distribution is valid and the data typi-
cally vary symmetrically around the mean. Moreover, the
quartile skewness, defined as

Q3+Q2
2 − Q2
Q3−Q1

2
,

can be used to indicate lack of symmetry in the quartile
scale. In practice, it means that the fitted normal distri-
bution typically fits the body of the empirical distribution
well. There is deliberately no attempt to try to fit the
normal model to the tails of the empirical distribution.

4.4 Robust estimation of the correlation
To understand the correlation (association, dependence)
between the asymmetries of two locations the Spearman’s

correlation coefficient is used as a complementary tool
to the ordinary linear correlation coefficient. See [21] for
the definition and Section 8.3 of [20] for the proper-
ties of the Spearman’s correlation. Spearman’s correlation
ρS is a measure of monotone correlation. If the data are
possibly contaminated, it is better suited for the data
analysis than the linear correlation coefficient ρ. The
sample version of ρS is denoted as rS and it is more
robust against outliers than the sample version r of ρ.
Linear correlation is a special case of monotone correla-
tion and if linear correlation is true, the usually rS ≈ r.
There is a negligible bias towards 0 in rS in that case
and rS has slightly larger variance than r. In the binormal
model case, this is straightforward to test by simulations.
If the assumption of linear correlation is not true then
the sample value r can be misleading while the sample
value rS is meaningful as long as the monotone corre-
lation, a concept with much wider extent, is plausible.
As long as we do not know whether there are bivariate
outliers or contamination in the data we trust more on
rS than on r.
The simplest assumption for the main cause of the cor-

relation is that the same vehicles are observed in two
places, first in and then out. The 15-minute slot is suffi-
ciently long so that a vehicle can enter and exit the AoI
during the same slot at any two locations j and k. This spe-
cific kind of causality is the target to estimate. Note that
an alternative explanation, in which totally different vehi-
cles enter than exit, is always possible. However, being a
significant and regular phenomenon such a coordinated
common behaviour would require a more complicated
explanation.
However, there are several other causes for the corre-

lation between any two traffic streams. Other causes for
correlation include such effects which appear in daily pro-
file at every measurement point. For example: silent hours
at night 0:00-06:00, rush hours around 8:00 and 16:00 dur-
ing the working days and relatively silent moment just
before early lunchtime 11:00 during the working days. In
these cases the amounts of observed vehicles per slot are
either increasing or decreasing everywhere and this shows
up as always positive correlation in pairs like

(
x(j)
i , x(k)

i

)
,(

y(j)
i , y(k)

i

)
and

(
x(j)
i , y(k)

i

)
. This happens even in the cases

in which the amount of the same cars in the two locations
and in the directions in question must be practically zero.
With the 15 minute granularity these effects are practi-
cally simultaneous. Ideally, our causal assumption can be
expected to produce linear correlations. However, this is
not necessarily true for the other causes. Either the above
listed other common causes typically increase or decrease
traffic amounts everywhere so that their combined effect
should still be monotone. The use of rS to complement r
is even more justified by this.
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Another justification for the transformation (1) can now
be expressed as follows: while the other common causes
of correlation affect both xi and yi, the effect of other
common causes diminishes when the difference xi − yi is
considered and increases when the sum xi + yi is consid-
ered. That is, the differences xi − yi are less affected by
the other common causes and they are easier to use when
the assumed causal cause of the correlation is studied.
Therefore, we use values

rS
(
x(j)
i − y(j)

i , x(k)
i − y(k)

i

)
(2)

with different locations j and k.
The negative correlation in (2) tells something about

the dynamics of the traffic. For example, if there is an
asymmetric burst of traffic coming in at Tampella then,
simultaneously, there is likely an asymmetric burst of traf-
fic going out at Santalahti and vice versa. This holds true
independently of the time of the day or the day of the
week. It is plausible to assume that, whenever significantly
non-zero, this correlation is caused by typically detect-
ing some amount of the same vehicles at these locations
during the same time slot. In [18] the application of asym-
metry and volume was in a different context and the
directions were chosen so that a positive correlation was
targeted.
The correlation matrices can be estimated between the

asymmetries of different locations. Moreover, the Spear-
man’s rank correlation test, see [21], can be added to the
estimation process so that the null hypothesis of inde-
pendence of asymmetries between two locations can be
tested. If there is no evidence to reject the null hypothe-
sis ρS = 0, that is, rS ≈ 0 with the large enough sample
size n, then we can set rS = 0. The correlation matrix is
symmetric with diagonal values 1.

