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Abstract

Background: The COVID-19 pandemic is a new phenomenon and has affected the population’s lifestyle in many
ways, such as panic buying (the so-called “hamster shopping”), adoption of home-office, and decline in retail
shopping. For transportation planners and operators, it is interesting to analyze the spatial factors’ role in the demand
patterns at a POI (Point of Interest) during the COVID-19 lockdown viz-a-viz before lockdown.

Data andMethods: This study illustrates a use-case of the POI visitation rate or popularity data and other publicly
available data to analyze demand patterns and spatial factors during a highly dynamic and disruptive event like
COVID-19. We develop regression models to analyze the correlation of the spatial and non-spatial attributes with the
POI popularity before and during COVID-19 lockdown in Munich by using lockdown (treatment) as a dummy variable,
with main and interaction effects.

Results: In our case-study for Munich, we find consistent behavior of features like stop distance and day-of-the-week
in explaining the popularity. The parking area is found to be correlated only in the non-linear models. Interactions of
lockdown with POI type, stop-distance, and day-of-the-week are found to be strongly significant. The results might
not be transferable to other cities due to the presence of different city-specific factors.

Conclusion: The findings from our case-study provide evidence of the impact of the restrictions on POIs and show
the significant correlation of POI-type and stop distance with POI popularity. These results suggest local and temporal
variability in the impact due to the restrictions, which can impact how cities adapt their transport services to the
distinct demand and resulting mobility patterns during future disruptive events.
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1 Introduction
People undertake different activities during the day to sat-
isfy their needs and wants. The performance of such activ-
ities depends on various population and environmental
factors. The interaction of land-use and transport systems
in activity generation has also been widely researched and
modeled [1]. Places well connected with transport sys-
tems and dense neighborhoods will generate more trips
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than less connected and sparse neighborhoods. The inter-
action between land-use and transport and individual co
nstraints is captured by the concept of accessibility [2, 3].
Apart from the above “structural” factors, planned or
unplanned special events [4], weather conditions [5, 6],
and others, can also influence in the short-term, where,
when, and how people move. Cities strive to plan, design,
and operate their transportation systems based on the
forecasted demand, derived out of the activities due to
these factors.
In case of disruptive and highly dynamic events, such

as natural or human-made hazards, people tend to adapt
their short-term [7] and long-term mobility behavior
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[8, 9] to the prevailing conditions. For example, travel-
ers might be reluctant to enter the underground metro
after an earthquake or go near the sea-coast in case of
a cyclone or tsunami warning. COVID-19, one of the
most severe pandemics in the last 100 years, has affected
almost the entire world in unprecedented ways. To con-
trol COVID-19 transmission, guidelines such as social
distancing, masks, and movement restrictions were rec-
ommended or enforced. In response to these measures,
people not only reduce their mobility [10], but they also
adapt their travel patterns in order to limit their expo-
sure by avoiding places with a high number of cases [11].
The anticipation or announcement of movement restric-
tions due to COVID-19 causes specific changes in peo-
ple’s lifestyles, routines, and consumption patterns, such
as panic buying during the early pandemic or lockdown
stage [12], working from home, or a decline in non-
essential retail consumption [13]. With people spending
on average, around 40% less, these new trends also risk
generating an economic slowdown that could last for a
long time [13]. Such changes in the behavior and atti-
tudes, if significant, can reveal a pattern exhibited through
changes in the number, types, and spatio-temporal extent
of the activities. For example, crowding at some loca-
tions or imbalanced use of transport facilities, like roads
and transport modes, can be observed. Planners must
understand these behavioral changes and, more impor-
tantly, the spatio-temporal patterns of the population’s
activities for an effective response. The scale and speed
of these changes have left cities, transport operators, and
research communities with several unanswered questions
on how to respond so that a basic service level is efficiently
maintained.
The study of human activity and travel behavior is tra-

ditionally (and commonly) based on the data from Stated
and Revealed preference surveys. Emerging sources of
data [14], such as social media [15] or mobile phones
[16], have pushed the use of data-centric approaches to
study activity patterns. Alternate data sources can play
a crucial role, especially during situations like COVID-
19, when responses or policies have to be adopted faster,
whereas surveys take some time in planning and execu-
tion. This aspect became prominent during COVID-19
when several organizations came forward bymaking some
of their data publicly available to help governments and
citizens understand the changes in activity patterns and
travel behavior. Some of the prominent examples are
COVID-19 Community Mobility Reports [17] and Apple
Mobility Reports [18]. For instance, we obtain activity
and mobility trends for Munich (in Bavaria, Germany),
which provide information about the overall changes in
activity and travel mode patterns in a region, respectively
(Fig. 1) from [17, 18]. In the figure, the overall activity
and mobility trends confirm some expected behavioral

