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Abstract

The accelerated electrification of transport systems with EVs has brought new challenges for charging scheduling,
fleet management, and charging infrastructure location and configuration planning. In this review, we have provided
a systematic review of the recent development in strategic, tactical, and operational decisions for demand responsive
transport system planning using electric vehicles (EV-DRT). We have summarized recent developments in mathemati-
cal modeling approaches by focusing on the problems of dynamic EV-DRT optimization, fleet sizing, and charging
infrastructure planning. A list of existing open-access datasets, numerical test instances, and software are provided for

are discussed.

planning

future research in EV-DRT and related problems. Current research gaps are identified and future research directions
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1 Introduction

Since 1970, demand-responsive transport (DRT) has
received broad interest as an efficient alternative to
improve the accessibility and coverage of fixed-route
public transport in low-density areas [1]. DRT covers
a spectrum of services that can be operated as door-
to-door services, feeder services connecting to transit
stations, or flexible bus services using point/route-devi-
ation strategies [2]. Users book their ride requests in
advance via dedicated apps and platforms, and opera-
tors can design their services to adapt to user demand.
An increasing number of public transport agencies have
launched DRT pilots to meet users’ needs in low-demand
areas. It has been shown that integrating DRT as a feeder
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service could increase the ridership of transit and reduce
congestion and CO, emissions [3].

In the context of the current climate crisis, the trans-
port sector faces an unprecedented challenge in terms
of the transition to clean energy. The transport sector
contributed to 27% of total EU-27 emissions in 2017 [4],
and in order to meet the EU’s climate-neutral target, the
transport sector needs to reduce its emissions by about
two-thirds by 2050. In the face of this challenge, different
strategies can be adopted including developing efficient
transit systems, large-scale EV adoption, optimizing the
efficiency of transport systems in favor of shared mobil-
ity solutions, etc. While the electrification of transport
sector could reduce significantly the emission, there are
additional charging infrastructure investment and plan-
ning problems need to be addressed face to the increas-
ing number of EVs in the market. Regarding transport
network companies (TNCs), they need to carefully ana-
lyze charging infrastructure and fleet requirements and
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Fig. 1 EV-DRT system planning issues reviewed in this paper
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develop strategies to minimize operational costs. First,
the battery capacity of electric vehicles (EVs) is limited
(to about 100300 miles'), and within-day charging oper-
ations are necessary. Second, charging times are long (i.e.,
generally 3—12 h). Although only 30 min are required
for an 80% charge when using a fast charger’, public DC
fast chargers are still rare in many cities due to their high
investment cost. Recent studies on the impact of the elec-
trification of ride-hailing services in the USA show that
TNCs need to recharge their vehicles several times a day
and mainly rely on DC fast chargers to minimize charg-
ing times [5]. However, using DC fast chargers increases
charging costs by up to 25% [6]. From the perspective
of TNCs, the transition to EV-DRT requires developing
adequate planning and management strategies, which
can be grouped into three decision levels: strategic
(charging infrastructure), tactical (fleet size), and opera-
tional (charging scheduling and routing) decisions. At a
higher system level, the interactions of charging opera-
tions with the power grid also need to be considered in
order to enhance the stability of the power grid. Recent
literature reviews have summarized some of the meth-
odologies used to address these issues. For example,
Shen et al. [7] provide a literature review of state-of-the-
art mathematical modeling approaches for EV charging
scheduling and the charging-infrastructure planning of

! https://fueleconomy.gov/feg/evtech.shtml.

car-sharing systems. Rahman et al. [8] review different
charging systems and optimization models for the charg-
ing-infrastructure planning of plug-in hybrid EVs and
non-hybrid EVs. For electric buses, Olsen [9] provides an
overview of different mathematical modeling approaches
for the charging scheduling and location planning of
electric bus systems. Deng et al. [10] focus on the differ-
ent technologies used for energy storage, power manage-
ment, and charging scheduling of electric bus systems.
While the literature is large, there is still no systematic
overview covering the state-of-the-art methodologies at
the different levels of decision-making for EV-DRT sys-
tems. This review aims to fill this gap, considering EV-
DRT systems including ride-sharing, ride-hailing, flexible
buses, and other forms of on-demand transportation sys-
tems using a fleet of EVs or e-buses. The review is con-
ducted in terms of the three decision levels (operational,
tactical, and strategic) for EV-DRT system planning. The
problems and sub-problems addressed in this study are
presented in Fig. 1. The problems at the first two levels
can be classified into deterministic and stochastic prob-
lems depending on whether the stochastic aspects of the
system are addressed or not. For charging infrastructure
planning, the problems can be classified into public and
private charging station planning problems. The objec-
tive is to provide an overview of these three decision lev-
els and the methodological approaches developed in the
literature. The EV-DRT system planning problems con-
sidered in this paper are presented in Fig. 1.
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Type Power output Time to charge? Typical location Cost for a single
charging plug

