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Abstract 

Worldwide cities are establishing efforts to collect urban traffic data from various modes and sources. Integrating traf-
fic data, together with their situational context, offers more comprehensive views on the ongoing mobility changes 
and supports enhanced management decisions accordingly. Hence, cities are becoming sensorized and heterogene-
ous sources of urban data are being consolidated with the aim of monitoring multimodal traffic patterns, encompass-
ing all major transport modes—road, railway, inland waterway—, and active transport modes such as walking and 
cycling. The research reported in this paper aims at bridging the existing literature gap on the integrative analysis of 
multimodal traffic data and its situational urban context. The reported work is anchored on the major findings and 
contributions from the research and innovation project Integrative Learning from Urban Data and Situational Context for 
City Mobility Optimization (ILU), a multi-disciplinary project on the field of artificial intelligence applied to urban mobil-
ity, joining the Lisbon city Council, public carriers, and national research institutes. The manuscript is focused on the 
context-aware analysis of multimodal traffic data with a focus on public transportation, offering four major contribu-
tions. First, it provides a structured view on the scientific and technical challenges and opportunities for data-centric 
multimodal mobility decisions. Second, rooted on existing literature and empirical evidence, we outline principles 
for the context-aware discovery of multimodal patterns from heterogeneous sources of urban data. Third, Lisbon is 
introduced as a case study to show how these principles can be enacted in practice, together with some essential 
findings. Finally, we instantiate some principles by conducting a spatiotemporal analysis of multimodality indices 
in the city against available context. Concluding, this work offers a structured view on the opportunities offered by 
cross-modal and context-enriched analysis of traffic data, motivating the role of Big Data to support more transparent 
and inclusive mobility planning decisions, promote coordination among public transport operators, and dynamically 
align transport supply with the emerging urban traffic dynamics.
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1  Introduction
In the last decade, road traffic and mobility needs have 
increased significantly, especially in urban and metro-
politan areas, a result of the socioeconomic growth and 
recent pandemic pressures [4]. This scenario is further 
affected by the relevance of pursuing climate objectives to 

reach carbon neutrality, operationalizing norms of social 
distancing, and the decentralization of activities and ser-
vices to the periphery of urban centers. The heavy use of 
cars as private transport compromises the sustainability 
of modern cities [25]. To reach climate goals set by the 
Paris Agreement, the European Commission has already 
recognised the importance of multimodal passenger 
transport to increase the use of public transport, shared 
mobility options, and active modes of transport such as 
walking and cycling [10, 27]. Multimodality, the use of 
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different modes of transport in a single trip, can support 
the shift to a low carbon economy by taking advantage of 
the benefits of using different transport modes, such as 
convenience, safety, speed, cost, and reliability.

Mobility in major European capitals is not yet sustain-
able, prompting those capitals to reevaluate their public 
transport systems to meet societal goals [9]. Lisbon’s City 
Council is making efforts in collecting heterogeneous 
urban data for a better understanding of the multimodal 
mobility patterns [36, 44]. Multimodal mobility pat-
terns offer data-centric views of major traffic bottlenecks 
ensuring:

•	 the city mobility planning dynamically responds to 
the ongoing changes in traffic;

•	 fully transparent decisions to the citizens, enhancing 
the accountability of authorities;

•	 supportive and objective coordination among public 
carriers and authorities involved in urban mobility 
planning.

In this context, heterogeneous sources of urban data 
are currently being consolidated in the Intelligent Man-
agement Platform of the City of Lisbon (PGIL) to meet 
various purposes [1]. Still, the potentialities of exploring 
the multiplicity of available urban data sources in an inte-
grative manner for reaching sustainable mobility goals 
are still largely untapped [11].

This work aims at bridging the existing gap on the 
integrative analysis of multimodal traffic data and its 
situational urban context. To this end, we first provide a 
structured view on its major challenges. Second, rooted 
on existing literature and ongoing initiatives in major 
urban centers, we propose principles to address the listed 
challenges combining advances from urban comput-
ing, data science and intelligent transportation systems. 
Third, Lisbon is introduced as a reference case study to 
illustrate how the introduced principles can be opera-
tionalized in practice. In particular, we show how the city 
Council and public carriers are tackling the major obsta-
cles to context-aware and multimodal mobility decisions. 
Finally, a spatiotemporal analysis of multimodality indi-
ces is conducted for the city of Lisbon using the available 
urban data, offering an initial practical characterization 
of cross-modal mobility restrictions and social equity 
aspects.

The remainder of this paper is organized as follows. 
Section  2 presents essential background on multimo-
dality, and identifies opportunities and major technical 
obstacles to data-centric multimodal mobility decisions. 
Section  3 introduces principles for multimodal data 
analysis, offering guidelines to overcome the highlighted 
challenges. Section 4 introduces the city of Lisbon as the 

case study, instantiating the outlined principles using 
both qualitative and quantitative analyses. Final remarks 
are presented in Sect. 5.

2 � Background
Multimodality can be simultaneously understood as a 
property of the transport system, as a transport policy 
strategy and as a dimension of individual travel behav-
iour, forming a tridimensional perspective [26]. Within 
the later dimension, multimodality is commonly defined 
as the use of more than one transport mode to complete 
a trip.

This section first recovers essential concepts and lit-
erature on multimodal mobility (Sect.  2.1), and intro-
duces state-of-the-art multimodality indices (Sect. 2.2) as 
those provide the basis for our practical study. Finally, in 
Sect. 2.3, the major challenges to the context-aware and 
multimodal analysis of big traffic data are enumerated.

2.1 � Multimodality
Buehler and Hamre [8] observed that multimodality is 
a subfield of a larger body of research on intrapersonal 
variability of travel behaviour, consisting of four dimen-
sions: temporal, spatial, purpose and modal. The “modal” 
dimension describes the variability in the use of means of 
transport over time. Nobis [46] emphasizes the fact that 
the general definition of multimodality must be observed 
along individual trips to ensure its separation from the 
monomodality concept.

This distinction relates to the chosen time period, the 
longer the time period is, the higher is the probability 
that a person uses more than one mode of transport. For 
instance, Nobis [46] uses in her study a loose definition 
of multimodality, where any person who uses more than 
one mode of transport within one week is a multimodal 
transport user. In contrast, monomodal users tend to 
exclusively rely on a single mode of transport.

As highlighted by Tsirimpa et al. [64], one of the main 
goals of multimodal passenger transportation is to 
increase the use of public transport modes along with 
sustainable mobility options (i.e. cycling, walking) and 
emerging transport modes (e.g., shared mobility) such 
that a modal shift could be promoted and the use of pri-
vate vehicles reduced. Zannat et al. [72] conducted a sys-
tematic review of research works using big data sources 
for public transport planning which covers three main 
areas: trip pattern analysis, modelling and performance 
analysis. Previous work conducted by Tympakianaki 
et al. [65] acknowledged the need to use multimodal traf-
fic data sources for a more comprehensive analysis of 
the spatiotemporal impacts of localized disruptions on 
public transport demand and network performance. In 
their review work, Zannat et al. [72] concluded that the 
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emergence of multimodal data is a promising research 
direction, as these data can be leveraged to optimize a 
transport network as an integrated system and be used 
to infer the latent public transport demand that can be 
attracted from enhanced connectivity between modes 
(e.g., public transport and shared bicycles).

Comparison of findings about multimodality across 
studies is challenging given the inherently different 
transportation systems across geographies, target data 
sources, temporal frames, and definitions of multimodal-
ity. However, some relevant results are common among 
studies: the percentage of multimodal persons decreases 
with advancing age [14, 33, 46],car availability is nega-
tively correlated with multimodal behaviour, and posi-
tively correlated with monomodal driving [19, 33, 46],and 
having a driver’s license is negatively associated with 
multimodal users [33, 46]. Multimodality is generally 
measured by considering the fraction of users that use a 
given number of travel modes. For example, Nobis [46] 
shows that car and public transportation users tend to be 
between 10 and 25 years old, with the largest group con-
sisting of people aged 18–25, in Germany. While Buehler 
and Hamre [8] indicate that 87% of all trips in the United 
States are made by car and 90% of Americans use auto-
mobiles in their commuting trips for work purposes.