patterns during COVID-19 such as a decline in transit
mode use, drop in retail and workplace-related visits, and
increase in stays at residences. The grocery related visits
can be seen to gradually recover from the initial drop in
visits.
During COVID-19, Mobile phone data emerged as a

potential source to understand and respond to the pan-
demic, as it provides a large spatio-temporal information
[19]. A study using the mobile phone data found that the
lockdown in France caused a 65% reduction in the per-
formed trips, especially work-related trips during peak
hours and long trips [10]. Researchers in the US and China
also applied the mobile phone data to establish that the
social distancing and decreased mobility (due to restric-
tions or lockdowns) is positively correlated to the reduced
growth in COVID-19 cases [20, 21]. These few examples
illustrate the potential of passively collected data during
the COVID-19 for the informed policy decisions. Apart
from the data source, the level of data aggregation also
decides its usability. The aggregated datasets (at the city
or county level) do not provide detailed information at
finer geographical scales such as the POI level and thus
have limited applications. On the other hand, disaggregate
datasets (at finer geographical scales) could provide richer
information for understanding heterogeneity across POIs
and demographics [22]. Thus, disaggregate data allows for
analysis at a local level for understanding the mechanisms
between activity patterns and environmental factors, e.g.,
at the level of a shop or a transit stop.
Mobile devices or sensors equipped with wireless com-

munication or internet can help understand when, where,
and if people are crowding. Crowdsensed information,
for example, consists of large datasets built with the help
of a large group of people. In Mobile Crowdsensing,
individuals “collectively share data and extract informa-
tion" with the help of a sensing device (like smartphones)
towards a common goal [23], such as identifying spatio-
temporal patterns of a phenomenon. Crowdsensed data
from mobile phones and social media platforms [24, 25],
such as Twitter data, can, for example, help to study highly
dynamic and disruptive events [26, 27]. Some of these data
are available on the internet and could be exploited to cre-
ate the first line of defense against this pandemic and to
develop policies that can mitigate the pandemic’s impact
on transport systems and local businesses.
One such exciting and seemingly potential data set is

the crowdsensed check-in rate or busyness at the POIs.
The crowdsensed check-in rate is the representation (in
absolute or relative terms) of the number of people or cus-
tomers visiting a specific establishment at a given point
of time and thus shows its busyness. These data are pri-
marily collected from smartphone applications, in which
the user’s location history is enabled, such as geotagged
data or Location-Based Social Networks (LBSNs). Geo-
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Fig. 1 (Top) Activity patterns in Bavaria and (Bottom) travel mode patterns in Munich, data source: [17, 18]

tagged tweets [27], Foursquare check-ins [28], and pop-
ularity trends [29, 30] are some examples of such data
that capture the spatial-temporal evolution of the demand
and have already shown their utility in previous studies.
Specifically, popularity trends have been used, to predict
venue popularity [30], calculate demand expansion fac-
tors [31], classify activities [29] and investigate consumer
behaviors [32]. These varied applications of POI demand
patterns from popularity trends suggest their potential in
other unexplored avenues, such as disruptive events. Cer-
tain crowdsensed data such as popularity trends provide
only relative or normalized values of the demand for cer-
tain activities in certain locations [29]. This is a limitation
because it prevents one from inferring the correspond-
ing number of absolute check-ins for which the data is
recorded, and thus should be considered when designing
methodologies that leverage this information as well as
when processing the results. More details about how this
limitation is addressed in this study will be provided in the
next section, where we introduce both the data and the
methodology for this study.

This paper shows that crowdsensed information could
also provide some useful insights into the spatial-temporal
distribution of the activities or demand during the pan-
demic situation. Subsequently, we propose a model that
breaks down POI demand patterns into a set of crucial
spatial and other attributes, which are assumed to explain
the POI demand. This paper is structured as follows:
Section 2 presents the study’s methodology; Sections 3
and 4 concern data collection and data analysis respec-
tively, Section 5 presents the results. Section 6 discusses
the findings and limitations, and lastly, we provide a set of
conclusions from the research.

