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Abstract 

Objectives:  This study developed an analytical framework that aims at understanding the evolutionary processes 
of a micro-mobility system (for example, bike-sharing), which offers insights into the transforming nature of a city 
transport system.

Methods:  Firstly, the framework applied a Gaussian Mixture Model to examine the long-term fluctuations of travel 
demands. Secondly, it investigated the growth trajectories of service points via exponential and logistic growth mod-
els. Cumulative connections with other points represented the growth of a service location. An eigendecomposition 
approach was used to uncover the hidden structures behind the growth curves.

Results:  This framework was applied in the docked bike-sharing program in New York City, USA. The results show 
that there existed periodic patterns of travel demands in the long term. The majority of stations grew rapidly after 
they began to operate. However, the temporal signatures of stations’ growth displayed some variations across differ-
ent locations.

Conclusion:  This proposed workflow can be employed in other cities with similar context to better investigate how 
micro-mobility systems evolve.
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1  Introduction
With the introduction of micro-mobility services, the 
landscape of modern urban transport is evolving. These 
new services have provided flexible commuting modes to 
fulfill human mobility needs. There are a wide range of 
micro-mobility options, including shared bikes, e-scoot-
ers, and e-bikes. Bike-sharing systems, as an early micro-
mobility alternative, have played an essential role in 
urban transportation ecosystems. They help to mitigate 

traffic congestion [19], lower fuel consumption [65] and 
carbon footprint [63], and benefit human health [49]. 
Bike-sharing systems also evolve rapidly. And newer gen-
erations of systems are being developed and improved 
constantly [36]. Early systems are station-based, and 
the latest generation is fully dockless. Both docked and 
dockless programs have been spreading across the world. 
Until August 2020, bike-sharing services are in opera-
tion in 2005 cities with more than 9 million public bikes, 
and 385 cities are currently deploying a bike-sharing 
system [40]. Recent years have also witnessed a boom of 
e-bike sharing systems. E-bikes are more convenient and 
less laborious than traditional bikes, thus many people 
choose e-bikes as a replacement of some conventional 
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modes such as bus and private driving. However, e-bike 
riders can be exposed to greater risks than cyclists 
because these power assisted devices have higher speed 
variations and vibration impact than bikes [37].

Micro-mobility systems pose both challenges and 
opportunities for the management of modern cities. A 
docked bike-sharing system, for example, is different 
from public transit that has fixed routes and schedules. 
Moreover, it is also unlike personal or private-hire vehi-
cles regarding routing schemes, costs, and usage patterns. 
Thus, most previous studies have mainly focused on 
understanding its operation and user behavior. There is 
a proliferation of relevant publications regarding the fluc-
tuations of travel demands [11, 25], spatiotemporal usage 
patterns of cycling activities [28, 51], and the optimiza-
tion of bike-sharing schemes [12]. Another line of inquir-
ies is to study the dynamics of micro-mobility systems. 
Because they are an integral part of urban systems, their 
interactions with built environments and other transport 
modes are of great interests [34, 42]. More importantly, 
when there is a public health crisis (such as COVID-19 
outbreak), shared bikes are preferred by many commut-
ers who normally take bus or train [56]. Unfortunately, 
traditional urban planning and transportation modeling 
practices insufficiently take into account micro-mobil-
ity system and its growth, which in turn can also be an 
opportunity to enrich modern transportation and plan-
ning theories and practices.

Romanillos et  al. [44] points out several priorities for 
future research of system sciences, one of which is to 
evaluate the growth of a system and its impacts. The 
introduction of micro-mobility sharing will likely shape 
urban landscape across the globe in the future, but its 
long-term growth patterns are still under-researched. 
Hence, this study aims at developing a methodologi-
cal framework to recognize the network evolution of a 
micro-mobility system. The framework intends to detect 
overall periodic patterns of the system via a Gaussian 
Mixture Model clustering approach, and employs expo-
nential and logistic models to explore the growth trajec-
tories of bike stations. An eigendecomposition approach 
is employed to unravel the hidden structures of the tra-
jectories. The proposed framework was applied using 
collected cycling trips from Citi Bike, a docked bike-shar-
ing scheme in New York City, USA. The main contribu-
tions of this work lie in the development of an integrated 
framework and the reconstruction of the growth trajec-
tories of a micro-mobility system through a simple pro-
cess based on the eigendecomposition method.

The rest of this paper is organized with the following 
sections. Section 2 provides a general review on the top-
ics of the evolution of social, transportation, and micro-
mobility networks. Section  3 describes the framework 
and its underlying methodologies. Section  4 presents 
case study results. Subsequently, Sect. 5 extends our dis-
cussions on emerging findings and concludes this study 
with potential limitations and future research directions.

Table 1  Global studies investigating the growth of transportation networks

AS—Asia; EU—Europe; NA—North America; OC—Oceania; WW—worldwide

Themes Highlights Studies and regions (selective)

The geography of network growth Surface transportation networks subject to geographi-
cal constraints;

Gastner and Newman [20] (EU) Barrat et al. [6] (NA)

Simulation models to replicate the evolution of trans-
portation networks

Taaffe et al. [52] (WW) Pred [41] (NA) RIMMER [43] (OC) 
Farahani et al. [18] (EU) Jaržemskiene [27](WW)

Correlations among growth factors Driving or interacting forces behind the expansion of 
transportation networks, e.g., land use, vehile miles 
traveled, economic development, etc.