In his research work, Reichenbach [50] noted that more 
research is required to understand how public transport 
suppliers can assess the dynamics of multimodal behav-
iour at the user side and how synergies between modes 
can be enhanced.

2.2 � Indices of multimodality
Despite the relevance of previous findings, most of the 
existing works neglect the intensity of use per transporta-
tion mode. In this context, the spatiotemporal analysis of 
multimodality indices from traffic records is important to 
dynamically detect zones with the lack of adequate trans-
port supply along specific time periods, as well as urban 
zones that, despite the presence of different transport 
modes, are characterized by heightened imbalanced pref-
erences towards specific modes of transport.

Diana and Pirra [20] targeted the problem of measuring 
multimodality at the individual level, by finding a multi-
modality index that comprises both descriptive statistics 
on the number of travel means, and the intensity of use 
of each mode. One of those measures is the Herfindahl–
Hirschman ( HH ) index, a measure of market concentra-
tion for determining market competitiveness based on the 
size of firms in relation to the industry [53]. HH ranges 
from 0 to 1, from a perfectly competitive market with a 
high number of small firms to a monopoly. According to 
Diana and Pirra [20], in the context of transportation, the 
index approaches zero when a multiple balanced travel 

means is observed, whereas the value increases when a 
small number of modes tends to dominate. The original 
HH index is extended as follows:

where fi is the intensity of use of ith transport mode, f  
is the mean value of the intensities of all n modes, and 
m either corresponds to the total number of modes, n, in 
the original definition or to the number of modes offer-
ing transportation (demand different from zero) in the 
revised definition [20]. Susilo and Axhausen [58] used 
HHm to measure the repetitiveness of identical combina-
tions of individual’s spatial–activity–travel mode choices 
within an observed period. In their study, higher index 
values were associated with periodic behavior and lower 
index values with less repetitive or variety-seeking behav-
ior. In this context, HHm is also suggested to characterize 
the level of repetition of activity–travel patterns.

A comparable multimodal index is the Gini coefficient 
[2], which is classically used as a measure of income ine-
quality in a population. A Gini coefficient of zero expresses 
perfect equality, while a value of one expresses maximal 
inequality. In the context of multimodality, it behaves simi-
larly to the previous index. The Gini coefficient is defined 
as:

where fi is the intensity of use of the ith mode assum-
ing that modes are sorted in ascending order accord-
ing to a target criterion (e.g., passenger demand), and n 
is the total number of modes. Tahmasbi et al. [59] used 
the Gini coefficient to evaluate the distribution of urban 
public facilities and accessibility level of different groups 
of people. This work presents a similar methodology (see 
Sect. 5).

Diana and Mokhtarian [18] reinterpreted the concept of 
Shannon Entropy [55] by considering a hypothetical mode 
choice experiment, where the uncertainty of the outcome is 
proportional to past multimodality behaviors of the trave-
ler, i.e.:

When OMPI tends to 0 the individual uses only one mode 
among those being considered, whereas when OMPI = 1 
the individual uses all these modes with the same inten-
sity. Diana and Mokhtarian [18] proposed a variant 
of OMPI that is sensitive to the mean mobility level of 
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individuals. Let M be the absolute maximum reported 
frequency of any mode, then:

Diana and Pirra [20] established an analogy between 
income inequality and multimodality, where individuals 
and their income respectively map into travel means and 
their intensities of use. An additional inequality measure, 
the Dalton Index [17], is proposed:

where ǫ parameter represents the decreasing influence of 
more intensely used modes to determine the degree of a 
traveler’s multimodality. In their study, Diana and Pirra 
[20] showed that there is not an index that outperforms 
the others, still, some measures give best results in spe-
cific cases. For example, if the goal is comparing multi-
modal behaviors of different social groups, an index that 
is not replication invariant is recommended, i.e., HHm , 
OMPI or OMMI . Otherwise, if the mean intensities of use 
of the different modes vary across respondents, yet some 
modes in the set are never used, the application of the 
DALm index is more appropriate.

2.3 � Challenges to multimodal traffic data analysis
Despite the relevance of multimodal transportation to 
promote modal shifts from private vehicles towards 
public, shared and active transport modes, most urban 
centers still encounter major obstacles preventing the 
comprehensive monitoring and analysis of multimodal 
traffic dynamics. In accordance with these needs, this 
section groups the ongoing challenges in two major axes: 
challenges pertaining to the acquisition of consolidation 
of relevant urban data sources; and challenges pertain-
ing to their integrative analysis for descriptive, predictive, 
and prescriptive ends.

Along the first axis, urban data acquisition and consoli-
dation is challenged by three major needs:

•	 the presence of an integrated automated fare collec-
tion system within the public transportation network 
for tracing the movements of passengers throughout 
the multiple carriers and modes of transport;

•	 the relevance of city traffic sensorization initiatives, 
as well as standardized protocols for urban data 
acquisition and consolidation. Essential sources of 
traffic data include road traffic data from stationary 
and/or mobile devices; individual trip record data in 
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the public transportation system given by smart card 
validations at stations or public vehicles; or pedes-
trian traffic data from privacy-compliant sensor tech-
nologies;

•	 the incorporation of sources of context informa-
tion. Traffic dynamics are situated, meaning that 
these are dependent on a high multiplicity of situ-
ational context factors. The presence of large-scale 
events creates irregular peaks of demand; road traf-
fic interdictions condition mobility; weather impacts 
transportation mode decisions, especially active 
modes of transport; changes to the city urban plan-
ning affect the way traffic is generated and attracted 
to different parts of the city throughout the day 
[12, 54]. Important sources of context data with 
impact on urban traffic include historical and pro-
spective public events, ongoing and planned traffic 
interdictions,weather records and forecasts; geo-
graphical distribution of traffic generation-attraction 
pole; among others.

Along the data analytics axis, the integrative mining 
of traffic data produced from heterogeneous modes of 
transportation is challenged by four major factors:

•	 the inherent spatiotemporal and multimodal nature 
of traffic data. The rich spatial, calendrical and modal 
content of traffic data should be properly explored, 
and the available sources of urban traffic data soundly 
processed and consolidated [44]. In addition, the sto-
chastic nature of traffic, with considerable variability, 
further challenges the modeling of multimodal traffic 
dynamics,

•	 the massive size of traffic data produced by mobile, 
ticketing and stationary devices. Exemplifying, in 
Lisbon, over 50 million smart card validations are 
observed within public carriers per month [4]. Ana-
lyzing massive individual traffic data requires the 
incorporation of strict scalability requirements along 
the pursued processing and learning algorithms,

•	 the presence of emerging changes in urban traffic 
caused by shifting transport preferences, new traf-
fic poles, as well as disruptive changes such as those 
triggered by mobility reforms and pandemics [45]. 
The value of static studies is thus of limited relevance 
as their findings can easily become depreciated. 
Instead, multimodal traffic data analysis should be 
fully automated and updatable once more recent data 
becomes available. In this context, there is the need 
to guarantee that the ongoing mobility changes are 
reflected in the computational models, as well as the 
ability to learn from traffic data streams and detect 
emerging traffic patterns,
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•	 the context-dependent nature of traffic. Despite their 
well-recognized impact on urban mobility, principles 
for context-aware traffic data analysis remain largely 
dispersed [11]. In fact, state-of-the-art contributions 
for context-aware descriptive and predictive tasks 
generally fail to model the joint impact that these 
multiple sources of context exert on urban mobility. 
In addition, existing works generally fail to separate 
the important role of both historical and prospective 
sources of context.