2 Methodology
We use POI visitation data (response variable, denoted
by P) and check their correlation with the spatial and
other attributes (explanatory variables) of the POI. Firstly,
we define a bounding box for the study area and iden-
tify the POIs within that area. For these identified POIs,
we collect the historical popularity data and live popular-
ity data on different days to capture the before-lockdown
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and during-lockdown situation, respectively. Some of the
prominent spatial attributes that could affect customer
visits at a POI are population density [33], parking facili-
ties [34] and public transit stops [33] nearby the POI. As
we aim to capture the spatial variability among the POIs,
the selected spatial attributes should capture the local
variation, e.g., threshold distance for calculating popula-
tion around a POI should not be too large. Because of
this, a square bounding-box of side 600 m (two times the
assumed neighborhood distance of 300 m) is used to cal-
culate the population living within the catchment of a
POI. Similarly, for the parking area, the catchment cor-
responds to a square bounding-box of side 50 m. Here
the distance threshold is selected to characterize short
walking distance because parking far from the supermar-
ket is discouraging for the customers [34]. We adopt the
same threshold for all POI types, but in doing so, we
ignore the effect of the POI type on the catchment dis-
tance, as it is treated uniformly for all POIs. To compute
the average distance between a POI and transit stops, we
identify the stops within a straight-line distance (“as the
crow flies”) 400 m of a POI. This selection of straight-line
distance threshold could even result in walking distances
greater than 400 m in some cases because the actual route
length may be longer depending on the street network.
Commonly transit agencies use a walking distance of 400
m as a thumb rule for measuring neighborhood acces-
sibility and transit accessibility, as reflected in previous
studies in accessibility research [35, 36]. However, it is rel-
evant to point out that the walking behavior is determined
by a multitude of factors such as trip purpose, built-up
environment, mode type, and population demographics
[37, 38], and thus a detailed sensitivity analysis is beyond
the scope of this paper. Average transit stop distance is
the average distance of all the identified stops from a POI.
Finally, weather features specific features such as temper-
ature and precipitation can also be relevant for studying
demand [39].
Non-spatial attributes are the POI type (e.g., supermar-

ket or chemist); the number of reviews and ratings of
a POI, e.g., the supermarket’s temporal demand pattern,
could be different from that of a fast-food outlet shown in
[29]. Further, if a POI has a high positive rating, it could
imply its high likeability or customer satisfaction. Simi-
larly, a large number of reviews by customers could be
indicative of latent characteristics of a POI. These features
such as rating and number of posted reviews are also used
in modeling the demand trend modeling [30, 32]. It is per-
tinent to mention that other demographic factors, such as
average income in the locality, could also play an essen-
tial role in the retail consumption [33], but the same is not
considered in this study because such a dataset was not
available.

2.1 Data sources
POI data is collected from Open Street Maps (OSM) via
Overpass-Turbo [40]. Google’s Popular time graph data
[41] is collected as a measure of the demand patterns
at all the identified POIs. A popular time graph shows
the busyness (workload or saturation) of a POI during
the day, relative to the busiest time during the week [41].
Historical busyness is quantified on a relative scale of
[0,100], where 100 indicates the busiest hour. This infor-
mation is derived from the anonymized and aggregated
data from the POI visitor’s location history [41]. As per
Google, if the number of such users (who have opted for
the location service) visiting a POI is not sufficient, then
the popular time graph and the place’s live visit data may
not be available [41]. For a given POI, a Popular time
graph is averaged over the last few months [41], which
could be referred to as “historical popular time”. Live visit
data shows the popularity in real-time, which in some
cases could be greater than 100 depending on its busy-
ness or crowding relative to the past trends. The popular
time data for a particular POI is publicly viewable on
the Google Maps website [42]. Due to the smartphone-
based passive data collection, Popular time data could
also suffer from sample bias. As mentioned above, Popu-
lar time data is relative information and cannot infer the
actual number of visitors without extrinsic information.
Based on the above, we argue in this paper that live data
could be an important indicator for measuring changes in
the demand as, for each POI, they provide a measure of
the deviation between the current and the average venue
popularity.
Population data are obtained from the publicly available

High-Resolution Population Density Maps provided by
Facebook [43]. Facebook used state-of-the-art Computer
vision techniques to process satellite imagery and generate
this data. Population data provide human population dis-
tribution at 30-meter spatial resolution. Parking area (size
and locations) and transit stop locations are obtained from
theOSMdata (obtained via Overpass [40]) andGTFS [44],
respectively. Python library OSMNX [45] is used for the
processing and analyzing OSM data.

2.2 Modeling approach
The study aims to examine the effect of the lockdown
restrictions on the popularity of POIs. This is a prob-
lem of causal inference framework, where lockdown acts
as a treatment variable. With pre-treatment and post-
treatment data, a preferred modeling approach based on
causal inference framework could be adopted by control-
ling for the treatment (lockdown) and confounding (day-
of-the-week, POI type) variables. Herein we check the
significance of covariates in explaining the day-specific
popularity before and during the lockdown. Previous
studies such as [32] and [30] have also modeled popula-
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rity as a dependent variable in regression formulation. The
dependent variable is the day-specific popularity of a POI,
which is to be mapped to a set of explanatory variables,
represented analytically as follows:

Pi−d = f (pi, pai, sdi, ri, nri, typei, Ld ,Dd ,Td ,Prd) + εi−d (1)