4.5 Empirical conditional expectation
For integer-valued random variablesU andV, and an inte-
ger a with P{V = a} > 0, the conditional expectation
E(U|V = a) can be computed as

E(U|V = a) =
∞∑

u=−∞
u

(
P{U = u,V = a}

P{V = a}
)
.

Analogously to this, assuming thatP{V > a} > 0, define

E(U|V > a) =
∞∑

u=−∞
u
(
P{U = u,V > a}

P{V > a}
)

=
∞∑

u=−∞
u
(∑

v>a P{U = u,V = v}
P{V > a}

)
.

The last formula can be used to compute a sample version
En(U|V > a) as

1
Pn{V > a}

n∑
i=1

ui

(∑
vi>a

Pn{U = ui,V = vi}
)
, (3)

where (ui, vi), i = 1, . . . , n, is the bivariate sample of size n.
The formula for En(U|V ≤ a) is obtained similarly. There
are two sums included and it requires some computa-
tion. The computational complexity isO(n2). The sample
estimates of the joint probability mass function of the
pair (U ,V ) and of the sample CDF of V are needed. The
robustness properties of (3) should improve compared to
if conditioned on the event {V = a}, but this is out of the
scope of this publication.
The sample version (3) is computed for all vmin < a <

vmax, where vmin and vmax are the minimum and max-
imum observed values. Typically n < vmax − vmin so
there is implicit interpolation included in the map a �→
En(U|V > a) since a need not be an observed value. This
map defines a piecewise constant curve. If U and V are
independent, it follows from (3) that En(U|V > a) =
En(U) for all a.

4.5.1 Themultinormalmodel
Given a binormal or trinormal model for asymmetries at
two or three locations, formulae for the conditional expec-
tations (4) and (6) and, especially, their variances can be
computed analytically. These are provided in this section.
The formulae (5) and (7) of conditional variances are
important since they quantify the confidence limits and,
therefore, allow the automatic detection of observations
that do not fit into (multi)normal models.
Linear regression which is based on conditional expec-

tatation E(U|V = a) with multinormal models are
discussed, for example, in Section 4.3 of [22], in Section
11.3 of [23] and Chapters 4 and 7 in [24]. The condition-
ing with an event of type {V > a} is more rare but it
is used at least in [25] in the context of economical self-
selection models. Similar mathematical formulae appear
also in the context of truncated distributions [26–28] since
truncating a distribution is equivalent to conditioning on
an interval.
Assume (Z1,Z2) is binormally distributed with the

mean vector μ = (μ1,μ2), variances σ 2
1 > 0, σ 2

2 > 0 and
correlation −1 < ρ < 1. If a ∈ R, then

E(Z1|Z2 > a) = μ1 + σ1

(
ρ φ(α)

1 − �(α)

)
, (4)

in which, to simplify the notation, we define α = α(a) =
a−μ2

σ2
for all a ∈ R. The formula for the conditional

variance is

Var(Z1|Z2>a)=σ 2
1

[
1+ ρ2α φ(α)

1−�(α)
−

(
ρ φ(α)

1−�(α)

)2]
. (5)
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Assume (Z1,Z2,Z3) is trinormally distributed with the
mean values μi, variances σ 2

i > 0, i = 1, 2, 3 and pair-
wise correlations ρij, i < j. The conditional expectation
E (Z1|Z2 = z2,Z3 = z3) can be computed as

σ1

[
(ρ12 − ρ13ρ23)(z2 − μ2)