Context-aware multimodal traffic models are essential 
to aid mobility decisions, including operational, tacti-
cal, and strategic planning initiatives. In this context, the 
actionability and statistical significance of the found mul-
timodal associations need to be robustly assessed. Deci-
sions grounded on these associations can be linked to 
reforms in the transportation network, the exploitation 
of cost synergies, or incentives for eco-friendly transport 
modes (walking and cycling). As such, and irrespectively 
of the ends, the impact of mobility decisions should be 
additionally monitored and assessed to identify necessary 
revisions to the ongoing mobility reforms and initiatives.

In addition to the above technical challenges, envi-
ronmental, social, economic and political dimensions 
need to be comprehensively accounted in the subsequent 
decision-making process to guarantee ecological and 
social equity issues in mobility reforms and, moreover, 
that these reforms are able to address the true causal fac-
tors underlying individual’s preferences and mode choice 
determinants [31, 48, 57].

Finally, governance principles are necessary to guar-
antee an effective multimodal coordination of efforts 
among the public transport operators, as well as between 
operators, city Councils and authorities [3, 35]. To this 
end, multimodal patterns can be seen as an objective and 
transparent ground to facilitate cross-carrier planning 
and explore route-and-schedule synergies for the benefit 
of the citizens.

3 � Multimodal big data analysis: principles
Moved by the need to address the set of challenges intro-
duced in previous Sect. 2.3, this section proposes a set of 
principles for the context-aware and multimodal analy-
sis of Big Data produced from urban traffic sensoriza-
tion initiatives. The identified principles are rooted on 
well-established contributions in literature and lessons 
from ongoing urban mobility projects, and are later con-
fronted, in Sect. 4, with extensive practical evidence gath-
ered at the city of Lisbon. For simplicity, the principles 
are enumerated in line with the ordering of challenges 
along Sect. 2.3.

Integrated multimodal fare collection system  The inte-
gration of Automated Fare Collection (AFC) systems 
from the different carriers operating on a given urban 
center provides the possibility to trace cross-carrier and 
multimodal trips along the public network, revealing 
bottlenecks such as points with heavy transfer demands 
[30]. Alternatives based on shared passenger identi-
fiers are available [47], yet their use is discouraged as it 
does not enforce standards on the recording of individ-
ual trips, challenging subsequent consolidation, audit-
ing and cross-carrier tariffs. Integrative ACF systems or 
alternative strategies to identify cross-carrier passenger 
flows offer an essential means to: (1) assess the efficacy 
of transport mode transfers in urban interfaces; (2) infer 
multimodal origin–destination (OD) matrices in accord-
ance with the complete (instead of partial) commuting 
travel patterns of individuals; (3) discover multimodal 
traffic patterns to assess the needs and modal preferences 
of the citizens; (4) model and understand demand; and 
(5) support the multimodal planning of routes and sched-
ules with the aim of reducing commuting needs and 
transfer waiting times.

Worldwide, different strategies for integrating AFCs 
across carriers, with the most common solution being 
based on unique smart cards validated at the stations, 
stops or vehicles from a transport network [47, 70]. 
Trip records generally offer information pertaining to 
the user’s card, validation time, and associated station, 
vehicle, and/or route. Tariffs are generally dependent on 
the used modes, number of transfers, or crossed geog-
raphies. In contrast, in distance-based AFCs, the fare is 
usually calculated based on the total distance within a 
(multimodal) trip from boarding to alighting. Illustrat-
ing, the integrated AFC at Lisbon is an example of the 
former (Sect.  4.2), while the integrated AFC in Seoul is 
a distance-based one [30]. Buses and subway trains in 
Seoul are equipped with smart card readers located at the 
doors for boarding and alighting, thus offering the possi-
bility to record the whole itinerary of each individual trip 
from the departing location to the destination, including 
intermediate transfers.

Urban data acquisition and consolidation  Heterogene-
ous sources of urban traffic data, including those gener-
ated by mobile devices, inductive loop counters, and inte-
grative AFC systems, provide important complementary 
views on traffic dynamics. Following the principles ini-
tially set forth by Papadias et al. [49], these sources can be 
consolidated under a multi-dimensional scheme by iden-
tifying shared dimensions between sources, including 
time-and-date dimensions, spatial dimension (whether 
point, origin–destination, or trajectory information) 
and, when available, user and carrier dimensions. This 
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modeling enables a coherent cross-modal navigation 
throughout the records of specific users, carriers, geogra-
phies, and time periods.

Given the massive size of urban data, data extraction 
facilities should properly index spatial, temporal and 
modal information for the efficient retrieval of informa-
tion [32, 41]. In this context, the target data centric rec-
ommendation systems should be equipped with efficient 
slicing and dicing procedures. Particular attention should 
be further paid to avoid unnecessary inefficiencies—for 
example, the characteristics of the stations, users or car-
riers should be decoupled from the trip records. In addi-
tion, data cleaning procedures should be available to 
ensure the absence of duplicates and gross errors, and 
further treat outlier and missing values whenever nec-
essary. Finally, updating routines are necessary for the 
automatic extraction, transformation and loading of the 
continuously arriving data records into the consolidated 
database.

Context data incorporation  Recent attention has been 
paid on how to incorporate context to enhance traffic 
data analysis [11]. Two major principles are suggested 
for the automated acquisition of situational context. 
First, social media, public administration repositories, 
weather portals, online calendars of festivities, cultural 
agendas, theatre sites, and online news can be periodi-
cally explored with the aim of retrieving specific context 
sources of interest. Wibisono et  al. [66], Tempelmeier 
et al. [61] and Tang et al. [60] gather principles towards 
this end. Despite the importance of web data mining, 
the acquisition of situational context data from the web 
is generally subjected to uncertainties related with data 
quality and availability. Second, in cities with well-estab-
lished efforts towards the gathering and provision of situ-
ational context, the acquisition step can be simplified. In 
this context, periodic routines can be executed to extract 
context from structured or/and semi-structured sources 
maintained by the city Councils and other entities [36].

Multimodal traffic data analysis  Numerous principles 
have been suggested in the literature for the integrative 
analysis of traffic data from heterogeneous modes of 
transport:

•	 descriptive analysis: (1) inference of multimodal 
origin–destination matrices by consolidating trip 
record data and tracing the complete movements 
of individual users throughout the public trans-
port network [42, 68],(2) mining of actionable traf-
fic patterns, including frequent, periodic, emerging 
and anomalous patterns [37, 39, 71],(3) discovery of 

bottlenecks to multimodal mobility (waiting times, 
number of commutes, walking distances within and 
outside commutes) from trip record data [42, 51],and 
(4) modelling traffic expectations by exploring the 
rich spatiotemporal content of the available traffic 
data and taking into consideration user-specific com-
mutes in interface areas. State-of-the-art principles 
on spatiotemporal pattern mining, urban data fusion 
and analytics, and relational data mining can be pur-
sued towards these ends [5, 21, 73],

•	 predictive analysis: traffic forecasting is the predomi-
nant prediction task [40]. Following breakthroughs 
from deep learning along the last decade, we 
observed a shift from classic statistical approaches 
towards recurrent neural networks [22] and graph 
neural networks [69], some sensitive to transfers 
and other associations between different modes of 
transport [63], to better support both short-term and 
long-term forecasts,

•	 prescriptive analysis: comprises advances on simula-
tion, control and optimization to support decisions 
related with both individual and multimodal plan-
ning of the public transportation network (schedule-, 
vehicle- and route-wise) and urban traffic positive 
conditioning. Model-based multi-agent reinforce-
ment learning [67], hierarchical network agent struc-
tures [15] and the use of deep neural networks as the 
underlying representation of the control problem 
[24] have been proposed towards these ends.