Where,

• Pi−d is the response variable in terms of popularity of
ith POI on day d

• pi is population within the defined catchment of ith
POI

• pai is the total parking area within the defined
catchment of ith POI

• sdi is the average distance to the transit stops within
the defined catchment of ith POI

• ri is the rating of ith POI
• nri is total number of reviews of ith POI
• typei is the dummy variable of ith POI type namely,

supermarkets, chemists and fast-food
• Ld is the lockdown dummy variable, wherein during

lockdown Ld = 1; for historical data Ld = 0
• Dd is the dummy variable representing the day of the

week e.g., Monday, Tuesday, and so on.
• Td and Prd are weather specific covariates for

temperature and precipitation, respectively, on day d
• εi−d is the residual term

POI type (type), lockdown (L) and day (D) are cate-
gorical variables, and are used as dummy variables after
one-hot encoding e.g., for a supermaket POI, supermarket
= 1, whereas fast-food and chemist are assigned 0 values.
Similarly during the lockdown, lockdown = 1, else lock-
down = 0; and on a Monday, onlymonday = 1, while other
day-of-the-week dummy variables are equal to zero.
Linear regression models are simple and intuitive as

they help to understand the average or global effects of
the features. However, thesemodels depend heavily on the
explicit analytical formulation and thus could introduce
model-bias. To counter this, we use regularized Gradient
Boosting (GB) [46] for regression, inspired by previous
studies [30]. GB, a machine learning technique, is based
on training weak learners in an additive manner. Unlike
linear models, GB models do not need an analytical speci-
fication and are also less sensitive to outliers. GB can work
well with small data while avoiding overfitting. The use of
regularized objective function in equation 2 helps to con-
trol overfitting.We refer to the regularizedGB as Gradient
Boosting Regression (GBR) model in this paper.

L(t) =
n∑

i=1
l
(
yi, ŷ(t−1)

i + ft (xi)
)

+ �
(
ft
)

(2)

where xi denotes the i-th instance of the dataset of size
n; ft is the current model fit; l is the loss function which
measures the difference between the target (yi) and the
prediction ŷi, at t-th iteration; �(f ) is the regularization
term to check over-fitting. The details of the GBR are
given in [47] and [46].
The best GBR model is selected based on the lowest

Mean Squared Error (Eq. 3) on the training data (90%
split), using 10-fold cross-validation. The main tunable
parameters for the GBR model are the number of esti-
mators and the tree depth [48]. To handle overfitting,
we check the MSE on the test data (10%) to ensure that
training and test errors are close.

MSE = 1
n

n∑

i=1

(
yi − ŷi

)2 (3)

The interpretation of tree-based models, like the GBR
model, is not straightforward since single coefficients (as
in linear regression models) for attributes are not avail-
able. There are many tools for global interpretation, i.e.,
the average impact of the features on the model out-
put. Recently, work has been done on the local expla-
nations of these models to uncover the role of each
feature for every model instance. The combined behav-
ior of these local explanations can also infer the global
behavior. In this regard, SHAP (SHapley Additive exPla-
nations) is a recently developed Python tool for explaining
a machine learning model’s outputs using the game-
theoretic approach [49]. TreeExplainer method from
SHAP, calculates classic Shapley values (a concept from
the game theory [50]) and assigns importance or credit
to the input features based on their role in the particular
model prediction [51]. Similarly, local interaction effects
are captured based on the Shapley interaction index from
game theory by allocating the credit to a pair of features
[49]. A novel advantage of TreeExplainer is that it can
compute Shapley values for tree-based models in polyno-
mial time [49], whichmakes them highly efficient for prac-
tical applications. For details on SHAP, we refer the reader
to [49, 51].
We use Ordinary Least Squares (OLS) regression (lin-

ear regression), as a reference model for checking the
consistency in the interpretation of the global effect of
the features (Eq. 4). It can be seen that, in addition to
the main effects, we also include interaction effects of
lockdown (Ld) with all the other variables. It is pointed
out that in the linear model, the coefficient (β8) of
lockdown gives the effect of lockdown on the chemist
POIs, conditional on the other covariates. Thus, the
coefficient (β8) actually represents interaction effect of
lockdown-chemist. We do not include chemist dummy
explicitly in Eq. 4, as it is highly negatively correlated with
supermarket.
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Pi−d = β0 + β1 · pi + β2 · pai + β3 · sdi + β4 · ri
+β5 · nri + β6 · supermarketi + β7 · fast−foodi
+β8 · Ld + β9 · Mondayd + β10 · Td + β11 · Prd
+β12 · Ld · pi + β13 · Ld · pai + β14 · Ld · sdi
+β15 · Ld · ri + β16 · Ld · nri
+β17 · Ld · supermarketi + β18 · Ld · fast−foodi
+β19 · Ld · Mondayd + β20 · Ld · Td