Antrop [3] (EU) McKinnon [39] (EU) Shi et al. [48] (AS) 
Cervero and Hansen [10] (NA)

Analyses of topological properties View it as a complex network Tsiotas [55] (EU) Ingvardson and Nielsen [26] (EU)

Table 2  Global studies investigating the evolution of micro-mobility systems and networks

AS—Asia; EU—Europe; NA—North America; OC—Oceania; WW—worldwide

Themes Highlights Studies and regions (selective)

The evolution of micro-mobility systems and 
networks

Different generations of micro-mobility systems; DeMaio [15] (WW) Shaheen et al. [47] (EU, NA, AS) 
Almannaa et al. [2] (NA)

Modeling of a growing system Hamon et al. [22] (EU) Gehrke and Welch [21](NA) 
He et al. [23] (EU) Wang and Lindsey [57] (NA)

Understand the supply and demand equilibrium 
from the lens of growth dynamics

Model trip demands at the station level Yoon et al. [62] (EU) Yang et al. [61] (NA) [13] (NA)
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2 � Related works
Investigating the evolution of transportation networks 
(including micro-mobility systems) is a worldwide aca-
demic interest (Tables 1 and 2). This section reviews past 
efforts regarding the growth of transportation and micro-
mobility networks in two relevant aspects. First, we 
summarize the concepts of network growth and its appli-
cations in the social and transportation sciences because 
these are early endeavors on probing evolving networks. 
Second, we present recent studies on the evolution of 
micro-mobility systems. Specifically, related works are 
organized into tables to highlight their geographical con-
text and relevance to this study (Tables 1 and 2).

2.1 � Modeling the growth of social and transportation 
networks

Network evolution began to draw scientific attention 
when people observed a power-law distribution in web, 
citation, and social interaction networks. The prefer-
ential attachment model and its extensions have been 
developed to reproduce the power-law phenomenon 
by assuming that new links are more likely to attach to 
the nodes with high degrees [1]. These models have 
surprisingly high precision and a concise mathemati-
cal formation. Therefore, preferential attachment-based 
approaches have been applied in empirical studies about 
social networks. For example, Kossinets and Watts [29] 
investigated an evolving social network of over 40,000 
students and faculty in a university and modeled how 
they interacted via emails. They found that, on average, 
the network properties were stale over time. Similarly, 
Kumar et al. [30] applied a modified preferential attach-
ment model into an online social network consisting of 
5 million individuals. The authors identified a stable net-
work structure with three major components: singletons, 
communities, and giant components.

Physicists have also devoted efforts to understand-
ing the topological properties of evolving transportation 
networks (Table  1). Transportation networks are differ-
ent from other small-world networks because the former 
is situated in a constraint geographical location [14, 20]. 
However, a transportation network may share common 
properties with non-spatial counterparts if viewed from 
the perspective of network growth [31]. The modeling of 
evolving transportation networks has become a subject 
of intense academic scrutiny for more than seven dec-
ades. Previous efforts are within three main streams: the 
geography of network growth, the correlations among 
growth properties, traffic flows, and transport policies, 
and the analyses of topological properties [59]. Surface 
transportation networks such as roads and highways 
can be naturally thought of as evolving networks. First, 
early attempts have centered at simulating continual 

transformations of road networks that have geographical 
constraints. Taaffe  et  al.  [52] first described a four-step 
model for road development in a series of discretized 
stages. This fourstage framework assumed that the con-
nections and penetrations between seaports and inland 
trading points facilitated road links. This classic model 
was later adopted in other case studies under different 
spatial settings [41, 43]. Transportation networks are 
parts of an urban system, and they are inter-connected 
with the other sub-components of a city. Secondly, net-
work growth is driven by the rational decisions of travel 
users, infrastructure suppliers, developers, and policy 
initiators. Traffic flows are believed as a critical role in 
shaping network geometries [16]. Many interesting phe-
nomena of evolving transportation networks have been 
discovered as well. For instance, Cervero and Hansen [10] 
observed the 20-year changes of road networks in Cali-
fornia, USA, and found that there existed reciprocal rela-
tionships between vehicle miles traveled and road supply. 
Likewise, Levinson  [33] and Taylor  et  al.  [53] discov-
ered similar mutual effects between transit demand and 
supply. In conclusion, phenomenal interests have been 
attracted to the domain of growing transportation net-
works. There are numerous successful applications of the 
concepts of preferential attachment models that emerged 
earlier in natural sciences.

2.2 � Understanding the evolution of micro‑mobility 
systems

Early probe of micro-mobility systems is majorly cen-
tered on bike-sharing systems. Pioneering bike-shar-
ing schemes are largely station-based, and the newest 
variant that becomes ubiquitous is fully dockless. This 
can be viewed as different generations of bike-sharing 
programs, a three-stage transformation as defined by 
DeMaio [15] and Shaheen et al. [47]. More recent efforts 
were directed to the growth of a single system. As shown 
in Table 2, such research can be dichotomized into two 
categories: the modeling and analysis of evolving bike-
sharing systems; and the adoption of growth simulation 
to understand the demand/supply equilibrium of a sys-
tem [35, 54]. For instance, Hamon  et  al.  [22] converted 
bike-sharing networks over a period into dynamic graphs 
and conducted spectral analysis on the graphs. The 
results provided a visualization of evolving bike-sharing 
activities. Similarly, representing networks as signals, 
Borgnat  et  al.  [7] found that the shared bike system in 
Lyon was a nonstationary evolution over the long term. 
Compared with these studies of the first category, inves-
tigating the dynamics of bike-sharing demands is more 
prevalent. Such research aims to understand the system-
atic equilibrium between trip demands and the supply of 
shared bikes. This process is examined over a short time 
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scale, to demonstrate if the initial distribution of shared 
facilities matches the imbalanced demands over space 
when the system evolves. For instance, Yoon  et  al.  [62] 
developed a prediction model that described the evolu-
tion of a bike-sharing system within a short time window 
(1  h). Chiariotti  et  al.  [13] used a birth-death approach 
to monitor bike stations’ docking capacities and con-
structed a network to determine the routes where bikes 
were redistributed among different stations. An essen-
tial aspect of these studies was to monitor bike sta-
tions’ docking capacities if rebalancing strategies were 
implemented.