Emerging traffic changes  To account for ongoing urban 
mobility changes, traffic data analysis should be an auto-
mated process taking an arbitrary period of urban traf-
fic data as input. In this context, the following principles 
should be pursued:

•	 principles from incremental data mining and online 
learning, including those brought forth by Nalla-
peruma et al. [43], should be placed to guarantee the 
ability to learn from data streams, where new traffic 
records are continuously arriving. These principles 
guarantee the updatability of the models in the pres-
ence of more recent data without the need to com-
pute descriptive and predictive models fully from 
scratch,

•	 an additional important principle is the early discov-
ery of emerging mobility patterns. Neves et  al. [45] 
introduced principles for the timely discovery of 
emerging traffic dynamics, generally corresponding 
to new traffic flows or road/station/vehicle (de)con-
gestions, creating the possibility to anticipate poten-
tial mobility bottlenecks that are critical knowledge 
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for tactical and strategic mobility planning. In addi-
tion, trends and abrupt changes should be further 
identified for a proper understanding of non-seasonal 
changes in the city traffic.

Context‑aware learning  Different principles have been 
placed to incorporate and learn from different sources 
of context, namely weather records, planned events, and 
occurrences of potential relevance from social media data 
[34, 52, 56, 60, 66]. Two major classes of context-sensitive 
approaches can be identified from the existing litera-
ture. First, approaches that aim to describe and predict 
traffic dynamics by segmenting data in slices according 
to the available situational context and using only con-
text-resembling slices for understanding and forecasting 
demand [34, 38]. Second, approaches able to embed the 
context directly in the models by capturing correlations 
with the context and using these correlations as correc-
tion factors to automatically adjust descriptive and pre-
dictive models [23, 52].

Assessing multimodal decisions  Robust assessments are 
necessary to guarantee the adequacy of decisions placed 
from multimodal models of urban traffic. In this context, 
they should be pursued at three major levels:

1.	 data analysis level: the aforementioned descrip-
tive, predictive and prescriptive multimodal models 
should be equipped with robust evaluation criteria to 
assess their proper decision translation. Multimodal 
traffic associations in descriptive model associations 
should be subjected to strict actionability and statisti-
cal significance testing [44]. In the context of predic-
tive models, residual analysis and inference of upper 
and lower statistical bounds should be pursued using 
a sound evaluation setting, such as cross-validation 
schema on a rolling basis [54],

2.	 decision level: passenger’s modal preferences, recep-
tivity for mode-commutes and endurable walking 
distances should be firstly identified on a user-by-
user basis in accordance with historical data [16, 
28]. Once these assumptions are defined, the prop-
erties of the affected passenger trips can be quanti-
fied to estimate the decision’s impact on the mobility 
dynamics,

3.	 post-decision level: it is the easiest assessment level 
since the mobility dynamics before and after a deci-
sion can be objectively compared. Illustrating, the 
new patterns of multimodality can be measured to 
assess the impact of changes in the public transporta-
tion network for specific groups of users or the over-
all population in terms of waiting times, number of 

commutes, and adherence towards active and public 
modes of transport [12].

Multimodal planning  The data-centric analysis of the 
traffic demand and public transport supply provides a 
ground truth for the transparent and objective coordina-
tion between carriers. In this context, it is important to 
satisfy the following principles:

•	 guarantee the interpretability of the learned models 
and the traceability of the recommendations [6, 7]. 
The models should be easily auditable in order to 
guarantee that there is no preference towards specific 
carries in detriment of others,

•	 offer a robust statistical frame. Given the stochastic 
nature of mobility dynamics, it is essential to assess 
whether the found patterns of multimodality occur 
by chance in order to strictly guarantee statistically 
significant outputs [29]. In this context, statistical 
tests can be placed to assess the trustworthy degree 
of decisions, and new heuristics incorporated within 
the learning process to minimize false positive and 
false negative discoveries,

•	 comprehensively compare alternative decisions (e.g., 
suboptimal routing and scheduling plans) in order to 
assess complementary scenarios and further validate 
the quality of the suggested recommendations [3].

4 � Results: addressing the challenges in the city 
of Lisbon

This section introduces Lisbon as our case study to show 
how ongoing efforts have been established to answer the 
introduced challenges. Section  4.1 describes the public 
transportation system of the Lisbon Metropolitan Area. 
Sections  4.2 and 4.3 describe the undertaken initiatives 
for exploring opportunties and addressing the major 
obstacles to the multimodal traffic data analysis.

4.1 � Lisbon city as our study case
This work is anchored in the research and innovation 
project ILU—Integrative Learning from Urban Data 
and Situational Context for City Mobility Optimiza-
tion—, a project that joins the Lisbon city Council and 
two research institutes, bridging the ongoing research 
on urban mobility with recent advances from artificial 
intelligence. The available traffic data comes from vari-
ous heterogeneous sources collected for the Lisbon Met-
ropolitan Area (LMA). The LMA is an administrative 
regional division in Portugal that covers the municipal-
ity of Lisbon and an additional set of 17 surrounding 
municipalities (Fig.  1). Although the reported research 
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is directed towards the municipality of Lisbon, its con-
tribution and results can be extended and applied to the 
nearby municipalities to enable more comprehensive 
analysis of inter-municipal commuting mobility patterns.

The public transport network in the Lisbon Metropoli-
tan Area (LMA) is composed by twelve carriers. Infor-
mation pertaining to the network of the largest public 
carriers is provided in Table 1. Passenger transport run by 
the mentioned public transport operators are equipped 
with smart card readers for boarding and, depending on 
the type of vehicle, alighting.

Amongst the listed public carriers, only two—CAR-
RIS (bus and tram operator) and METRO (subway 
operator)—offer a comprehensive footprint coverage 
along the city of Lisbon. All remaining carriers operate 
within the broader metropolitan geographies to offer 
accesses from nearby municipalities into the Lisbon 
city, but do not offer city-wide coverage, being limited 
to specific locations outside the city center (Sete Rios, 

Campo Grande, Areeiro, Entrecampos, Oriente, Ben-
fica and Santa Apolónia). In this context, our focus is 
primarily placed on smart card validations at CARRIS 
and METRO operators, accounting for over 80% of the 
validations within the city of Lisbon.

In addition to bus, tram and subway modes of trans-
port, we further combine validations from the Lisbon’s 
public bike sharing system (GIRA), corresponding to bike 
pick-ups and drop-offs. METRO and GIRA validations 
are performed at stations. In contrast, smart card valida-
tions in CARRIS are performed at the entry of buses. As 
such, we make use of alight stop inference principles pro-
posed by Cerqueira et al. [12] to estimate exits.

4.2 � Multimodal traffic data analysis in Lisbon
4.2.1 � Integrated fare collection systems
The providers of bus, tram, subway, railway and inland 
waterway modes of transport in the city of Lisbon are 
currently operating under an integrated fare collection 

Fig. 1  Lisbon Metropolitan Area and its municipalities
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system, enabled through the VIVA card initiative. The 
VIVA card initiative, firstly established between the 
subway operator (METRO) and the major bus opera-
tor (CARRIS), was in 2017 extended to further encom-
pass railway operator, Comboios de Portugal (CP), and 
in 2019 extended towards the remaining major carriers 
operating within (or interfacing with) the city of Lisbon.1 
To this end, the early individual ticketing systems were 
consolidated into a unique ticketing system coordinated 
by OTLIS, the responsible entity for managing the infor-
mation resources shared among carriers. In 2019 multi-
modal tariff plans were also released to create incentives 
towards a multimodal use of the public transportation 
system.