Level 1 1-1.4 kW 30-40h Home <800 euros

Level 2 3.9-19.2 kW 2.5-45h Private/public <2000 euros

Level 3 24-300 kW 30-40 min Private/public 1000-60,000 euros

2 Based on the charging time of a 60-kWh battery from 10 to 80% full

The main contributions of this review are as follows:

+ Provide a systematic overview of EV-DRT system
planning characteristics with respect to operational,
tactical, and strategic decisions. The various aspects
related to charging operations (charging processes,
costs, technologies, infrastructure, charging time,
etc.) are briefly discussed;

+ Review the existing literature related to the problems
of charging planning, fleet size composition, and
charging infrastructure location and configuration.
For each type of problem, state-of-the-art method-
ologies and solution algorithms are reviewed and
categorized according to the characteristics of the
problems (deterministic/stochastic, static/dynamic,
public/private charging infrastructure);

« Provide an in-depth literature review of recent devel-
opments in methodological approaches to dynamic
EV-DRT system design and operational policy opti-
mization in terms of operational, tactical, and strate-
gic levels;

+ Survey the datasets, test instances, and software used
for EV-DRT system planning and research;

+ Identify current research gaps and future research
directions.

The remainder of this paper is organized as follows. In
Sect. 2 we present the characteristics of EV-DRT systems,
including charging operations, and discuss the different
decision-making problems at the strategic, tactical, and
operational levels. Section 3 provides a literature review
and discusses recent developments related to these deci-
sion problems, focusing on the modeling approaches and
solution algorithms employed. Section 4 surveys publicly
available datasets, test instances, and software. Finally, we
identify research gaps, discuss future research directions,
and offer some concluding remarks.

2 Characteristics of EV-DRT systems and charging
operations

EV-DRT systems are demand-driven, reservation-based

passenger transport services implemented in low-density

rural/dense urban areas using a fleet of EVs. They provide

either door-to-door services or feeder services to con-
nect transit stations as a part of multimodal mobility
solutions. Different from conventional DRT using inter-
nal combustion engine vehicles, EVs are constrained by
their limited battery range and require charging at depots
or public charging stations. Depending on the charging
power and charging technologies, the charging times and
installation costs of charging stations vary significantly.
For example, a Volkswagen Golf with a 300 km range
requires 45 min to charge to 80% using a 50 kW DC fast
charger and 10 h when using a 3.6 kW charger [11]. The
unitary charger purchase cost (not including installa-
tion costs) ranges from around 800 euros for AC mode
2 home chargers to 40,000-60,000 euros for a DC fast
charger with 100-400 kW of power [11]. Table 1 reports
the characteristics of different charging infrastructures
including charging power, charging time, typical loca-
tions, and investment costs, etc. The reader is referred to
Moloughney [12] and Volkswagen Group Fleet Interna-
tional [13] for more detailed descriptions.

Due to the high investment cost of high-powered
DC fast chargers, there are very few public DC fast-
charging points, which is the main obstacle to DRT
system electrification. To manage this challenge, TNCs
need to develop efficient charging management strate-
gies and infrastructure so as to optimize their charging
operations while meeting their service-quality commit-
ments. Unplanned charging operations result in higher
charging operation costs, higher vehicle idle times for
recharging, and significant ridership losses. Figure 2
presents these decision problems and their depend-
ence on the context, including the relevant energy
market and energy network, local demand, and the
existing transport network. At the strategic level, the
operator can make choices related to the long-term
decision horizon related to technical/technological
aspects (e.g. battery technologies, battery/hybrid EVs,
charging technologies, etc.) and their relationship with
other sectors (i.e. energy cost, the economic perfor-
mance of selected technologies, power grid constraints,
etc.). Based on the evaluation, the operator can then
determine the optimal charging infrastructure plan-
ning related to relevant decisions (Fig. 2). At the tac-
tical level, the operator can optimize the fleet size and
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Fig. 2 Strategic, tactical, and operational decisions for EV-DRT system planning and their interdependencies

configuration by considering different types of vehicles,
vehicle energy consumption, battery size, charging time
and maintenance costs, and customer demand over
medium (e.g. month) and long-term horizon (e.g. year).
These decisions are interdependent with strategic and
operational decisions to minimize the overall system
costs. At the operational level, the operator optimizes
the vehicle dispatching, routing, and pricing policies
to minimize (maximize) the operational cost (revenue)
over a short horizon (e.g. day/week).