In recent years many cities have made substantial 
progress towards mass adoption of e-scooters, power-
assisted bikes (e-bikes), and other newer variants of 
micro-mobility sharing options. This mass adoption pro-
vides big data about these emerging transport modes, 
facilitating a proliferation of publications recently. Sev-
eral directions have been investigated, including user 
behaviors [32], spatiotemporal patterns [9, 24], and envi-
ronmental impacts of these new systems [46]. Research 
on the network evolution of e-scooter sharing is still 
limited, although a particular interest is to compare 
e-scooter/e-bike sharing with conventional bike-sharing. 
The former’s advantages lie in better performance regard-
ing sharing frequency, fleet size [64], and better replace-
ment potential of first and last-mile or short trips [8, 60], 
compared with bike-sharing.

In summary, previous efforts have been dedicated to 
the understanding of various aspects of micro-mobility 
sharing systems, including network evolution process, 
supply and demand equilibrium, and the comparison of 
different sharing systems. This work complements the 
literature and goes further to (1) explore the long-term 
periodicity of a micro-mobility system; and (2) delineate 
its growth mechanism, i.e., the network evolution process 
of connections among sharing stations or service points.

3 � Method
3.1 � The framework
This study develops a workflow to examine the evolution 
of a micro-mobility system. At a higher level, we inves-
tigate how daily trips vary periodically with a window 
of several years. Next, we simulate the cumulative con-
nections of each station or service point over space and 
time, which is an indicator of the system’s evolution. A 
critical assumption is that every micro-mobility system 
can be somehow modelled as a station, or service points-
based system. The network of a docked system can be 
represented easily, as the origins and destinations of trips 
are fixed. For dockless systems, a normal procedure is to 
impose grid cells onto a study area and treat the centroids 
of each cell as a station or service point. There are also 

other approaches to represent a dockless system through 
a voronoi diagram based on a bus stop network for exam-
ple [50]. These generated centroids can be thought of as 
hypothetical stations for a dockless system.

The logical diagram of the proposed framework is dis-
played in Fig. 1. It contains three sequential components: 
data collection and preprocessing, the modeling of the 
periodicity and evolution of the system, and geo-visual-
ization of the results.

Data collection and preprocessing. The data on cycling 
trips come with noise. Therefore, the first step is to elimi-
nate abnormal trips. First, trips that were made from/to 
any “testing” stations were excluded from analysis. Sec-
ond, trips with excessively short duration (e.g., less than 
1 min) were also removed. These trips are largely due to 
false starts or users attempting to re-dock a bike. Finally, 
trips with average speeds exceeding local biking speed 
limit were removed as well, which were probably made 
by restocking trucks carrying bikes to different stations. 
After the preprocessing, the outputs are (1) the aggre-
gated number of daily trips and (2) daily traffic networks.

The periodicity and evolution of the system. Two tasks 
are fulfilled. First, a Gaussian Mixture Model is applied 
to the data set of daily trips to identify yearly patterns of 
trip demands. Second, an eigendecomposition approach 
is used to analyze the hidden structures of each station’s 
growth trajectories, which is compared with the curve 
fitting results based on exponential and logistic models.

Geo-visualization of the results. The growth patterns of 
each station are spatially diversified. This is illustrated by 
the geo-visualization of top principal components (PC) 
extracted from the growth trajectory data. It can uncover 
the distinct growth landscape of different stations over 
the space.

3.2 � Traffic network
We can represent the system as a network where nodes 
are stations and edges denote the connections among the 
nodes. For a dockless system, hypothetical stations can be 
generated using approaches discussed in Sect. 3.1. Thus, 
a micro-mobility system can be denoted as a undirected 
network. A network on the date index i is defined as

where V is a set of the docking stations, and E denotes a 
set of edges. Specifically, the edges can be defined by

where eij is the link connecting station i and j. As we only 
consider the connections among different stations, traffic 
flows are ignored. Thus, eij is 1 if there is at least 1 trip 
appearing on this edge, and 0 otherwise. In a network on 

(1)BSi = {V ,E}

(2)E = V × V = {eij}
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a specific date, there is a set of connected nodes for each 
station. Therefore, for a certain time window, the set of 
the growth trajectories of station i can be described by

where gi is the number of cumulative connections on 
date index i, and n is the number of dates during the 
growth period.

3.3 � Prediction of the periodic of the system
The trips on weekdays and weekends show an 
upward increase and multiple local peaks (Fig.  2). The 

(3)Gi = {gi|gi, i = 1, 2, 3, . . . , n}

characteristic of multiple local peaks can be identified by 
a Mixture-of-Gaussian model.