4.2.2 � Urban data acquisition and consolidation
Among the diverse initiatives established by the Lisbon 
City Council towards sustainable mobility, focal efforts 
are being placed on the city sensorization, and subse-
quent data acquisitions and consolidation [1]. Numerous 
sources of urban data—covering areas such as mobility, 
security, decarbonisation, urban planning, local develop-
ment and civil protection—are currently being consoli-
dated in the Intelligent Management Platform of Lisbon 
(PGIL).2 In particular, the following sources of traffic data 
are currently already consolidated:

•	 road traffic data from three major types of sensors: 
(1) inductive loop detectors in major road junctions 
in the city, offering discrete views on traffic flow; (2) 
mobile devices with global positioning systems (GPS) 
and active applications such as WAZE3 or TomTom,4 

offering aggregated views of traffic congestion along 
specific road segments (geolocalized speed data); and 
(3) privacy-compliant cameras in major roads;

•	 aggregated views of public transport data, including 
passengers’ card validations and the GPS position-
ing of public vehicles. Due to privacy and security 
aspects, only aggregated views of card validations 
along the public transport network are maintained 
by the city Council. The raw trip records are main-
tained separately by each operator and consolidated 
by OTLIS to collect statistics and ensure the sound 
interoperability of ticketing systems;

•	 bike sharing data from the Lisbon’s public bike shar-
ing system (GIRA), including trip records per user, 
user feedback on bicycle’s condition, bike charg-
ing information, bike malfunction and repair status, 
among others;

•	 other sources: emerging modes of transportation, 
including private scooter traffic data, are being also 
consolidated. An entry requirement for new pri-
vate operators is precisely the full disclosure of trip 
records.

4.2.3 � Context data incorporation
The Lisbon city Council further established protocols to 
collect diversified sources of situational context informa-
tion with potential impact on traffic for guiding mobility 
decisions. Some of the available sources of context data 
include:

•	 public events, including conventions, festivals, con-
certs, and sport events. The historic and prospec-
tive events are currently sourced from the cultural 

Table 1  Public transport operators in the Lisbon Metropolitan Area

Sources: Road operators—IMT (SIGGESC, February 11, 2016); Railway operators—Gismédia (Transporlis) October, 2012

Operators Type Routes (n.°) Stops (n.°) Length (km) Distance average 
between stops 
(m)

Carris Bus 77 2.174 796 366

Rodoviária de Lisboa Bus 101 2.238 1.316 588

TST-Transportes Sul do Tejo Bus 193 5.247 3.927 748

CP-Urbanos de Lisboa Rail transport 3 65 179 2.754

Fertagus Rail transport 1 14 54 3.857

Metro-Metropolitano de Lisboa Subway 4 50 43 860

Transtejo & Soflusa Ferry 6 9 37 4.111

1  https://​www.​porta​lviva.​pt/​pt/​homep​age/​sobre-a-​otlis/​empre​sas-​adere​ntes.​
aspx.
2  https://​lisbo​ainte​ligen​te.​cm-​lisboa.​pt/.

3  https://​www.​waze.​com/​en-​GB/.
4  https://​www.​tomtom.​com/​engb.

https://www.portalviva.pt/pt/homepage/sobre-a-otlis/empresas-aderentes.aspx
https://www.portalviva.pt/pt/homepage/sobre-a-otlis/empresas-aderentes.aspx
https://lisboainteligente.cm-lisboa.pt/
https://www.waze.com/en-GB/
https://www.tomtom.com/engb
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city agenda and planned usage of halls, stadiums and 
open areas;

•	 urban planning of the city with the localization of 
traffic generator-attractor poles, including: com-
mercial poles (malls, commercial permits, markets, 
terminals), education facilities (public and private 
schools, universities, institutes), health-related facili-
ties, sport facilities, cultural poles (concert halls, 
museums, theatres), recreational spaces, parks, or 
citizen spaces;

•	 ongoing and planned construction road works (traffic 
conditioning events) characterized by a set of trajec-
tories with (possibly non-convex) interval of obstruc-
tion and accompanying details (including the number 
of affected ways and whether interruption is spas-
modic);

•	 weather record data sourced from three meteorologi-
cal stations maintained by Instituto Português do Mar 
e da Atmosfera (Portuguese weather agency);

•	 other sources of interest, including details on traffic 
and transport networks (mostly walking, road and 
cycling infrastructures), zoning information (includ-
ing traffic analysis zones), city occurrences (including 
road accidents and incidents, medical emergencies, 
fires and floods, logistical help and falling structures, 
transport requests, conservation and complaints, 
and rescue and civil protection), and other calen-
dric information with impact on traffic patterns (e.g., 
bank holidays).

The city Council standardly stores these different con-
text data sources using semi-structured data representa-
tions (JSON) at the Lisboa Aberta (Open Lisbon) portal. 
The repositories are periodically updated in order to 
facilitate administrative tasks, as well as to potentiate 
complementary strategic and research initiatives.

4.2.4 � Multimodal analysis of massive traffic data
Multiple contributions on multimodal traffic data analy-
sis have been undertaken in the context of the ILU pro-
ject, rooted on the interdisciplinary triaxial lens: data 
science and statistics—urban mobility planning—arti-
ficial intelligence. Cerqueira et  al. [13] proposed an 
approach for inferring dynamic and multimodal origin–
destination matrices using bus, tram and subways modes. 
Approximately 20% of journeys in the Lisbon’s trans-
portation network require one or more transfers. The 
approach supports dynamic OD inference along param-
eterizable calendrical rules, spatial criteria. Traffic flows 
can be further decomposed in accordance with the user 
profile and the nature of trips. Finally, the target ODs 
gather several statistics that support traffic flow analysis, 
helping CARRIS, METRO and the Lisbon city Council to 

detect vulnerabilities throughout the transport network, 
including statistics pertaining to commutation needs, 
walking distances and trip durations. On the same work, 
we further proposed alight bus stop inference models in 
the absence and presence of multimodal views. The gath-
ered results show that the multimodal model successfully 
estimated the exits of 85% of trip segments, + 10 pp than 
the monomodal counterpart.

On the previous work of Neves et  al. [44], we tack-
led the problem of mining actionable patterns of road 
mobility from heterogeneous sources of traffic data. To 
this end, we proposed the combined use of data trans-
formations and pattern-based biclustering searches to 
comprehensively explore spatiotemporal associations 
within road traffic data. Results using geolocalized speed 
data from mobile devices and inductive loop counter 
data from stationary devices at major arteries in the city 
of Lisbon confirm the role of the proposed integrative 
data mining methodology to discover actionable traffic 
patterns.

These earlier contributions, together with additional 
predictive approaches for multimodal traffic data analy-
sis [54] and online Big Data visualization facilities, are 
currently integrated within a recommendation system, 
termed ILU App. The deployment of this set of urban 
analytics tools within the PGIL managed by the city of 
Lisbon, is expected to support urban mobility planning 
giving priority for public transport options and the inte-
gration of active travel modes (walking, shared public 
bicycles) with bus and/or metro/subway. Moreover, the 
full scalability and online nature of the devised tools can 
be enriched by targeting other dimensions of the city 
dynamics in the post-pandemic era.

4.2.5 � Emerging traffic changes
In urban mobility, emerging patterns reveal ongoing 
changes in city traffic dynamics, whose growth along 
time may indicate the establishment of new congestion 
trends along roads, stations or routes. Those trends can 
evolve to create traffic bottlenecks if timely precautions 
are not taken. As such, the early detection of emerging 
patterns offers urban planners the opportunity to make 
the necessary provisions to urban mobility.

In the earlier works of Neves et  al. [44], we proposed 
the E2PAT method to discover emerging patterns from 
heterogoeneous traffic data sources in linear time. E2PAT 
combines spatiotemporal data mappings with simple 
yet effective time series differencing operations to find 
emerging traffic behaviors. E2PAT further provides sta-
tistical guarantees of pattern growth, support and accu-
racy, as well as visualization and navigation facilities, 
to safeguard the soundness and usability of the multi-
modal pattern analysis process. An integrative score is 
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considered to measure the relevance of emerging pat-
terns, offering a sound criterion to control the false posi-
tive and false negative discovery rates. E2PAT has been 
both applied to the Lisbon’s road traffic monitoring sys-
tem and public transport network. Results confirm their 
relevance to retrieve all emerging (de)congestions in the 
road, stations and public vehicles in accordance with flex-
ible spatial criteria and calendrical constraints.