+β21 · Ld · Prd + εi−d (4)

We also use the Robust regression or Robust Lin-
ear Model (RLM or M-Estimation) with Huber objective
function [52]. This objective function uses two differ-
ent formulations: least squares (in the center) and least
absolute values (in the tails), basically underweighting the
high influence observations or outliers in the dependent
variable. Finally, it is noteworthy to refer to a recently pub-
lished study that also uses both the GBR and linear regres-
sion for modeling and SHAP to explain building energy
performance [53], due to inherent similarity in our model-
ing approaches. Modeling is done using Python program-
ming language using the following libraries: statsmodels
[54] and XGBoost [48].

3 Data collection and processing
We selectMunich (the Free State of Bavaria’s capital city in
Germany) as the study area. Even though many countries
in the world are affected by COVID-19, the extent of the
impact depends on multiple factors, such as first COVID-
19 incidence [55], rate of spread, travel restrictions [56],
testing and contact tracing & containment [57], amongst
many others. Therefore, the data for before-during scenar-
ios were collected based on the restriction or lockdown
timeline. In Germany, the need for social distancing was
announced on 12.03.2020, followed by the announcement
of the temporary closure of schools on 14.03.2020 and
non-essential travel ban on 18.03.2020 [58]. The Federal
States took up state-specific measures depending on their
needs, as the imposition of a full lockdown in Bavaria
on 20.03.2020 [58]. Therefore, it can be concluded that

the second and third weeks of March were the transition
period from pre-lockdown to the lockdown period. We
are also interested in exploring how the demand pattern
at a POI evolves during different stages of the lockdown
(e.g., during the early lockdown in the third week ofMarch
viz-a-viz during the late lockdown in the last week of
April).
3283 number of POIs were initially identified in the

bounding box around Munich [ latitude : 48.137585 ±
0.1125, longitude : 11.575444±0.175]. The POI attributes,
namely location (latitude and longitude), type, rating (on a
scale of 1-5), and the number of reviews, are collected. For
these POIs, we use python library [59] to obtain hourly
historical data (Table 1). The live data is collected bi-
hourly, e.g., 1200 H, 1400 H, 1600 H, etc. Not all of these
POIs are found to have live popularity information dur-
ing the lockdown, possibly due to the temporary closure
of such POIs due to restrictions or insufficient users vis-
iting such POIs. The availability of the live data varies
per hour-day. Therefore, for the subsequent analysis and
modeling, POIs without live data during 1200-1800 hours
are dropped. The analysis period of 1200-1800 is cho-
sen to represent the consistent working time for all the
POIs, away from the opening (around 0800-1000 H) and
closing hours (1900-2000 H). Only POI types with at
least five samples are selected to ensure representative-
ness, which leaves a total of about 180 POIs for three
categories (Fig. 2), namely supermarket, fast-food, and
chemist (Table 2). The low number of POIs makes sense
because several retail and leisure POIs, such as restau-
rants, stores, and barber shops, were closed and severely
affected due to the lockdown restrictions, and that is why
we suppose no popular time data were available for such
POIs.

4 Data analysis
The hourly trends of average historical popularity in
three types of POIs, namely supermarkets, chemists, and
fast-foods, are shown in Fig. 3. In the historical trend,
supermarkets show a prominent peak during the evening
hours, coinciding with the evening commute. Chemists

Table 1 Popular time data collection

Date Cumulative Type of Description
COVID-19 Cases∗ data (Period)

13-02-2020 − Historical average (0000-2400) Before lockdown

20.03.2020 878 Live (1200-1400) Start of lockdown

03.04.2020 3304 Live (1200-1400) Middle of lockdown

14.04.2020 4714 Live (0800-2000) Late lockdown

22.04.2020 5332 Live (0800-2000) Late lockdown

27.04.2020 5607 Live (0900-2100) Late lockdown

∗ source: [63]



Mahajan et al. European Transport Research Review           (2021) 13:26 Page 7 of 14