A Gaussian Mixture Model is an approach to reveal the 
underlying degree of freedom of an unlabeled data set. Its 
primary application is to identify a clustering structure of 
the data. It fits a probability density function that has dif-
ferent components represented by a Gaussian distribu-
tion. Each distribution is parameterized with a mean and 
a covariance matrix, and thus the entire data set can be 
represented by the specified Gaussian parameters. Each 
component can be thought of as a cluster centered at a 
peak point with the highest probability.

Fig. 1  The logical framework of the proposed approach

Fig. 2  The temporal patterns of the variations of bike-share trips
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The simplest application of the Gaussian Mixture Mod-
els is to identify the clusters of a one-dimensional data 
set. It is employed by this work as well. Before fitting the 
probabilistic model, we need to convert the temporal 
trip data into an appropriate format that can be inter-
preted by the model. Take the weekday trips for example 
(Fig. 2a). The original data set can be expressed by

where TPi is the total number of weekday trips in date 
index i, and n is the total number of weekdays in the data 
set.

To model the trip distributions, we use a set of dates 
as a data representation method. The representation is 
defined by

where Wi is a vector Wi for weekday index i, in Rdi . The 
dimension di is the number of trips for weekday i, and the 
number of element in the vector is i. For example, if in 
the first weekday W1 there are 5000 trips, W1 is in R5000 
and represented by (1, 1, . . . , 1

5000

) . All the vectors are subse-

quently concatenated into a row vector that equivalently 
denotes the weekday set W as

where the dimension of W is the total number of trips. 
WT , a column vector, can be viewed as a one-dimen-
sional data set in which each data point corresponds to 
a date index. We assume that the data follow a Gauss-
ian distribution, as may indicated by Fig.  2. Thus, given 
one-dimension data set with data points x1, . . . , xn ∈ R

1 , 
we can fit it with a Gaussian Mixture Model M, which is 
parameterized by a set as

where k is the number of Gaussian components, πi is the 
weights of different components, and a component has 
mean µi , and ρ2

i .
The probability of a data point i is defined as

where Pr(i|Gj) is the probability of i under the Gaussian 
distribution of j.

Furthermore, the probability of the data set is defined 
as

(4)TP = {TPi|TPi, i = 1, 2, . . . , n}

(5)W = {Wi|Wi, i = 1, 2, . . . , n}

(6)
W = (1, . . . , 1,

︸ ︷︷ ︸

d1

2, . . . , 2,
︸ ︷︷ ︸

d2

, . . . , n, . . . , n,
︸ ︷︷ ︸

dn

)

(7)
M = {(πi,Pi)|πi, i = 1, 2, . . . , k;Pi

= N (µi, ρ
2
i ), i = 1, 2, . . . , k}

(8)Pri =

m∑

j

Pr(i,Gj) =

m∑

j

πiPr(i|Gj)

The goal is to find a model M (Eq. 7) that maximize the 
function (Eq. 9). However, there is no optimum solution 
for this problem. So the expectation–maximization algo-
rithm is employed to identify a local optimum solution. 
Given a data set with n data points of one dimension, the 
algorithm first initiates the Gaussian components ran-
domly by k-means (another clustering algorithm, please 
refer to Arthur and Vassilvitskii [4]) or other methods. 
Next, it repeats the following two steps until conver-
gence. The first step assigns each point xi fractionally to 
the k components, so the weight of xi associated with a 
component Pj is

The second step is to update the model’s parameters:

The model is a unsupervised learning task, and thus 
we do not know the true number of the Gaussian com-
ponents. Hence, the elbow method is applied to iden-
tify an optimal number of the components. Specially, 
given a candidate set of the number of components, 
Akaike information criterion (AIC) scores are generated. 
According to the elbow method, the number associated 
with the steepest decrease of the AIC is believed to a 
local optimal solution.

3.4 � The modeling of the initial growth of the system
Based on network theories, we can regard the evolution 
of a micro-mobility system as the expansion of connec-
tions of each station over time. Equation  3 tracks the 
growth statistics for each station, which serves as a basis 
to model the system’s evolution. The system is periodic 
in terms of trip demands, and it keeps the upgrade and 

(9)

Pr(data|π1P1 + · · · + πkPk)

=

n�

i=1

(π1P1(xi)+ · · · + πkPk(xi))

=

n�

i=1





k�

j=1

πj

(2πρ2
j )

1/2
exp

�

−
(xi − ui)

2

2ρ2
i

�



(10)wij = Pr(Pj|xi) =
πjPj(xi)

∑k
m πmPm(xi)

(11)πj =
1

n

n∑

i=1

wij

(12)µj =
1

nπj

n∑

i=1

wijxi

(13)ρ2
j =

1

nπj

n∑

i=1

wij(xi − µj)
2
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expansion of shared facilities. Such processes are com-
plicated, so it is hard to investigate the system’s evolu-
tion over a full life cycle. Therefore, this work adopts 
a simplified approach by only examining the system’s 
initiating period, i.e., six months after the system is 
implemented.

3.4.1 � Growth curves of connected stations
Many natural phenomena, such as population increase and 
bacteria reproduction, can be modeled by exponential or 
logistic growth. We hypothesize that the growth of a bike 
station may follow similar patterns. Therefore, the growth 
of each station is fitted against an exponential growth 
model defined by

where gi is the number of connections on date i, C, a, and 
b are model parameters.

The growth is also fitted against a logistic growth model, 
which is defined by

For each station, the model with a higher R square is 
selected.