4.2.6 � Context‑aware learning
Historical and prospective sources of context data are 
maintained by the Lisbon city Council in semi-structured 
repositories that can be standardly accessed, facilitat-
ing structured retrieval of information in accordance 
with spatial and temporal criteria of interest [36, 54]. In 
some of the previous works conducted in the context of 
the ILU project [11, 36], traffic data has been segmented 
in accordance with the available situational context—
comparable events and calendrical, meteorological and 
spatial context. In addition, correlations between urban 
traffic in Lisbon and their situational context have been 
comprehensively computed with the aim of producing 
correction factors to automatically adjust descriptive 
and predictive models [23, 62]. Illustrating, the effect 
of extreme weather conditions on the public cycling 
demand demand has been assessed for a superior model-
ling of traffic dynamics [11]. In this same work [11], we 
also show that the available context, whether static or 
temporal, can be used to augment traffic data. We show 
that the application of these three groups of context-
aware learning principles—context-driven corrections, 
context-driven data segmentation and context-driven 
data augmentation—can be pursued irrespectively of the 
underlying spatiotemporal data structure. In particular, 
the impact of road interdictions, public events (including 
sport matches and large-scale concerts), and traffic gen-
eration-attraction poles on traffic is quantified.

In an alternative work, Sardinha et  al. [54] extended 
recurrent neural network layering to incorporate both 
historical and prospective sources of context with the aim 
of improving traffic forecasts. To this end, a sequential 
composition of long short term memory (LSTM) com-
ponents and/or gated recurrent units (GRU) is proposed, 
where historical sources of context data are considered 
at the initial layers and prospective sources of context 
data at the latter layers. Historical context can be com-
bined at the input layer to guide the learning task by rely-
ing on masking principles. For instance, calendric masks 
can mark weekdays or academic periods and breaks, 
situational masks mark periods where events of inter-
est may impact the demand observed at a given geogra-
phy, and weather masks are associated with multivariate 
time series with as many variables as weather attributes 

of interests. Prospective context data, such as weather 
forecasts and planned events, can be complementarily 
inputted into the last LSTM component to adjust predic-
tions. Using public cycling traffic data in Lisbon, we show 
the role of historic and prospective sources of context to 
guide predictive tasks.

5 � Results: multimodality indices in the city 
of Lisbon

Section 4 provided a general view on some of the ongoing 
initiatives and contributions towards multimodal traffic 
data analysis in the city of Lisbon. This section instanti-
ates some of the principles enumerated in Sect. 3 with a 
specific purpose at hands: performing a spatiotemporal 
analysis of multimodality indices along the city of Lisbon 
to assess social equity aspects on the access to different 
transport modes.

Data. To conduct this study, we primarily rely on 
trip record data from CARRIS (bus and tram opera-
tor), METRO (subway operator) and EMEL/GIRA (bike 
sharing operator) given their comprehensive footprint 
coverage along the city. As introduced in Sect. 4.1, addi-
tional public carriers operate within the broader Lisbon 
Metropolitan Area (LMA) to offer accesses from nearby 
municipalities into the Lisbon city peripheries. Although 
the inclusion of trip records from these additional carri-
ers are not considered in this work, they are relevant to 
provide a more comprehensive view on multimodality.

Figure 2 identifies the routes of the major public carri-
ers in Lisbon. Figure 2A, B provide respectively the routes 
of CARRIS and METRO carriers. In Fig.  2B, the public 
bike sharing stations (green) and stationary road sensors 
(blue) are also displayed. Figure 2C complement this view 
with the routes of train operators (CP and Fertagus) and 
inland waterway operators (Transtejo and Soflusa), while 
Fig.  2D confronts the station footprint of CARRIS (yel-
low) against the additional public bus carriers (TST, Rod-
Lisboa, Sulfertagus).

For the analysis, we have considered all trip records 
from October 2019. A total 32.786.326 trips were 
recorded in the METRO network (65 million smart card 
validations at entry and exit stations), 11.360.894 trips 
were recorded at the entry of trams and buses in the 
CARRIS network, and 146.232 bicycles were picked up 
at the public GIRA’s bike sharing network during this 
period.

Figure 3 provides general statistics pertaining to aver-
age daily use of each mode during weekdays and week-
ends, while Fig. 4 offers a zoom-in on the METRO and 
CARRIS network to decompose the validations per 
subway line (Fig.  4A) and per cluster of routes in the 
bus-tram network (Fig. 4B).
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Spatial and temporal criteria. Multimodal pattern 
analysis can be conducted at different spatial granu-
larities. Two major possibilities are considered. First, 
the user can manually specify the target geographical 
region of interest using polygon and circular mark-
ing facilities. Second, the user can select predefined 
regions. We provide the following zoning maps for the 
Lisbon Metropolitan Area:

•	 Traffic Analysis Zones (TAZ): geographical unit 
used in transportation planning models to assess 
socio-economic indicators (Fig. 5a);

•	 Municipalities: coarsest geographical unit for the city. 
Currently, this work uses city parishes as the admin-
istrative criterion of division (Fig. 5b);

•	 Sections: finest geographical unit, comprising small 
districts and neighbourhoods (Fig. 5c);

Under the selected spatial granularity, traffic events, 
such as smart card validations and individuals’ trajecto-
ries, as well as the accompanying situational context data, 
are then linked to one or more Lisbon’s zones in accord-
ance with their spatial extent.

Calendrical constraints—such as day of the week 
(e.g., Mondays), weekdays, holidays or on/off-academic 
period calendars—can be placed to segment the avail-
able traffic data. The introduced principles for mul-
timodal pattern analysis (Sect.  4) can then be applied 
per calendar or, alternatively, correction factors can 
be learned from calendrical annotations to guide the 

Fig. 2  A Routes of CARRIS (major bus operator) by class: night (cobalt), red, green, blue, yellow, orange, pink buses. B Subway METRO stations and 
lines (red), GIRA bike stations (green) and road sensors (blue). C Stations and routes of railway and inland waterway operators: CP (orange), Fertagus 
(blue), Transtejo (dark green) and Soflusa (lime). D Stations of four major bus operators: CARRIS (yellow), RodLisboa (brown), TST (light blue) and 
Sulfertagus (lime)
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Fig. 3  Number of daily trips along subway (METRO), bus-tram (CARRIS), and cycling (GIRA) modes of transport in Lisbon on working days and 
weekends, October 2019

Fig. 4  Number of daily trips along the four METRO lines (subway) and seven CARRIS clusters of routes (bus-tram) on working days, October 2019

Fig. 5  Zoning: geographical decomposition of the Lisbon city at different granularities
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Fig. 6  Cycling-bus-subway quota (modal trip share) across the major traffic analysis zones (TAZ) in Lisbon, October 2019
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target tasks. Second, time intervals (e.g., on/off-peak 
hour intervals) or a fixed time granularity (e.g., 15-min) 
can be optionally specified to guide traffic data descrip-
tors or predictors. For instance, passenger volume 
series in public transport can be resampled from card 
validations. In the absence of a minimum time granu-
larity, the data analysis can be conducted at the raw 
event level or under multiple time aggregations.

Once spatiotemporal constraints are fixed, multi-
dimensional querying and subsequent data mappings 
are provided to retrieve the desirable spatiotemporal 
data structures in accordance with the principles intro-
duced along Sect. 4.

Mode distribution. Considering traffic analysis 
zones (TAZ) as the spatial criteria, Fig.  6 provides a 
comprehensive view of the quota of the three targeted 
modes of transport. It shall be noted that not all TAZ 
are covered by subway or bike stations, hence the pre-
dominance of the bus mode (CARRIS) for a significant 
number of zones. The adherence towards the cycling 
mode of transport is considerably smaller in magnitude 
for most of the zones.

To assess how the modes are distributed in specific 
regions of interest, we consider the Entrecampos urban 
area. Entrecampos is an interface area that encom-
passes all modes of transport and is further charac-
terized by the presence of business and cultural traffic 
generation poles.