The characteristics of the strategic, tactical, and opera-
tional decisions for EV-DRT system planning are sum-
marized as follows.

+ Operational decisions This decision problem involves
optimizing the fleet’s daily charging scheduling to
minimize charging costs while satisfying charging
infrastructure constraints and customer demand
over a short-term horizon. The problem is generally
considered in an EV-based vehicle-routing problem
(VRP) framework to handle additional constraints
related to vehicle state of charge (SOC) using a sim-
ple needs-based charging policy (i.e., visiting charg-
ing stations when a vehicles’ SOC is lower than a
threshold (see the recent review of electric vehicle-
routing problems (EV-VRPs) by Kucukoglu et al. [14].
In the following, we review the existing literature
related to modeling aspects of the charging process,
energy consumption, charging policy, charging cost,
and waiting time at charging stations.

a. Battery energy consumption and charging function

EV battery energy discharge/consumption depends
on numerous factors such as vehicle speed, load, road
gradient, temperature, and acceleration/breaking, etc.
[15]. From an operational optimization perspective,
the energy consumption of EVs is generally assumed
to be a linear function of traveled distance ([16, 17],
among many others). In terms of battery charging,
the battery’s SOC increases linearly from empty to a
critical point with a constant charging rate, and then
the charging rate decreases asymmetrically until the
vehicle is fully charged. Zalesak and Samaranayake
[18] propose an approximate concave function to
describe the SOC when recharging in both linear
and non-linear regimes. Due to a decreasing charg-
ing rate after reaching 70—80% battery capacity, most
studies on EV-VRP/DRT problem modeling assume
an 80% charge policy with a constant charging rate,
although some recent studies consider non-linear
charging approximation functions to model a more
precise relationship between charging time and the
amount of charged energy [19, 20].
b. Charging policy

Charging policies can be classified into two cat-
egories: full charging and partial charging policies
[14]. The full charging policy assumes that EVs get
recharged to their maximum battery capacity or a
pre-defined SOC (e.g., 80%). Keskin and Catay [21]
point out that the full charging policy is not realis-
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tic, in particular when the charging operation is close
to the end of service time and vehicles do not need
to be fully recharged to return to their depots. The
partial charging policy reduces charging times and
costs to meet customer demand [21, 22], and another
approach involves battery-swapping technology that
allows EVs to exchange their depleted batteries for
fully charged ones to lower EV charging times [23].

. Charging cost

Most studies consider charging cost to be a lin-
ear function of the charged amount of energy, with
a constant electricity price [24]. Some studies take
into account service access and parking costs [25] or
opportunity costs when vehicles are idle for recharg-
ing [17]. As energy prices are variable depending on
the time of the day, some recent studies incorporate
time-dependent energy prices to reflect realistic
charging costs [26, 27]. Chen et al. [16] consider the
heterogeneity of energy prices at different charging
stations to more realistically reflect the ecosystem of
charging service providers and their business models.
Fehn et al. [28] integrate dynamic electricity pricing
to minimize the total charging costs of an e-fleet.
They show that integrating time-dependent energy
prices into EV-DRT system charging operations
could lead to significantly lower charging costs.

. Waiting time at charging stations

Most studies assume that EVs start recharging as
soon as they arrive at public charging stations—the
waiting time and number of available chargers at
charging stations are not considered. Early studies
consider charging station occupancy as a random
variable to model the uncertain availability of charg-
ers [29]. Keskin et al. [30] model EV waiting times at
charging stations as a queue with Poisson-distributed
EV arrivals. The authors summarize the characteris-
tics of EV-VRPs in terms of electricity consumption,
recharging function (linear/non-linear), fleet com-
position (homogeneous/heterogeneous), objective
functions, charger type (single/multiple), charging
policy (full/partial recharge), and solution methods.
Ammous et al. [31] model EV waiting times at charg-
ing stations based on a multi-server queuing system
for customer and vehicle arrivals. Kullman et al. [32]
consider that EVs can be charged either at depots
(immediate charge) or public charging stations
(based on a queuing system approach). Schoenberg
and Dressler [33] propose a multi-criteria EV route-
planning method considering realistic EV energy
consumption and queuing at charging stations. Wait-
ing times at charging stations are estimated based on
a centralized charging station database to collect EV
users’ intended charging stations in advance. Ma and