3.4.2 � Analysis of the spatio‑temporal growth patterns 
by eigendecomposition

The hidden structures of the data may dominate the 
growth trajectories of stations. An eigendecomposition 
method can reveal such hidden patterns. Thus, it has been 
in widespread applications in human mobility studies. It is 
used to extract top PCs from a data set, and the top PCs 
can explain the inherent variance of the data. The result-
ant PC coefficients can represent the original data well. The 
eigendecomposition is a dimension reduction approach 
and particularly appropriate for those data sets with high 
dimensions. Additionally, the growth patterns of different 
stations can be reconstructed by the top few PCs and asso-
ciated coefficients. The reconstruction may indicate how 
the patterns deviate from the average growth trajectory.

Specifically, each station’s growth can be represented 
by a vector Ai = {ai1, ai2, . . . , aim} where aij refers to the 
number of connections of station i on date j, and m is 
the number of dates. Thus, the average vector µ can be 
obtained by

(14)gi = C − ae−bi

(15)gi =
C

1+ ae−bi

(16)µ =
1

N

N∑

i=1

Ai

where N is the total number of stations during the growth 
period. A station’s temporal deviation from the average 
vector is A′

i
= Ai − µ . A matrix K can be then defined by

where M is the number of dates. A covariance matrix C 
of size M ×M is an averaged outer product of K, which 
is computed by

The covariance matrix is used to calculate all the 
eigenvectors (set {ei|ei, i = 1, 2, . . . ,m} ) and associ-
ated eigenvalues ranked by descending order (set 
{�i|�i, i = 1, 2, . . . ,m} ). The eigenvectors represent the 
PCs of matrix K. A coefficient matrix B can be computed 
by

where E is a matrix whose rows denote the eigenvectors, 
and the resultant matrix B is denoted as

where bij denotes the coefficient of the jth PC for station 
i. The top few coefficients are important. They are used 
to reconstruct the original temporal signatures of the 
growth of a station, which is computed by

Empirical rules are normally adopted to determine the 
number of the top PCs applied in the reconstruction pro-
cess. For this study, we only retain the first few PCs that 
account for at least 90% of the total variance.

4 � Case study
4.1 � New York bike‑sharing system and data sources
We applied the developed framework into Citi Bike, 
a bike-sharing program in New York City, USA. Citi 
Bike is a docked system and started to operate as early 
as May 2013 and has become one of the most success-
ful bike-sharing schemes globally. Citi bike started with 
around 330 stations, and as for 2021 (the time of writing) 
it has nearly 950 stations and over 14,000 public bikes. Its 

(17)KN×M =









a
′

11 a
′

12 . . . a
′

1m

a
′

21

. . . a
′

2m
...

...

a
′

n1 a
′

n2 . . . a
′

nm









(18)C =
1

N
KTK

(19)B = KET

(20)BN×M =









b11 b12 . . . b1m

b21
. . . b2m

...
...

bn1 bn2 . . . bnm









(21)Ai = µ+ BiE
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service areas cover Manhattan, Brooklyn, Jersey City, and 
other urban districts in the city, as displayed in Fig. 3.

Data were collected from multiple open sources. Bike-
sharing trip data were fetched from Citi Bike’s official 
website (https://​www.​citib​ikenyc.​com/). The website 
maintains an online repository of trip information that is 
updated monthly. Each trip has 11 attributes: start/stop 
time and location, user type, gender, and other informa-
tion. The information about metro lines and stations were 
downloaded from two open data sources: https://​data.​ny.​
gov/ and https://​opend​ata.​cityo​fnewy​ork.​us/. The bike-
sharing data were well-prepared by the provider, and 
therefore the minimum amount of effort was put to pre-
process the data. During the first five workdays, the bike-
sharing operator tested the system extensively. Thus, the 
corresponding trip data were excluded from the analysis.

4.2 � The evolving and periodic characteristics of the system
The bike-sharing system seems to be both expanding 
and periodic, which is a primary distinction from social 
networks illustrated by Kumar et al.  [30] and Kossinets 
and Watts [29]. In other words, it may not be monotoni-
cally expanding, but rather it evolves with both expan-
sion and contraction. It has an increased number of new 
bike stations and a higher level of annual subscribed 
users in the long run (Fig.  4). However, the increases 
exhibit fluctuated patterns, as shown by Figs.  5 and  6. 
There were three periods when a batch of new stations 
was deployed, as shown by the shaded boxes in Fig. 4a). 
Nevertheless, the temporal tendencies of the amount 
of daily membership and the number of daily trips are 
mainly periodic and follow temperature fluctuations. 
This may imply a periodic component in the long-term 
evolution of the bike-sharing system. The above obser-
vations point to a potential contribution of temperature 
to the system’s periodicity, which is yet proved due to 

Fig. 3  The study area

https://www.citibikenyc.com/
https://data.ny.gov/
https://data.ny.gov/
https://opendata.cityofnewyork.us/
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the constrained scope of this study. However, While not 
demonstrated by this work, temperature, precipitation, 
wind, and other weather condition factors are suggested 
to have strong influence upon the seasonal fluctuations 
of bike-share usage [38, 45].

4.3 � Modeling the periodicity
Figure  7 presents the AIC values associated with differ-
ent numbers of Gaussian components. It indicates that 
six is the optimal number for both weekday and weekend 

cases. This number results in the steepest decrease in 
AIC.