Figure 7A, B provide a zoom-in into this area, showing 
the subway, bus and cycling stations, and further high-
lighting some of the commercial, healthcare, educational 
and cultural poles contained within this area.

In October 2019, we find a total of 19,033 bike pick-
ups in this area, 1,786,568 smart card entry validations at 
the Entrecampos subway station, and 201,441 smart card 
validations at the bus stops in this area. Figure 7C depicts 
the hourly volume of check-in validations on Entrecam-
pos’ bus stops, while Fig.  7D shows both check-in and 
check-out card validations for the two subway stations 
situated in this area under 15-min intervals. Generally, 
we observe that the amount and pattern of card valida-
tions strongly vary across stations.

Multimodality. For detecting vulnerabilities associated 
with multimodal transportation, two major options are 
made available. The user can select one of the introduced 
indices of multimodality and use them to assess them at 

the passenger level or, in alternative, at a geographical 
level by assessing the multimodal offering associated with 
a given regions.

Considering passenger level views, Fig.  8 provides 
a comprehensive view on the intensity of subway and 
bus usage per passenger. Passengers are distributed in 
accordance with the number of validations in METRO 
and CARRIS operators throughout October 2019.

Considering geographical level views, Fig.  9 (and the 
corresponding Table 2 in “Appendix”) presents the spatial 
distribution of the Herfindahl Hirschman index (Eq.  1) 
and multimodality Gini index (Eq. 2) for the traffic analy-
sis zones (TAZ) of the Lisbon city. To this end, we rely on 
the volume of passenger entries and exits within the bus, 
tram, subway and cycling modes of transport along Octo-
ber 2019. These state-of-the-art indices of multimodality 
are selected due to their sensitivity to the intensity of use 
per mode, bounded score ranges, and inherent simplicity.

Generally, we can observe two major sources of mul-
timodal penalties: the presence of many zones with only 
mode of transport (generally bus on the periphery), as 
well as the intense preference towards subway trans-
port in the center of the city. Despite the concordance of 
views offered by both indices, the gathered results further 
underline the presence of some significant differences, 
highlighting the importance of selecting each multimo-
dality index aligned with the end purpose of the study.

Considering the revised HH index sensitive to the 
absence of traffic generated by modes without stations 
on a given zone, we can observe that the peripherical 
zones of the city are not as penalized by this index as they 
are by the original HH index which is normally used for 
equity assessment.

Figure  10 (and the corresponding Table  3 in “Appen-
dix”) extends the previous analysis for Lisbon municipali-
ties, highlighting differences as the coarser zones are now 
able to encompass new stations and further suggesting 
the importance of identifying a proper spatial criterion 
for the analysis of multimodal indices.

Multimodality indices at passenger and geographi-
cal levels offer an initial characterization of modal pref-
erences when multiple modes are available, mobility 
restrictions, and social equity aspects. The comprehen-
sive analysis of these indices is expected to assist the 
municipality of Lisbon and comparable cities in mov-
ing towards urban mobility plans where active modes 

Fig. 7  A Subway stations (red), bus stops (yellow), bike sharing stations (green) and road sensors (blue) in the Entrecampos district. B Cycling roads, 
green parks, commercial poles (yellow), schools and institutes (light blue), health centres (red) and cultural poles (blue) in the Entrecampos district. 
C Hourly check-in validations in CARRIS buses at six stops in the Entrecampos area on a typical weekday. D Check-in and check-out validations at 
METRO stations in Entrecampos on a typical weekday

(See figure on next page.)
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of transportations are prioritized. As these indices are 
grounded on trip record data, they provide an objective 
means to establish coordination efforts among munici-
palities and carriers; and offer the possibility to monitor 
reforms and continuously align decisions with the ongo-
ing city traffic transformations, ensuring that the public 
transport system responds to emerging multimodal traf-
fic vulnerabilities, a growing need given the transforma-
tions and changing regulations observed in a pandemic 
context.

Incorporating situational context. The analysis of 
multimodality indices is only meaningful in the presence 
of situational context. In this work, we consider the role 
of traffic generation poles to this end. Traffic generation 

and attraction poles generally refers to commercial areas, 
employment centres such as business parks and enter-
prises, and collective equipment like hospitals, schools and 
stadiums, that generate or attract a significant volume of 
vehicle trips, either from contributors, visitors or providers 
at different times of the days. We currently maintain a com-
plete localization of traffic generation poles for the city of 
Lisbon, as well as major city events (such as large concerts, 
congresses and soccer matches). Figure 11 provides maps 
of the city with some poles with impact on the city traffic.

The combined analysis of the computed multimodal-
ity indices against the above traffic generation/attraction 
poles’, as well as station-route maps, is essential to guaran-
tee the presence of multiple options of transport in areas 

Fig. 8  Number of passengers in accordance with the intensity of usage per subway and bus-tram modes in October 2019. Groups of passengers 
are defined according to the number of entry smart card validations in METRO and CARRIS networks

Fig. 9  TAZ distribution of multimodality indices of bus-subway-cycling modes of transport in October 2019. A Herfindahl Hirschman index, HHm 
(1). B Gini index as proposed by (Tahmasbi et al. 2019)
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with high density of traffic generation poles. The combined 
analysis of these poles and individual traffic dynamics 
offers the unique opportunity to comprehensively model 
the spatiotemporal distribution of traffic along the city. 
Complementarily, the surveyed indices can be revised to 
further measure how the volume of passengers generated 
and attracted by nearby poles are being currently satisfied 
by the co-located modes of public transport.

6 � Conclusions
The research work offers a structured view on the oppor-
tunities and challenges for the analysis of big traffic data 
produced from heterogeneous sources and passenger 
transport modes for supporting a more inclusive mobility 
planning. A set of guidelines to address existing challenges, 
while leveraging on opportunities, were sourced from the 
ongoing advances in the fields of artificial intelligence and 

Fig. 10  Distribution of multimodality indices (HH and Gini indices) along Lisbon municipalities considering bus-subway-cycling modes of transport 
in October 2019. A Herfindahl Hirschman index (1). B Gini index (2)

Fig. 11  A Cycling roads (green), art and cultural poles (red), and tourist attraction poles (yellow). B Major traffic generation poles: commercial 
(blue), schools and institutes (green) and health centres (red)
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data science which were applied to urban mobility through 
a real-life case study engaging the City of Lisbon and its 
major public passenger transport operators.

The established initiatives by the Lisbon City Coun-
cil towards the consolidation of relevant sources of urban 
data on its intelligent management platform, together with 
the integrative fare collection system and entry require-
ments for carriers operating in the Lisbon metropolitan 
area, offers unique opportunities for multimodal pattern 
analysis and cross-carrier coordination. Still, the inherent 
nature of multimodal traffic data—heterogeneous, mas-
sive in size, rich in spatiotemporal dynamics, subjected to 
variable aspects, and context-dependent—together with 
the increasing disruptive changes in urban traffic poses 
challenges towards the pursue of data-centric multimodal 
decisions. To tackle these challenges, the outlined work 
combines a comprehensive set of principles from context-
aware, spatiotemporal, distributed and relational data 
mining. In particular, the spatiotemporal analysis of mul-
timodaility indices against available situational context 
offers an initial simplistic way of detecting urban zones 
with the lack of adequate transport in specific time peri-
ods and imbalanced preferences towards specific modes 
of transport. This is a relevant first step for the city of 

Lisbon to comprehensively diagnose vulnerabilities in the 
multimodal public transport network and to assess causal 
factors for the skewed distributions of demand, whether 
caused by the inadequacy of transport supply at specific 
time periods, lack of multimodal integration at destination 
areas, or reveal the domination of another mode of trans-
port. Although the work represents a valuable contribution 
for the city to advance towards sustainable mobility, com-
plementary qualitative research is recommended to bet-
ter understand the complex interactions between human 
behaviour, the specific socioeconomic context of individu-
als and the range of traffic patterns found in each city area.