Page 5 of 19

Xie [97] propose an online vehicle charger assign-
ment model to allocate vehicles to chargers and
minimize total charging operation time in terms of
the access time, waiting time, and charging time of
the fleet. Charging station occupancy information is
communicated with the dispatch center for efficient
vehicle—charger assignment policy development.
However, the charging needs of other private/com-
mercial EVs are not considered, which could impact
vehicle waiting times when arriving at charging sta-
tions.

Tactical decisions This decision problem considers
the optimization of fleet size and configuration over a
medium-term horizon. The problem is to determine
an optimal fleet size and configuration consider-
ing purchase and maintenance costs so as to satisfy
a certain level of customer demand under the struc-
tural constraints of strategic and operational deci-
sions. These constraints/interactions play an essential
role to ensure sufficient fleet size to meet customer
demand in the medium-term and affect the level of
service and operational costs at the operational level.
The factors considered in the fleet size and configura-
tion optimization are as follows.

. Hybrid/battery vehicles The choice of the types and

number of hybrid/battery vehicles depend on a bun-
dle of factors including their acquisition costs, charg-
ing standard, charging power, the capacity of battery,
energy consumption efficiency, charging duration,
and the maximum number of passengers, etc. These
factors can be integrated into the fleet size and com-
position optimization problem to minimize the total
system costs.

b. Battery size Larger vehicles’ battery sizes could lead

to a longer driving range and reduce the frequency to
recharging. However, a larger battery is heavier and
consumes more energy per kilometer traveled. Fewer
studies optimize this factor (e.g. [34], but instead
focus on the decisions related to heterogeneous vehi-
cle types.

c. Energy consumption of vehicles The energy consump-

tion of vehicles depends on vehicle load, weather and
road conditions, ambient temperature, driving style,
and traffic condition. Most studies assume a nominal
value for simplification [35].

. Customer demand depending on the problems at

hand, the fleet size is generally minimized to satisfy
customer demand. As the latter influences vehicles’
route planning, energy consumption, and charging
needs, the fleet size problems can be jointly opti-
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mized with charging infrastructure planning and
charging scheduling to minimize the overall system
costs under deterministic or stochastic customer
demand [34-36].

Strategical decisions: This decision problem considers
charging infrastructure planning to determine charg-
ing capacity and facility location and satisfy EV charg-
ing demands for a long-term horizon. Strategic decisions
influence charging time, waiting time, and the charg-
ing efficiency of the fleet. Strategic decisions require
considering future transport market trends, economic
perspectives, regulation and transport policy, new tech-
nologies, and customer demand forecasting, etc. This
level of decision-making influences the decisions made
at the tactical and operational levels. In particular, the
charging technologies to be chosen play a critical role in
meeting charging demand and charging infrastructure
costs. In the context of planning charging infrastructure
for electric buses, Hll et al. [37] classified the charging
technologies into three categories: i) charging at a depot
during overnight charging or when buses return to the
depot during the daytime. When many buses recharge at
the same time, the violation of grid capacity might occur.
The installation of the depot charging station needs
to consider the power system supply-side constraints;
ii) opportunity charging at bus stops/end points/dur-
ing driving: Opportunity charging technologies involve
using high electric power to charge EVs quickly for a
short period (e.g. 30 minutes) during the day. iii) Bat-
tery swapping: The battery-swapping station provides a
fast way to allow EVs to exchange their empty batteries
with fully recharged ones. However, this solution needs
to have a large station that might require high investment
costs. The choice of charging technologies depends on
the objective of the operator/public authority and many
other factors as mentioned above.

Apart from the above different decision problems,
incentive and energy policies might affect the decisions
of operators for the electrification of their fleet. Jenn [5]
provided an empirical study of the electrification of ride-
hailing services such as Uber and Lyft in California. The
author pointed out that purchase-based incentives might
not be effective for TNCs as they do not own the fleet.
Instead, use-based incentives by providing fuel rebates or
discounts might be more effective to encourage the use
of clean vehicles. However, these incentives need to be
carefully designed to ensure achieving the desired policy
goals. Moreover, the investment in public DC fast charg-
ers plays an important role as each EV visits the charg-
ing stations 2.5 times per day on average and mainly rely
on public DC fast chargers. Insufficient DC fast charging
infrastructure will hamper the EV adoption of TNCs.
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Spottle et al. [11] provided a list of policy recommen-
dations for charging infrastructure investment which
includes providing funding for charging infrastructure
constructions to cover their high capital costs or focusing
on not yet covered areas, etc.