The modeling results substantiate our observations in 
Sect. 4.2: (1) the periodicity is reflected by different Gauss-
ian components; and (2) the trip demands climb in the 
long term (Table 3 and Fig. 8). The results also indicate that 
peak trip demands often occur in August or September. 
This is true for both weekday and weekend cases. While 
high demands on weekends appear within 20–30  days 
centered on the peak date, the range on weekdays is much 
wider, from 60 to 80  days. The modeled parameters can 

Fig. 4  The increase of the number of stations and annual membership

Fig. 5  Temperature and daily annual membership increase
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provide us with some hints of trip demands under future 
conditions.

4.4 � The modeling and spatiotemporal patterns of initial 
growth of the system

The growth of a station is modeled according to its con-
nections with other stations over time. For example, for a 
station A, suppose on day 1 there were trips between this 
station and another station. On day 2, there were trips 
between station A and other two stations. The cumula-
tive numbers were recorded, and therefore the growth 
trajectory of station A is from 1 to 3. The observations 
show that during the initiating period (from 2013-06-01 
to 2013-11-30), the growth trajectory of all stations may 
follow two curves: exponential and logistic curves. While 
we verified such observations through modeling, over 
90% of the stations follow the exponential growth. The 
majority of stations expand the connections with others 
very rapidly in the first couple of days, as shown by Fig. 9. 
The dotted lines refer to the growth trajectories of three 
representative stations with high (95 percentile), medium 
(50  percentile), and low (5  percentile) trip volumes, 
respectively. Those solid lines are fitted logistic curves. 
The models exhibit a reasonable fit.

The exponential and logistic growth models generate 
extremely high accuracy with an R square of more than 
0.95. Table 4 gives three parameters of the models: limit-
ing factor (C), growth factor (b), and initiating factor (a). 

The limiting factor controls the upper limit of the num-
ber of connections any station may have. The exponen-
tial model has a higher mean value of C (311.14) than 
the logistic. Secondly, the growth factors for both mod-
els are comparable. These modeling tools are powerful in 
capturing the initial expansion of a bike-sharing system. 
However, they only tell a part of the story because they 
fail to demonstrate the spatiotemporal signature of the 
growth trajectories. Thus, an Eigendecomposition analy-
sis is introduced shortly to understand the evolution of 
the system better.

The eigendecomposition of the temporal signatures 
of station growth can reveal crucial information about 
underlying structures. As for each station (i.e., obser-
vation), its data dimension is represented by 180 data 
indexes, constructed principal components (PC) can 
reveal interesting temporal growth patterns, in addition 
to their function as a dimension reduction tool. Figure 10 
shows that the first three PCs explain over 95% of the 
total variance. These PCs also imply some temporal char-
acteristics of station growth. First of all, Fig.  10a shows 
the base mode, i.e., a mean growth curve across all the 
stations. It is known that each PC adds an effect to the 
mean growth curve in order to reconstruct the original 
data. The first PC (Fig. 10b), explaining 89.7% of the total 
variance, represents a dominant effect that can be added 
onto the mean growth curve (Fig. 10a). According to 10b, 

Fig. 6  Temperature and daily trip
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PC1 looks very different with the mean growth curve. 
If PC1 is multiplied by a positive constant and added to 
the mean, the curve will be flattened out (Fig.  10e). In 
other words, if a coefficient of PC1 is large, growth will be 
greatly slowed down. Similar interpretation can be made 
to PC2 and PC3 as well. The 2nd PC (Fig.  10c) reveals 
another layer of the data structure. Some stations may 
gain an increased growth rate at the end of the growth 
cycle. This effect may partly explain why different growth 
curves are observed. While the 3rd PC may provide addi-
tional information, we do not elaborate because it only 
explains a negligible amount of the total variance.

One strength of the eigendecomposition approach is 
that the original temporal signature of a station’s growth 
can be reconstructed by a linear combination of the base 
mode and the first few PCs weighted by accompany-
ing coefficients. Figure  11a displays the joint distribu-
tion of the coefficients of the top two PCs for all stations. 
Four stations were selected to demonstrate how the 

reconstruction can be realized. Two stations (Fig. 11b,c) 
have higher-than-average trip demands, while the other 
two (Fig.  11d,e) have trip demands below the average. 
Union Square is situated in the heart of Manhattan, the 
CBD of New York City. It is surrounded by city parks, 
office buildings, and luxury condos. The 50th St MRT 
Station is located in northern Manhattan, next to Cen-
tral Park, Time Square, and several residential buildings. 
Grand St MRT station is within the lower Manhattan. 
Court St MRT station is located in Brooklyn and close to 
several educational institutes.

High negative coefficients of both PC1 and 2 are asso-
ciated with Union Square station. These negative val-
ues indicate a much higher growth rate during the first 
few weeks of operation. In other words, this station’s 
connections approach an upper limit within a short 
period, which can be seen from the recovered growth 
curve (Fig. 11b). The 50th St MRT station also has nega-
tive coefficients of both PC1 and 2. By contrast, the PC 

Fig. 7  Akaike information criterion values for the weekday and weekend models. a Weekday. b Weekend

Table 3  Parameters of the mixture-of-Gaussian model

Components Weekday Weekend

Peak SD (in days) No. of trips (on peak 
day)

Peak SD (in days) No. of trips 
(on peak day)

The 1st 2013-09-16 82 35,106 2013-09-01 26 28,330

The 2nd 2014-07-28 70 36,360 2014-07-13 26 27,089

The 3rd 2015-08-20 74 39,275 2015-08-16 27 30,337

The 4th 2016-08-10 41 50,100 2016-08-06 16 44,209

The 5th 2017-08-08 74 65,228 2017-07-29 33 52,955

The 6th 2018-08-23 66 73,877 2018-08-19 28 45,874
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Fig. 8  The growth periodic of New York’s bike-share system modeled by a Mixture-of-Gaussian model
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coefficients for the Grand St MRT station are positive, 
and the reconstructed curve seems to be an “S” shape 
(Fig. 11d). This shape suggests an inhibitive effect on the 
initial growth rate, which is reflected by the coefficient 
of PC 1. This station has a prolonged growth period, 
which should be related to the positive coefficient of PC 
2. Lastly, Court St MRT station has both negative and 
positive PC coefficients. Note that the trip demand of this 
station is the lowest. This station is indeed a rare case, as 
shown by the joint distribution of the coefficients of PC1 
and 2 (Fig. 10a).