(1 − ρ2
23)σ2

+ (ρ13 − ρ12ρ23)(z3 − μ3)

(1 − ρ2
23)σ3

]
+ μ1. (6)

The conditional variance Var(Z1|Z2 = z2,Z3 = z3) can
be computed from

σ 2
1

(
1 − ρ2

12 + ρ2
13 − 2ρ13ρ23ρ12
1 − ρ2

23

)
. (7)

5 Results
5.1 Quantifying correlations of asymmetries
At each location the asymmetries zi turned out to vary
around a non-zero and time-dependent mean. That is, at
each location the long-term average value of the vehicles
that enter the AoI at the location in question is differ-
ent from the long-term average number of vehicles that
exit the area at the same location. It is quite common to
enter and exit the AoI at different locations due to vari-
ous reasons of, for example, travel to work places, schools,
daycare and shopping malls.
The robust methods allow algorithmic detection of

those observed values that do not fit well to the normal
or binormal distribution model. Figure 3 shows examples,
where the asymmetries and volumes of two locations,
Tampella and Santalahti, are illustrated. In the horizontal
and vertical directions, the grid lines area at the estimated
univariate normal model values μi and at the distance σi
from it, that is,μi+kσi, k = −4, . . . , 4. In the bivariate case
also the elliptical quantile curves [24] can be computed,

in Fig. 3 95% and 99% quantile curves are drawn as exam-
ples. At this phase, the correlations are based on rS. The
uni- and bivariate values that do not fit well to the mod-
els can now be algorithmically classified as those points
that are two far away from the model means, univariate or
bivariate cases.
Based on the approach described in Section 4.4 wemade

two correlation matrix models for the boundary location
asymmetries. They correspond to different times of the
week in a coarser granularity than 15 minutes. The values
that do not fit into the normal model are ignored so that
r ≈ rS. For simplicity, the non-zero correlations are cat-
egorized only in granularity of 1/4. First, between 06:00
and 10:00 on weekdays the correlation matrix model is
given in (8)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1
2 0 − 1

2 − 3
4

0 1 0 0 0 0
1
2 0 1 1

4 − 1
2 − 1

2
0 0 1

4 1 − 1
2 − 1

2− 1
2 0 − 1

2 − 1
2 1 1

2− 3
4 0 − 1

2 − 1
2

1
2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

The rows and columns are in the order 1=Tampella,
2=Satakunnansilta, 3=Hämeensilta, 4=Ratina, 5=Pispala
and 6=Santalahti. The afternoon rush hour model of
hours 15:00 - 21:00 on weekdays is presented in (9)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1
2 0 − 1

2 − 1
2

0 1 0 0 0 0
1
2 0 1 − 1

4 0 0
0 0 − 1

4 1 − 1
4 − 1

4− 1
2 0 0 − 1

4 1 1
4− 1

2 0 0 − 1
4

1
4 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)

During the other times the asymmetries at the boundary
of AoI are almost uncorrelated or even independent for
all location pairs j, k = 1, . . . , 6, j 	= k. The correlation

Fig. 3 Visualisation of the outlier detection phase
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matrix models are positive-definite matrices. Due tomany
zeroes we conclude that the effective dimensionality of
traffic asymmetry correlations is smaller than the number
of the measurement points.
We expect the correlation matrices of asymmetries (8)

and (9) should be helpful for OD matrix estimation in
the sense that their information can be used to restrict
the solution space of the OD matrix estimation problem
and, therefore, should improve the identifiability of the
problem.