3 State-of-the-art methodologies for EV-DRT
system planning and management

In this section, we review the three levels of EV-DRT sys-
tem planning problems: charging scheduling, fleet size
and composition, and charging infrastructure location
and configuration. Mathematical models and solution
algorithms in the literature are classified according to the
types of problems addressed. We provide a systematic
review of 100 research articles/reports published from
2010 onwards? on ScienceDirect, Google scholar and
Semantic scholar using relevant keywords including on-
demand transportation, electric vehicles, electric vehicle
routing, charging planning, charging infrastructure loca-
tion/planning/decision, fleet size, etc. Figure 3 provides
an overview of the types of problems addressed and
methodological approaches in the literature.

3.1 Charging scheduling
In recent decades, EV-DRT charging scheduling prob-
lems have been widely studied as an extension of classi-
cal VRPs by considering the limited driving range of EVs
and the need to recharge at intermediate charging sta-
tions. Basic deterministic EV-DRT problems consider
a fleet of homogeneous EVs to provide on-demand pas-
senger transport services with time windows and vehicle
capacity constraints. The objective is to minimize overall
operational costs and customer inconvenience [30, 38,
39]. This problem is generally formulated as mixed-inte-
ger linear programming (MILP) and can be solved using
modern desktop computers to optimality for up to hun-
dreds of customers within a couple of hours [40, 41]. For
larger instances, various heuristics have been developed
as well, including large neighborhood search [30, 42],
matheuristics [41], and various local search-based algo-
rithms (see the recent review by [43]. While determinis-
tic EV-VRP/DRT problems have been widely studied in
the past, stochastic and dynamic EV-DRT problems are
more challenging and have recently received increasing
attention [18, 40]. For deterministic problems, the reader
is referred to the recent reviews by Asghari et al. [38],
Kucukoglu et al. [14], and Xiao et al. [44].

For dynamic EV-DRT problems, additional complexity
for charging scheduling under uncertainty (e.g., stochas-
tic customer arrivals, charging station availability, energy

2 Except two background papers in the reference list.
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Fig. 3 Types of problems addressed and their methodological approaches for EV-DRT system planning

consumption, and traffic conditions, etc.) need to be
considered. As new requests arrive on short notice or in
real time, heuristics need to be developed to re-optimize
the existing routes of vehicles to minimize additional
costs for charging and serving customers. Berbeglia et al.
[45] summarize earlier studies of dynamic dial-a-ride
problems. A review of more recent dial-a-ride problem
(DARP) studies can be found in Ho et al. [43]. State-of-
the-art methodologies can be lumped into two main
categories: constrained optimization and approximate
dynamic programming/reinforcement learning for opti-
mal vehicle dispatching and charging scheduling. In this
section, we focus on dynamic EV-DARP problems and
discuss various recently proposed modeling approaches
and solutions.

a. Constrained optimization This approach formulates
EV sequential dispatching and charging optimization
problems as mixed-integer optimization problems