Fig. 2 Spatial distribution of POIs with Live data1 Basemap source: Open Street Maps

also show a similar pattern. The trend is absent on Sun-
day, as most supermarkets and chemists are closed on
Sundays in Munich. The fast-food category trend shows
two prominent peaks during the weekdays, which can
be attributed to busyness during lunch and late-evening
hours. The demand trend on the weekend shows a high
demand from lunch to late-evening hours.
Figure 3 shows the average live trends on two days of the

week during the lockdown, 22nd April (Wednesday) and
27th April (Monday). Compared to the average historical
popularity, the drop in the peak popularity and the general
trend is evident. Interestingly, the drop in the fast-food
category is more significant and characterizes lockdown’s
adverse effect on similar POIs. It can also be recognized
that the shape of the historical popularity trend is differ-
ent on Monday and Wednesday for both supermarkets
and chemists, indicating variations during the week. The
trend of the afternoon (1400 H) popularity on few selected
weekdays also shows the effect of lockdown on the three
POI categories (Fig. 4). Again, supermarkets and chemists
show similar trends with average historical popularity at
around 40-50% of maximum popularity, but markedly
increasing on 20th March, i.e., the day lockdown was
announced. This increase (57% for supermarkets and 10%
for chemists) could result from panic buying for groceries
and health retail because of the uncertainty in the early

1Fast-food POI’s symbol is enhanced for better visibility

days of the lockdown and pandemic. During the later lock-
down period in April, a gradual recovery of the popularity
of the supermarkets and the chemists’ POIs is observed.
The fast-food category trend is distinct by fall in its pop-
ularity, which did not wholly recover in April, although it
shows small signs of recovery. It can also be seen that there
is no panic buying in the fast-food category on the day of
the lockdown announcement, unlike the other two types
of POIs.
The summary of the explanatory variables is given in

Table 3. The parking area locations in OSM correspond
to a mix to different parking types such as surface park-
ing, multi-level parking and underground parking. The
composition of the parking areas in our sample is surface
(70%), underground (3%), multi-storey (1%) and missing
label (26%). We use the historical data, and live data (on
22.04.2020 and 27.04.2020) for modeling pre-lockdown
and during lockdown scenarios, respectively (Table 1).

Table 2 Number of identified POIs with historical data and live
data

POI type With historical data With live data∗

Supermarkets 262 137

Fast-food 170 8

Chemist 73 35

∗ live data availability varies per day
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Fig. 3 (Top) Historical average popular time trend and (Bottom) Live popular time trend for the three POI types

The response variable in the regressionmodels is the aver-
age of the popularity at two-hour interval over the period
of 1200-1800 H, as follows:

Pi−d = (
P1200i−d + P1400i−d + P1600i−d + P1800i−d

)
/4 (5)

where, Pti−d is the popularity at time t
The features such as rating and number of reviews

change with time as new users rate and review a specific
POI. In our case, the change is found to be marginal, i.e.,
the mean percentage change in rating and reviews during
the analysis period is found to be 0.2% and 0.0%, respec-
tively. We do not control the weather-specific covari-
ates due to the panel’s limited dimension (two days of
live data). The weather for these two days was similar
as characterized by sunny or partial cloudy [60], which
makes it reasonable to not control for weather-specific
covariates. In the case of sufficient panel data, we recom-
mend controlling for weather covariates for precise model
estimation.

5 Results
Using cross-validation, we identify the best parameters
for the GBR model (number of estimators: 20, maxi-
mum tree depth: 4). With these parameters, the model
achieves an R2 of 0.63. The MSEs obtained on the train-
ing (7.4), and test data (9.6) are close, which implies no
over-fitting. In the SHAP summary plot (Fig. 5), the fea-
ture impact on the output of the GBR model is shown
with the distribution of SHAP values. In these plots, each
point corresponds to one POI instance in the dataset

and corresponding SHAP values of the features. The
color represents the feature value (blue for low value
and pink for high value). The features in these sub-plots
are ordered by the sum of the SHAP values’ magni-
tude over the training dataset. If high SHAP values are
observed for corresponding high values of the feature,
it means an increase in that particular feature results in
an increase in popularity and vice-versa. If SHAP values
for a feature are concentrated near 0, that particular fea-
ture does not play much importance in predicting the
popularity.
The main effects of lockdown,monday and fast-food are

clear due to distinct distribution SHAP values for low and
high feature values. The lockdown feature is found to be
correlated with the drop in popularity. The popularity on
Monday is found to be higher than that on Wednesday.
It is interesting to note that the POI type plays an impor-
tant role, especially for fast-foods. The fast-food attribute
is found to be correlated with low SHAP values (i.e., fast-
food =1), which pushes the popularity to the lower side.
The impact of the population and the number of reviews
(rating_n_x) is not clearly correlated with the popularity
value, as evident by overlapping pink and blue points. The
low values of the parking area feature show low SHAP
values, whereas high parking area is associated with high
SHAP values (albeit with some overlap); i.e., it pushes the
POI popularity to the higher side. Similarly, the type of
POI, namely chemist, is correlated with the decrease in
popularity as evident from negative SHAP values. Hence,
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Fig. 4 Live popular time trend at 1400 H on different days during the lockdown

the features viz. lockdown, day-of-the-week, POI-type, and
Parking area show a clear correlation with popularity.
Figure 5 also shows the interaction effects, where the

superscript ∗ indicates which feature is represented by the
color bar. The interaction effects of lockdown and fast-
food features also show clear effects, implying the adverse

effect of lockdown on the fast-food POIs in terms of pop-
ularity, also seen in Fig. 3. Spatial factors, population, and
avg. stop distance are found to have mixed effects (over-
lap of pink and blue points), and thus their global effects
on popularity are not clear in Fig. 5. However, the inter-
action effect of lockdown - avg. stop distance (see feature