5.2 Inference about traffic dynamics
We show an example that we expect to be directly helpful
for a TMC operator. In addition, it bringsmore insight and
restrictions to the OD matrix estimation problem. The
idea is to consider the maps

a �→ E

(
Z(j)|Z(k) > a

)
− E

(
Z(j)

)

= E

(
Z(j) − μj|Z(k) > a

)
(10)

whereμj = E(Z(j)), as a function of a. This quantifies how
the asymmetry at the location k affects the expected value
of the asymmetry at the location j, j 	= k; the unit will be
"vehicles". The condition

{
Z(k) > a

}
is the easiest to inter-

pret when a > 0, that is, when the amount of vehicles that
enter AoI at the location k is larger than the amount of
vehicles that exit. We then ask how much this affects to
the expected asymmetry at the location j. It is also easier
to interpret Z(j) − μj since it is balanced in the sense that
E(Z(j) − μj) = 0. In Fig. 4 the vertical axis is this balanced
asymmetry (BA).
Figure 4 shows four examples from Friday, between 8:00

and 8:45 with j = Tampella and k = Santalahti. The
sample version and the model version with 95% confi-
dence intervals are shown together. Obviously, some of
the vehicles that enter at Santalahti during this period,
exit at Tampella, see the map in Fig. 1. Next, write x(k)

i =(
x(k)
i − z(k)i

)
+ z(k)i to emphasize that we first speak of

excess vehicles z(k)i > 0 only. We then assume that the
balanced asymmetry directly indicates the expected num-
ber of those excess vehicles that entered at Santalahti and
will exit at Tampella. The values in the vertical axis with
the minus sign in the balanced asymmetry are interpreted
as the contribution of Santalahti to the expected number
of excess vehicles that exit at Tampella. We can therefore
estimate the proportion of the excess vehicles that enter at
Santalahti and exit at Tampella. Finally, we generalize this
by assuming that this proportion is the same as the pro-
portion of all vehicles x(k)

i that enter at Santalahti and exit
at Tampella at the given time. Thus, from z(k)i > 0 we can
infer properties of x(k)

i .

The model and the sample versions together have some
potential to predict since the model is very fast to com-
pute with updated information. It is possible to pro-
duce the model prediction already before the end of the
15-minute time slot and this, we believe, should be helpful
for a TMC operator. In that application case, the infor-
mation content needs to be expressed in a simple mes-
sage like “An exceptionally large flow of inbound traffic
observed at Santalahti, expected outbound contribution at
Tampella is xx vehicles during the next 15 minutes”.

5.3 Reconstructing missing data
The limited availability of data from Ratina forced us to
consider various methods to reconstruct missing data.
This problem is solvable to some extent with a trinormal
model when applied to the traffic asymmetries and tak-
ing advantage of correlations in the nearby locations. We
show an example that is based on the formula (11) below.
Instead of Ratina we use Pispala in an asymmetry triple

(Pispala, Santalahti, Tampella) = (Z1,Z2,Z3)

as it is possible to compare (11) with true observed val-
ues. We use the observed asymmetries at Santalahti and
Tampella to predict the traffic asymmetry at Pispala and
compare it with the true asymmetry value of Pispala. We
assume that data are not completelymissing, that is, in for-
mula (6) the estimates of the parameters (μ1,μ2,μ3) and
(σ1, σ2, σ3) are available and also the estimates ρ12, ρ13 and
ρ23 are available.
The linear model is

ζ1 = E(Z1|Z2 = z2,Z3 = z3). (11)

The histogram of the distribution of the error ζ1 − z1,
where z1 is the true value in Pispala, was very good, see
Fig. 5 (b). The errors have the median of 0 vehicles and
75% of the predictions satisfy −17 ≤ ζ1 − z1 ≤ 17,
and 95% of the predictions satisfy −37 ≤ ζ1 − z1 ≤ 36.
There were 102 093 triples (z1, z2, z3) available in total.
Since we required that z2 ∈[μ2 − 3σ2,μ2 + 3σ2] and
z3 ∈[μ3−3σ3,μ3+3σ3] so that z2 and z3 are not outliers of
the trinormal model, the prediction was performed 98 949
times. In the remaining 3 144 cases (3% of the triple data)
the predictions may still be good but this occurs merely by
chance.
Figure 5a shows an example of time series view of the

predictions (11). The red curve joins the predictions ζ1
and the black dots are the true values z1. The vertical
short gray lines indicate the interval