and proposes heuristics to find approximate solutions
for online applications. The optimization problems
for request assignment and charging scheduling are
considered separately and solved according to their
respective objectives. For example, Iacobucci et al.
[46] propose a model predictive control approach for
modeling shared autonomous electric vehicle charg-
ing scheduling optimization by integrating dynamic
energy prices to minimize the overall charging cost of
the fleet. Vehicles can sell back any remaining energy
to the power grid by vehicle-to-grid (V2G) technolo-
gies. The proposed approach is tested using simula-
tions on a small area (25 km?) in Tokyo. Bongiovanni
[47] proposes an insertion heuristic to insert a new
request into vehicles’ routes with the lowest cost pos-
sible, considering both operational costs and cus-
tomer inconvenience. A two-phase metaheuristic is
proposed to find good solutions efficiently. Ma [17]
proposes two-stage charging scheduling and online
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vehicle-charger assignment to solve a dynamic EV-
DARP using public charging stations. The author first
derives a day-ahead charging plan (when and how
much energy to charge over one day) as a battery
replenishment optimization problem for each EV,
based on their historical driving patterns, expected
waiting times at charging stations, and variable elec-
tricity prices. Then, online vehicle-charger assign-
ment optimization is solved for each decision epoch
based on charging station occupancy states, assumed
to be known by the vehicle dispatch center. The sim-
ulation studies show that the proposed method could
significantly reduce charging costs while satisfying
passenger demand. Zalesak and Samaranayake [18]
consider a dynamic EV-based ride-pooling problem
using public charging stations. The authors propose
a batch assignment optimization approach based on
the sharability of ride requests in order to minimize
operational costs while satisfying customer demand.
A sequential optimization framework is proposed
to optimize EV charging scheduling based on a two-
stage approach (time scheduling, which involves
determining when to charge over a longer planning
horizon (e.g., > 45 min.), and location scheduling—
where to charge—over a short planning horizon
(e.g., 15 min.)) with uncertain public charging sta-
tion availability. The charging scheduling problems
are formulated as two MILP problems to minimize
shortages of vehicles and penalize vehicles with an
insufficient SOC. The proposed methods are solved
by heuristics and tested using Manhattan taxi-ride
data. Yi and Smart [48] propose an optimization
model for jointly optimizing idle vehicle reposition-
ing and charging decisions. However, this approach
does not optimize the charging levels of EVs. Differ-
ent from previous studies, recent studies consider
the joint optimization of EV repositioning and par-
tial recharge for online car-share rebalancing policy
design [22, 49]. The problem is modeled as p-median
relocation based on a node-charge graph to jointly
optimize EV repositioning and partial recharge deci-
sions so as to minimize overall operational costs
while satisfying customer demand.

b. Approximate dynamic programming/reinforcement

learning This approach considers EV dispatching
and charging scheduling optimization based on the
Markov decision process to model sequential deci-
sion-making under uncertainty. To solve the curse
of dimensionality issue of Bellman’s equation, dif-
ferent solution techniques drawn from approximate
dynamic programming or reinforcement learning
have been proposed. For example, Al-Kanj et al. [50]
propose an approximate dynamic programming
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approach to solve charging scheduling and vehicle
dispatching for dynamic ride-hailing services. Each
vehicle is modeled as an agent that makes sequen-
tial decisions among three possible actions: pass
(continue being idle or in-service), charge (recharg-
ing battery), or assign a new customer. The param-
eterized reward functions are problem-specific and
need to be fine-tuned. Vehicle—passenger assignment
is solved in a centralized way considering all avail-
able vehicles, as a matching problem to maximize
an action-value function. The proposed method is
tested on numerical instances and obtains promising
results. Shi et al. [51] propose a reinforcement learn-
ing approach for dynamic EV-DARPs. EVs are mod-
eled as agents to learn their state-action value func-
tions based on a coarse space-time discretization. A
feed-forward neural network approach is applied to
obtain agents’ approximated state-action value func-
tions. Like many other reinforcement learning appli-
cations for ride-hailing operation optimization [52,
53], a centralized controller solves a linear request-
assignment problem periodically. The objective is to
minimize overall operational costs, charging costs,
and customer waiting times. However, vehicle reposi-
tioning is not considered in this study. Kullman et al.
[54] propose a deep reinforcement learning approach
for dynamic EV-DARPs. Different from previous
studies [51], which are based on a coarse space-time
discretization of the action space, this study relaxes
these limits by developing deep reinforcement learn-
ing to learn continuous state-action approximations.
A simulation case study using Manhattan taxi-ride
data from 2018 shows that the proposed method sig-
nificantly outperforms two reference policies. How-
ever, the partial recharge policy is not considered.
Different from the aforementioned study, Yu et al.
[55] propose an asynchronous learning approach to
approximate the value function by sampling from
future uncertain states for ride-hailing services using
autonomous electric vehicles. The numerical study is
based on trip data from the city of Haikou in China.

Table 2 summarizes the main characteristics of
recent studies of dynamic EV-DARPs in terms of charg-
ing policies and methodologies for operational policy
optimization.