The conducted analysis of multimodal aspects pertain-
ing to the Lisbon case suggest that decisions grounded in 
available traffic data provide an objective and transparent 
means to improve the cross-modal cooperation of public 
passenger transport operators and explore untapped syner-
gies for multimodal and sustainable mobility planning.

Appendix
See Tables 2 and 3.

Table 2  Distribution of multimodality indices (HH and Gini) along Lisbon’s traffic analysis zones (TAZ) considering bus-subway-cycling 
modes of transport during October 2019

region HH Gini region HH Gini region HH Gini

Belém (Ribeirinha—Belém) 1.00 0.67 Campolide (Campolide) 1.00 0.67 Arroios (Estefânia) 0.95 0.65

Belém (Alto Duque) 1.00 0.67 São Domingos Benfica (Estrada Luz) 0.82 0.60 Arroios (Arroios | Norte) 0.88 0.62

Belém (Belém | Oeste) 1.00 0.67 Carnide (Avenidas Novas) 0.84 0.61 Arroios (Arroios | Sul) 0.73 0.56

Belém (Belém | Este) 1.00 0.67 Carnide (Carnide) 0.64 0.51 Arroios (Anjos) 0.56 0.45

Ajuda (Restelo) 1.00 0.67 Lumiar (Telheiras | Oeste) 0.69 0.54 Santa Maria Maior (Baixa) 0.78 0.58

Alcântara (Santo Amaro | Oeste) 1.00 0.67 Lumiar (Telheiras | Este) 0.83 0.60 Santa Maria Maior (Castelo) 0.55 0.44

Alcântara (Santo Amaro | Sul) 1.00 0.67 Lumiar (Parque Europa) 0.62 0.49 São Vicente de Fora (São Vicente) 0.62 0.49

Alcântara (Santo Amaro | Norte) 1.00 0.67 Lumiar (Lumiar | Oeste) 0.66 0.52 Penha de França (Penha França) 1.00 0.67

Ajuda (Ajuda | Sul) 1.00 0.67 Lumiar (Lumiar | Sul) 1.00 0.67 Penha de França (São João) 1.00 0.67

Ajuda (Ajuda | Oeste) 1.00 0.67 Lumiar (Paço Lumiar) 1.00 0.67 Beato (Madre Deus | Oeste) 1.00 0.67

Ajuda (Ajuda | Norte) 1.00 0.67 Lumiar (Telheiras | Norte) 1.00 0.67 Beato (Picheleira) 1.00 0.67

Estrela (Ribeirinha—Belém) 1.00 0.67 Lumiar (Lumiar | Norte) 1.00 0.67 Beato (Madre Deus | Sul) 1.00 0.67

Estrela (Alcântara) 1.00 0.67 Santa Clara (Ameixoeira | Norte) 0.53 0.42 Beato (Madre Deus | Norte) 1.00 0.67

Estrela (Lapa) 1.00 0.67 Santa Clara (Ameixoeira | Sul) 1.00 0.67 Marvila (Chelas) 1.00 0.67

Estrela (Estrela) 0.99 0.66 Alvalade (Hospital Santa Maria | 
Oeste)

1.00 0.67 Marvila (Marechal Gomes da Costa) 0.67 0.53

Campo de Ourique (Campo 
Ourique)

1.00 0.67 Alvalade (Hospital Santa Maria | 
Este)

0.86 0.61 Marvila (Infante D Henrique—Porto 
| Este)

1.00 0.67

Campo de Ourique (Amoreiras) 1.00 0.67 Alvalade (Cidade Universitária) 0.88 0.62 Marvila (Infante D Henrique—Porto 
| Oeste)

1.00 0.67

Misericórdia (São Paulo) 0.66 0.52 Alvalade (Campo Grande) 1.00 0.67 Marvila (Parque Bela Vista) 1.00 0.67

Misericórdia (Bairro Alto) 1.00 0.67 Alvalade (Avenida do Brasil) 0.95 0.65 Marvila (Bairro Armador) 0.71 0.55

Santo António (Amoreiras) 0.82 0.60 Alvalade (Alvalade) 0.66 0.52 Lumiar (Aeroporto) 0.88 0.62
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Table 3  Distribution of multimodality indices (HH and Gini) along Lisbon parishes considering bus, subway and cycling modes of 
transport during October 2019

parish HH Gini parish HH Gini parish HH Gini

Santo Antonio 0.59 0.47 Estrela 1.00 0.67 Alcantara 1.00 0.67

Parque das Nacoes 0.75 0.57 Arroios 0.71 0.55 Campo de Ourique 1.00 0.67

Marvila 0.53 0.41 Santa Clara 0.50 0.34 Sao Vicente 0.62 0.49

Ajuda 1.00 0.67 Avenidas Novas 0.87 0.62 Olivais 0.66 0.52

Areeiro 0.52 0.41 Carnide 0.57 0.46 Misericordia 0.63 0.50

Santa Maria Maior 0.73 0.56 S. Domingos Benfica 0.50 0.34 Lumiar 0.70 0.55

Alvalade 0.61 0.49 Beato 0.54 0.43 Penha de Franca 1.00 0.67

Belem 1.00 0.67 Campolide 0.66 0.52 Benfica 0.52 0.39

region HH Gini region HH Gini region HH Gini

Santo António (São Mamede) 0.98 0.66 Alvalade (São João de Brito) 0.96 0.65 Olivais (Logística Aeroportuaria) 1.00 0.67

Santo António (São José) 0.61 0.49 Alvalade (Roma—Areeiro | Este) 0.80 0.59 Olivais (Alfredo Bensaúde) 0.58 0.47

Benfica (Colégio Militar/Luz) 1.00 0.67 Alvalade (Roma—Areeiro | Oeste) 1.00 0.67 Olivais (Encarnação | Oeste) 1.00 0.67

Benfica (Benfica | Sul) 1.00 0.67 Av. Novas (Bairro Santos | Este) 0.94 0.64 Olivais (Relógio) 1.00 0.67

Benfica (Benfica | Norte) 1.00 0.67 Av. Novas (Bairro Santos | Oeste) 1.00 0.67 Olivais (Olivais—Centro) 1.00 0.67

Benfica (Monsanto | Norte) 1.00 0.67 Av. Novas (Campo Pequeno | Oeste) 1.00 0.67 Olivais (Encarnação | Este) 1.00 0.67

São Domingos Benfica 1.00 0.67 Av. Novas (Campo Pequeno | Este) 0.93 0.64 Olivais (Olivais | Norte) 0.75 0.57

São Domingos Benfica (Sete Rios | 
Norte)

0.52 0.40 Av. Novas (Avenidas Novas | Oeste) 0.96 0.65 Olivais (Olivais | Sul) 0.88 0.63

São Domingos Benfica (Estrada Luz 
| Este)

0.98 0.66 Av. Novas (Parque Eduardo VII) 0.88 0.62 Olivais (Olivais | Este) 1.00 0.67

São Domingos Benfica (Monsanto 
| Norte)

1.00 0.67 Av. Novas (Picoas) 0.95 0.65 Parque das Nações (Parque Nações 
| Sul)

0.83 0.61

São Domingos de Benfica (Sete Rios 
| Sul)

1.00 0.67 Av. Novas (Avenidas Novas | Este) 0.75 0.57 Parque das Nações (Estação Oriente) 0.81 0.60

Campolide (Bairro Liberdade) 1.00 0.67 Areeiro (Areeiro | Norte) 0.59 0.47 Parque das Nações (Quinta Laran-
jeiras)

0.85 0.61

Campolide (Praça Espanha | Sul) 1.00 0.67 Areeiro (Areeiro | Sul) 0.71 0.55 Parque das Nações (Parque Nações 
| Norte)

0.83 0.61

Campolide (Praça Espanha | Norte) 0.89 0.63 Areeiro (Alto Pina) 0.60 0.48 Parque das Nações (Parque Tejo) 0.91 0.64

Table 2  (continued)
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