From the joint distribution of the PC coefficients, 
we have demonstrated that the temporal signatures of 
growth curves of different stations are spatially diverse 
(Fig.  10). We further plotted four spatial maps that can 
provide a complete picture of the distinct growth pat-
terns associated with different values of PC coefficients 
(Fig.  12). While the overwhelming amount of stations 
growth exponentially (Fig.  12d), a more subtle distinc-
tion of the growth patterns can be discerned based on 

the geovisualization of the eigendecomposition results 
(Fig.  12a–c). First, there is a dichotomized scenario of 
the growth rates of all stations when we categorize all the 
stations based on the coefficient signs of PC1 (Fig.  12). 
The stations with negative PC1 coefficients tend to have 
higher beginning growth rates than those with positive 
values. These stations are the majority and are located 
in Manhattan and immediate to multiple subway hubs. 
Considering both PC1 and PC2 coefficients, Fig. 12b dis-
plays that the stations with two positive coefficients are 
largely located outside the Manhattan district. These sta-
tions build connections and reach the maximum number 
of links relatively slower than those with both negative 
coefficients of both PC1 and 2. Figure  12c displays the 
distribution of stations with positive and negative signs 
of the two PC coefficients. It shows that the red squares 
accumulate around the left corner areas of Manhattan. 
These stations are featured by both strong initial and 
long-term growth potentials.

Fig. 9  Raw growth trajectories and modeled curves of three representative stations

Table 4  The parameters of station growth models

Parameters Exponential growth Logistic growth

Mean SD Min Max Mean SD Min Max

C (Limiting factor) 311.14 23.81 173.83 337.18 266.13 54.87 165.26 326.86

b (Growth factor) 0.08 0.03 0.01 0.21 0.16 0.08 0.04 0.34

a (Initiating factor) 242.16 34.00 144.66 323.94 672.43 2330.24 3.47 8426.48
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5 � Discussions and conclusions
The boom in the sharing economy and repaid advance-
ment in the internet of things promote bike-sharing 
programs. This new transportation mode poses both 
challenges and opportunities for traffic operations 
and city management. Traditional transportation sys-
tems may be modified to incorporate the shared micro-
mobility mode. To date, scientists have investigated 

micro-mobility systems in multiple directions, from sys-
tematic performance to usage patterns of cycling activi-
ties. Researchers also realize that these systems are not 
a stand-alone system and frequently interacts with built 
environment, public transit, and other urban compo-
nents. The expansion and increased adoption of micro-
mobility networks as a commuting mode motivates new 
research directions. One possible gap is the evolution of 

Fig. 10  Eigendecomposition of station growth

Fig. 11  a Joint distribution of the coefficients of PC 1 and 2 of all stations and b–e temporal growth curves reconstructed from the two PCs
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micro-mobility systems. Therefore, this work proposed 
a framework to uncover the periodic and evolving char-
acteristics of a micro-mobility system and applied it into 
Citi Bike, a docked bike-sharing scheme in New York 
City, USA. A 7-year data set of cycling trips was col-
lected to model the periodicity of the system through a 
Gaussian Mixture Model. Furthermore, a 6-month data 
set after the system initiated in May 2013 was extracted 

to investigate the temporal signatures of the stations’ 
growth. Exponential and logistic models were employed 
to fit growth curves, and principal component analysis 
was used to uncover the hidden structures of the growth 
trajectories.

We hope this work contributes to existing scholarship 
and practice across European and other North American 
regions in a few aspects. First, we develop an analytical 

Fig. 12  Distinct spatial patterns of station growth. a Negative and positive PC 1. b. Negative PC 1 and PC 2, Positve PC 1 and PC2. c. Negative PC 1 
and positive PC 2; positive PC 1 and negative PC 2. d Exponential and logistic growth
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framework to strengthen our understanding of the evo-
lution of a micro-mobility system. How the interactions 
within a social network develop temporally has been 
well-documented. Surprisingly, simple models have been 
justified to explain these systems’ evolution elegantly. 
Motivated by such research, we incorporate both cluster-
ing and growth models into the framework. We find that 
it can sufficiently describe the growth and periodicity of 
the bike-sharing system in New York City. Because large 
metropolises such as Paris, London or New York share 
common geographical and demographic backgrounds, it 
is expected that the proposed framework may be applied 
to big European cities as well after a few assumptions are 
set properly and the level of biases is still acceptable. For 
instance, people may depend more on private car com-
muting and show moderate interests towards sharing 
modes in some Northern European cities, and the appli-
cations of the proposed framework would have certain 
constraints.