3.2 Fleet size and configuration

The fleet-size problem is related to determining the
capacity of a transport service so as to meet customer
demand. It involves the trade-off between the invest-
ment costs and revenue losses when demand cannot be
satisfied [56]. The investment decision needs to jointly
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Table 2 Summary of the dynamic EV-DRT literature
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Reference Problem Charging Methodology

Al-Kanj et al. [50] EAV-DARP  Linear, CP=A Dynamic vehicle dispatch, repositioning, and recharge. Uses a hierarchical
aggregation approach for value-function approximation under approxi-
mate dynamic programming

Bongiovanni [47] EAV-DARP  Linear, partial recharge, CP=A A two-stage heuristic approach. Uses a greedy insertion algorithm to

Shietal. [51] EAV-DARP Linear, CP=A

Kullman et al,, [54] EV-DARP  Linear, full recharge, CP=8

Ma [17] EV-DARP

Yu et al. [55] EAV-DARP
Zalesak and Samaranayake [18] EV-DARP

Linear, CP=B
Concave, CP=C

Linear, partial recharge, CP=C

insert new feasible requests and then re-optimize the decisions based on
large neighborhood search heuristics. New recharging/idling decisions
are checked at the end of vehicle routes

Reinforcement learning approach to optimize vehicle routing and charg-
ing decisions under a spatio-temporal discretization framework

Deep reinforcement learning to learn optimal routing and charging deci-
sions under uncertainty

Two-stage optimization approach. Determines when and how much
energy to charge in the first stage and then where to charge in the
second stage, based on charging station occupancy information. Mixed-
integer optimization formulation

Approximate dynamic programming under a Markov decision process

Two-stage optimization. Assigns new requests under the current charging
schedule in the first stage, then optimizes the charging schedule (when
and where to charge) given assigned requests. Mixed-integer optimiza-
tion formulation. Charging priority depends on the sorted SOC of vehicles

EAV Electric autonomous vehicle

DARP includes ride-pooling, ride-hailing, and DRT services. CP (charging policy): A. When an EV's battery level is lower than a threshold (around 10%), assign vehicles
to nearby available charging stations to charge to a pre-defined maximum amount (around 80% of battery capacity); B. when and where to charge is determined

by a sequential decision learning process, and a full-recharge (around 80%) policy is applied; C. charging amount and charging station assignment are based on an
optimization model or heuristic to minimize overall charging operational costs or negative impacts on the service

optimize the utilization of available vehicles and the fleet
size under uncertain demand. In the context of an elec-
trified transportation system, the fleet-size decision also
requires considering the charging infrastructure’s capac-
ity to optimize charging operational costs of EVs. Exist-
ing studies of fleet-size planning can be classified into
three categories according to how the trade-offs between
customer demand, fleet acquisition costs, and vehicle
charging demands are dealt with.

a. Vehicle routing-based models with fixed demand This
modeling approach extends static VRP modeling by
integrating vehicle acquisition costs in the objective
function so as to minimize the overall system costs
required to serve given customer demand. The prob-
lems are generally formulated as mixed-integer opti-
mization problems and are solved by state-of-the-art
integer programming techniques for small instances
and (meta)heuristics for large-scale instances. Charg-
ing scheduling subproblems are integrated into these
models to track EV energy consumption and recharg-
ing so as to minimize fleet charging times/costs. For
example, Hiermann et al. [57] propose a joint opti-
mization model for EV fleet configuration and rout-
ing. An adaptive large neighbourhood search (ALNYS)
is proposed to solve large-scale test instances. Rezgui
et al. [58] consider the joint fleet-size and routing

optimization problem for modular electric vehicles.
A variable neighborhood descent heuristic is pro-
posed for larger extended Solomon’s instances with
up to 400 customers and hundreds of vehicles.

b. Location routing models This approach considers the
joint optimization of charging station location, fleet
size, and vehicle routing decisions to meet determin-
istic customer demands. It involves the extension of
VRP models by integrating strategic decisions (charg-
ing station locations) to achieve higher synergy and
minimize the overall system operation cost from a
long-term perspective. For example, Zhang et al. [99]
propose an optimization model for joint fleet-size
and charging-infrastructure planning of autonomous
electric vehicles. The objective function considers
the annual investment costs of vehicles and charging
facilities, operational costs (time and electricity), and
maintenance costs to meet OD demands. Schiffer
et al. [39] provide a comprehensive review of location
routing problems with intermediate stops.

c. Simulation-based models under uncertain demand
This approach applies simulation approaches to
minimize the fleet-size requirements of on-demand
mobility systems in order to meet specific demand
scenarios. Using the simulation approach allows
considering dynamic and stochastic environments
and more realistic case studies. For example, Winter
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et al. [59] propose a modeling framework to evalu-
ate the performance and fleet requirements of auto-
mated DRT under different demand scenarios. The
objective is to minimize the overall operational cost
and passengers’ generalized travel costs. Chen et al.
[16] propose a multi-agent simulation approach for
charging-infrastructure and fleet-size planning under
different scenarios for autonomous electric vehicles.