Table 3 Summary of the explanatory variables

Population Parking area Transit stops Avg. Stop Rating Reviews
(< 300 m) m2 (< 50 m) (< 400m) distance (m) (1 − 5)

minimum 195 0 1 105.2 2.5 8

mean 2614 414.3 8 324.8 3.9 371

maximum 4340 4503.7 28 794.0 4.9 4742

σ 727 850.1 5 87.4 0.3 551
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Fig. 5 Feature impact based on SHAP values for the 15 largest main and interaction effects [49]

avg. stop distance∗- lockdown) shows high SHAP values
for some longer stop distances, and vice-versa. This effec-
tively means that POIs close to the transit stops had lower
popularity than those farther from a stop during a lock-
down. This is even more clear in the local explanation plot
in Fig. 6, wherein the interaction effects of lockdown - avg.
stop distance are inverted during the lockdown.
The fit of the OLS and RLM models is not as good as

that of the GBR model, as evidenced from lower Adjusted
R2 values (Table 4), which also justifies the use of the GBR
model as it introduces less bias as compared to the lin-
ear models. Nevertheless, the results of the OLS model
(the sign and magnitude of the coefficients) show that the

average behavior of the features is consistent with that
of the GBR models. In both the OLS and RLM model,
the intercept term is found to be significant, with a value
close to 50. The main effect of lockdown is not found to
be significant, unlike in Fig. 5. In the linear model (Eq. 4),
it represents interaction of lockdown-chemist. The main
effects of onlymonday and average stop distance are found
to be significant. The positive coefficient ofmonday shows
that the average historical popularity of POIs on Monday
is more than that on a Wednesday due to variations in the
daily demand patterns (Fig. 3). The negative coefficient of
the average stop distance implies that popularity decreases
with an increase in the distance to a transit stop. The
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Fig. 6 SHAP dependence plot based on local explanations for the spatial features’ interaction with the lockdown

lockdown has significant interactions with other features.
The popularity during lockdown depends on the type of
POI, as the interaction of fast-food type POI has a greater
negative coefficient than the other two types of POIs,
whereas the popularity of the supermarkets is marginally
greater than the chemist type POIs. During the lockdown,
Monday’s popularity is lower than on Wednesday, which
provides evidence of the daily temporal variations in pop-
ularity during the lockdown. An interesting observation is
that popularity is positively correlated with the lockdown
- avg. stop distance interaction. A possible explanation is
a drop in transit ridership during the lockdown, which
can be seen in Fig. 1. Specifically, passenger ridership
dropped by around 70% during April 2020 inMunich [61],
and thus POIs closed to transit stops observed a greater
reduction in popularity than others located far from the
transit stops. The lockdown-population interaction also
has a negative coefficient, albeit with a weak significance.
One thing to note is that in the linear models, main and
interaction coefficients of parking area are not found to
be significantly correlated.

6 Discussion
There is a lack of existing research on the effects of
COVID-19 on demand patterns at the POI level because
this phenomenon is new and not experienced at the same
scale in the last 100 years. Activity patterns uncovered in
this study match the expectations of viz-a-viz restrictions
during the COVID-19 lockdown inMunich.We explained
the effect of features in the GBR regression model using
SHAP. The behavior of coefficients is consistent with
previous studies to some extent, wherein transit stop con-
nectivity is associated with the demand at retail locations
[33, 34]. The population is not found significant in our
model, which could seem counter-intuitive. However, it
should be kept in mind that the response variable (POI
popularity) is a relative value instead of the absolute value

of demand. Significance of POI type (fast-food) during
the COVID-19 confirms the dominance of POI type in
explaining the lockdown impact, possibly as the lockdown
was directed to reduce non-essential retail consumption
and crowding. POI types are significant in explaining the
dip in the POI’s popularity, as POI-type captures latent
consumer behavior. It is pointed out that the role of the
spatial factor might vary depending on city-specific fac-
tors like the effectiveness of the lockdown and fall in
transit ridership. The behavior (sign) of coefficients in
GBR and linear models is similar for most of the features,
with some exception such as parking area, which furthers
the case for the use of advanced models with explainable
tools such as SHAP.
The study is naturally not without its limitations. As