Second, more large and mid-sized cities in Europe may 
expansion existing or launch new systems to promote 
low-carbon, epidemic-resilient, and health beneficial 
travel modes. While shared bikes and e-scooters are well-
advocated and plenty of programs have gained momen-
tum in France, UK, and other European countries, there 
still exists a gap in numerous mid-sized towns between 
public transit supplies and travel demands. With the 
strike of COVID-19, many municipalities see a window 
of opportunities to promote micro-mobility sharing as a 
bridge of the gap as it is evidenced that commuters start 
to use shared bike more frequently in order to avoid over-
crowded buses or trains during this post-COVID-19 era 
[5]. Accordingly, planners and transport policy makers 
need a tool to assess the utilization of existing systems 
and forecast how new stations may experience a surge of 
demand after a new system is launched, which is a practi-
cal aim of this work.

Particularly, the case study illustrated in this work point 
to a few emerging findings, demonstrating how a newly 
launched system may grow spatially and temporally. Bike-
share demands follow a seasonal pattern. The bike-shar-
ing system in New York City normally reaches its highest 
utilization rate in August and September, requiring a 
matched facility supply. However, during winter times, 
demands for the system fall to the bottom. This offers a 
clue for bike-sharing operators to ensure the system runs 
both sufficiently and economically. During high-demand 
periods, the supply of bikes should meet trip demands 
adequately. When the demand is low, operators should 
avoid the oversupply of facilities. The growth patterns of 
a bike-sharing system are critical for planning practices. 
For one thing, cities are planned so that residential areas, 
road networks, green space, and other sub-components 

expand to meet the developmental demand under future 
scenarios. Now it is the time to incorporate the new bike-
sharing system into planning as it grows too. For another, 
cycling activities may occur among the stations with high 
growth potentials, which means that these stations are 
likely to build many connections rapidly. Thus, planning 
for cycling paths should also consider the growth of bike 
stations and potential linkages with other stations.

The case study also provides a multifaceted view of the 
system’s growth properties. It does not expand linearly. 
Instead, it exhibits a periodically increasing trend. The 
Gaussian Mixture Model identifies that the system is in 
high demand from around July to November each year, 
with the peak demand appearing in late August or Sep-
tember. Using the cumulative connections of each station 
as a quantity, we analyze the system’s evolution after its 
birth in 2013. The majority of the stations have growth 
trajectories that can be fitted using exponential models.

The growth trajectories are essentially the temporal 
signatures of the connections among stations. These tem-
poral signatures may have hidden structures, which can 
be uncovered by the eigendecomposition method. Nota-
bly, two top PCs explain over 95% of the total variance. 
Specifically, the first PC has a dominant effect, explaining 
over 89% of the total variance. The temporal patterns of 
the 1st PC suggest that the change of growth rates during 
the early stage distinguishes the growth curves of differ-
ent stations.

The coefficients associated with the top few PCs indi-
cate how the temporal signatures of growth vary among 
different stations. Thus, we visualize the spatial distri-
bution of stations with distinct temporal signatures. We 
find the stations with negative coefficients of the 1st PC 
dominates the Manhattan island, which means that these 
stations have rapidly increased growth rates shortly after 
the system is born. Moreover, the stations in the Bay area 
of Manhattan maintain a high level of growth rate during 
their entire life cycle. The distribution of the coefficients 
may be associated with built environment variables. For 
instance, Manhattan is the heart of New York City and 
contains office buildings, educational institutes, and 
multiple subway lines, high-density residential blocks. 
This level of land use mixture may contribute to the high 
growth potentials of the stations in this district. Addi-
tionally, the Bay area has the highest density of subway 
stations, potentially correlated with high-demand bike 
stations. However, more in-depth quantitative analysis is 
needed to verify such correlations.

The proposed framework may be used to evaluate the 
evolution of different micro-mobility systems as well. For 
example, do the stations in an e-scooter sharing system 
majorly follow an exponential growth curve? what about 
a hybrid system consisted of shared bikes, e-scooters, 
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and e-bikes? It would be also beneficial to compare the 
network evolution processes between traditional bike-
sharing and e-scooter sharing. E-scooter sharing exhibits 
different patterns regarding trip characteristics and user 
behaviors compared with bike-sharing, which may lead 
to different network evolution progresses. An impor-
tant factor of the deployment of an e-scooter sharing 
system is overall energy consumption. A significant por-
tion of energy loss results from idle status, and therefore 
e-scooter sharing systems always encourage a higher uti-
lization frequency and a more compact fleet size than 
bike-sharing [58]. This may affect trip patterns and net-
work evolution accordingly. Another outlook is about 
future micro-mobility system in particular and the whole 
urban transport system in general. This perspective may 
prompt a rethinking of established theories and heuris-
tics regarding travel demand and commuter behaviors. 
An interesting line of inquires may be whether these 
new sharing options help to foster a more sustainable 
city via encouraging active mobility modes [17]. These 
new directions of investigations may be facilitated via the 
applications of the developed framework.

Admittedly, this framework has some and limitations. It is 
an analytical approach, rather than a simulation workflow. 
Bike-sharing systems are complex networks, and modeling 
its growth is sophisticated. Using the growth parameters 
verified in this study may be a start point to build a simu-
lation model of system evolution. Secondly, we only tell the 
first part of the story and fail to explore a bike-sharing sys-
tem’s full life cycle. We do not consider the following sce-
narios: the second batch of new stations is introduced to the 
system, or a new fleet of shared bikes is deployed. Finally, 
the application of Gaussian Mixture Models into simulating 
seasonal effects is debatable. While the clustering technique 
is model free, simple Trigonometric functions may be suf-
ficient to model trip demands in different seasons. These 
are neglected points by the present work and yet a future 
research direction we aim to investigate.
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