[
ζ1 − 2σζ1 , ζ1 + 2σζ1

]
where σζ1 is computed from (7). The gray intervals quan-
tify the uncertainty of the predictions. Under the null
hypothesis that (z1, z2, z3) is a sample from the trinor-
mal distribution, the true value should be in the interval
approximately 95% of cases.
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Fig. 4 Four examples of functions expressed by Equation (10), the sample and the model versions

There are a couple of issues to notice. First, the asym-
metry at Ratina correlates with that of Pispala. If we could
include that correlation into the multinormal model, we
would probably get even better predictions. On the other
hand, it is not meaningful to include any such location in
the multinormal prediction model that does not correlate
with Pispala. The second issue is the ability to quantify

the prediction uncertainty. The third issue is that even
a block of contiguous missing data can be recovered as
long as good estimates of the parameters (μ1,μ2,μ3) and
(σ1, σ2, σ3) are available and the estimates ρ12, ρ13 and ρ23
are available. The main issue we want to emphasize is,
however, the simplicity of the formulas (6) and (7), and of
the trinormal model in general.

Fig. 5 a Examples of the prediction of missing values; b Prediction error distribution
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6 Conclusion and discussion
We have described an algorithmic framework to extract
relevant information about traffic dynamics from short-
term traffic count data in the case where the traffic counts
in the opposite directions are available in two or more
mutually relevant locations. In our case, the traffic counts
were obtained by loop detectors, but any other technol-
ogy can be used as well. Our proposed framework is based
on several basic ideas. First, we selected mutually relevant
locations. By mutually relevant, we mean locations where
asymmetries can be assumed to correlate due to detect-
ing a proportion of the same vehicles at these locations.
Second, we performed the transformation (1) in order
to change the focus to asymmetry and volume, and use
(multi)normal distributions as a baseline model for them.
Third, we estimated the multinormal parameters, includ-
ing correlation, in a robust manner (2). The fourth idea is
the sample version of conditional expectation (3) which is
supported by the model-based estimates with confidence
intervals.
We showed three applications of the proposed

approach. First, the correlation matrices of the asymme-
tries can be used to restrict the solution space of the OD
matrix estimation problem. Since an OD matrix must
be compatible with the information that the correlation
matrix has, the solution space of possible OD matrices is
reduced. In this application, we believe that only the rela-
tive strengths of correlations of asymmetries at different
locations are needed. The stronger the correlations are,
the more restrictions they should provide and the more
helpful they should be. The estimation of the correlation
matrix requires a sufficient amount of data.
Second, the conditional expectations of asymmetries

can be used further to quantify how much asymmetry in
one location can be assumed to affect on the asymmetry in
the another location. We utilized the possibility to model
the joint distribution at different locations by the binormal
distribution. We have chosen a truncation-based method
to acquire a robust and purely algorithmic method to
quantify the effect of the asymmetry at one location
to another correlated location. Since this approach can
potentially predict, and its computation is very fast, it is
expected to be helpful for a TMC operator.
Third, the multinormal model can be used to recon-

struct missing data at one location according to the traffic
dynamics of nearby locations. This approach is clearly
different from using local long-term averages for the
construction of missing data. Especially, our proposed
reconstruction can be equipped with confidence intervals.
When data is used for any kind of decision-making and
some of the data is missing, the most important input for
the decision-making is to quantify the uncertainty due to
the missing data. The only knowledge about the traffic
characterisics of the location of the missing data that was

needed are the parameters μ1, σ 2
1 and mutual correlations

ρ12 and ρ13. In the reconstruction, we assumed availabil-
ity of the historical data but, if no data is available from
the location, then justified guess estimates for the values
of these parameters already yield estimates that may be
useful.
Finally, there are plenty of remaining issues for fur-

ther study. In this study we focused on asymmetry at
the boundary locations and achieved some understand-
ing of the through-traffic. However, the majority of the
total traffic is not through-traffic and a future topic is to
explore what occurs inside the AoI. The transformation
(1) is meaningful still there, hence also (2) and (3).
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