stated above, relative popularity or demand fails to capture
the population’s effect around the POIs. Adding more fea-
tures, like land-use type (residential vs. workplace), could
improve the results, mainly because during COVID-19,
generally, work from home was recommended. We also
found that live popularity is not available for most of the
POIs during the lockdown, limiting the data for model-
ing and adding to sampling bias. Sensitivity analysis on the
effect of sampling variation and feature threshold could
be an interesting topic for the future. We do not account
for the marketing strategies, which influence consumers.
The marketing decisions could be motivated by a com-
plex set of factors such as weather, time, day, and month,
and thus to some extent, the overall effects can be cap-
tured by collecting time-series data and controlling for
an hour, month, and day. But at an individual POI level,
marketing-specific data could be hard to collect as the
marketing strategies could be diverse and highly dynamic
even across similar POI types. Further research should be
done on data to infer latent features such as consumer
preferences and socializing behavior during disruptive
events.
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Table 4 Results of Linear Regression

Dependent variable: Pi−d

1:OLS 2: RLM

Intercept 48.74∗∗∗ 53.37∗∗∗

(6.93) (7.04)

fast-food −2.56 −3.57

(3.75) (3.81)

lockdown 3.66 −3.50

(9.82) (9.98)

lockdown:fast-food −19.47∗∗∗ −16.73∗∗∗

(5.31) (5.39)

lockdown:monday −16.45∗∗∗ −16.24∗∗∗

(1.52) (1.55)

lockdown:average stop distance/1000 19.49∗∗ 20.19∗∗

(8.93) (9.07)

lockdown:number of reviews/1000 0.13 −0.97

(1.88) (1.91)

lockdown:parking area/1000 0.18 0.13

(0.95) (0.96)

lockdown:population/1000 −1.93∗ −1.93∗

(1.10) (1.12)

lockdown:rating −1.68 −0.10

(2.26) (2.30)

lockdown:supermarket 4.53∗∗ 4.84∗∗

(2.02) (2.05)

monday 11.20∗∗∗ 11.29∗∗∗

(1.08) (1.09)

average stop distance/1000 −10.52∗ −11.40∗

(6.32) (6.42)

number of reviews/1000 −1.52 −1.41

(1.33) (1.35)

parking area/1000 0.67 0.64

(0.67) (0.68)

population/1000 1.18 1.20

(0.78) (0.79)

rating −0.40 −1.41

(1.60) (1.62)

supermarket −1.96 −2.12

(1.43) (1.45)

Observations 718 718

R2 0.34

Adjusted R2 0.32

Residual Std. Error 10.18 3.21

F Statistic 21.20∗∗∗

Note: ∗p <0.1; ∗∗p <0.05; ∗∗∗p <0.01

7 Conclusions
This research uses a data-driven approach to analyze the
activity and demand patterns at the POIs in Munich.
We show that POI check-ins are a potential source of
information during dynamic events like COVID-19. The
use of POI level data and features helps to understand
the underlying interactions of spatial and non-spatial fea-
tures in detail and identify the spatial variability (if any)
and the influencing factors thereof. The results are also
of interest to the transport planners and operators as
they provide insights on the effect of transport variables
such as parking area and transit-stop distance on the
POI popularity. We provide empirical evidence of the
disproportionate effect of the lockdown restrictions on
the POIs in Munich, depending on their distance from
a transit stop. Businesses near or in the transit hubs are
more vulnerable to these disruptions due to reduced com-
muters, potential customers. This outcome could be due
to reduced travel (home-office) or changed travel behav-
ior (customers avoiding public transport). These insights
point to the lack of resilience of transit-near POIs due to
excessive dependence on commuting customers. Policy-
makers can look into or even adapt the transit-oriented
development principles to diversify the customers of near-
transit POIs. It is again highlighted that this study’s find-
ings might not hold for other cities due to the presence of
different city-specific factors.
The use of publicly available data sources increases the

transferability of this study to other study areas. A time-
series crowdsensed data over a longer duration is suitable
for causal inference, to conduct the policy impact evalua-
tion of lockdowns, to evaluate the crowding or busyness,
and their correlation with the spread of the pandemic.
This data could help measure crowding patterns at the
POIs, especially when there is an increased need to reduce
mobility and contacts. Such patterns could also be corre-
lated with other factors such as public transport sched-
ules, weather, number of infections, and tests to check
their influence on crowding behavior. Post-lockdown, the
researchers could use the crowdsensed information to
analyze if the POI visitation trend has stabilized and
returned to normal levels. After all, a pandemic is a kind
of disruptive event, and thus similar data could be the
potential to study other planned, unplanned or disruptive
events. Such insights could help cities to monitor demand
patterns and devise effective responses to such events.
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