d. Network flow models This approach considers sup-
ply—demand interactions under a network flow mod-
eling framework. Customer demand is expressed as
flows in space (OD demand matrices) and time (dis-
cretized periods) for which the operator optimizes
their fleet size, vehicle dispatches, and idle vehicle
relocations so as to minimize the overall cost and
unmet customer demand. Beaujon and Turnquist
[56] apply this approach for the joint optimization of
fleet size and idle-vehicle allocation under stochastic
demand.

e. Stochastic/robust optimization models This approach
aims to integrate different sources of uncertainty
in fleet-size planning. Sayarshad and Tavakkoli-
Moghaddam [60] propose a stochastic optimiza-
tion approach for multi-period rail-car fleet-size
planning. The objective is to maximize the revenue
generated by sending loaded cars between origins
and destinations (ODs) while considering the trans-
portation costs and unmet demand costs between
ODs. A simulated annealing heuristic is proposed to
solve the two-stage stochastic optimization problem.
Schiffer and Walther [61] propose a robust optimiza-
tion approach for the joint optimization of fleet size,
charging station locations, and routing under uncer-
tain demand scenarios. The authors propose a hybrid
ALNS solution. Guo et al. [62] propose a robust opti-
mization approach for the fleet-size minimization of
taxi-like services using autonomous vehicles under
the worst budget scenario in the uncertainty set. She-
hadeh et al. [63] propose a two-stage mixed-integer
stochastic optimization approach and a distribution-
ally robust two-stage optimization approach for fleet-
size optimization and allocation to last-mile service
regions under uncertain demand. The objective is to
minimize the waiting times and riding times of cus-
tomers. The solution is based on the sample average
approximation approach to solve the stochastic opti-
mization approximately.

Table 3 summarizes problem characteristics, prob-
lem formulations, objective functions, and solution
algorithms.
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3.3 Charging infrastructure location and configuration
Charging infrastructure planning needs to consider the
characteristics of charging technologies, procurement,
installation and operational costs, location costs, user
charging needs/usage scenarios, power grid supply and
compatibility with the charging power of vehicles, etc.
The decision of charging technologies influences the
charging times of vehicles, which in turn affects the avail-
ability of both chargers and vehicles to serve custom-
ers. Different mathematical models have been proposed
in the past to address either public or company-owned
charging-station planning. Public charging planning con-
siders the charging needs of private EVs [64] or e-taxis
[65]. The main modeling approaches can be classified
into node-based facility location and path-based facil-
ity location approaches [65, 66]. The reader is referred
to the recent reviews of this topic [8, 66—68]. In the cur-
rent paper, we focus on the mathematical modeling and
solution algorithms for charging infrastructure plan-
ning involving the vehicle-routing decisions of EV-DRT
systems.

a. Set covering Kunith et al. [69] propose a capacitated
set-covering model to plan the number and loca-
tions of fast-charging stations for busline operations
considering daily customer demand. Realistic energy
consumption scenarios are considered to take into
account the charging needs of bus operations under
different scenarios. Wu et al. [70] propose fast-charg-
ing facilities for an e-bus system at existing bus ter-
minals to minimize the overall investment, the main-
tenance costs of charging facilities, the access costs
for recharging, and the power-loss costs under charg-
ing load capacity constraints. An [71] formulates a
variant of the set-covering model to jointly optimize
bus charging-station locations and fleet size by con-
sidering time-dependent energy prices and stochastic
bus charging demand.

b. Location-routing optimization This approach formu-
lates the charging infrastructure planning problem
as a joint optimization problem with vehicle-route
and/or fleet-size planning. Based on the character-
istics of demand, the proposed approaches can be
further classified into classical integer programming
and stochastic/robust optimization to address dif-
ferent sources of uncertainty. For example, Schiffer
and Walther [72] propose a mixed-integer location-
routing model to jointly minimize the number of
charging stations, the fleet size, and routing costs
by considering partial recharge for VRP with time-
window constraints. The proposed model is tested on
the instances of Schneider et al. [24], with up to 100
customers, and solved by commercial solvers. Hua
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et al. [73] propose a multi-stage stochastic optimiza-
tion problem for charging-infrastructure planning of
an electric car-sharing system. The model takes into
account the joint optimization of long-term charg-
ing infrastructure planning and short-term vehicle
relocation and charging operations of the fleet under
uncertain multi-period demands. Random customer
demand is modeled using the scenario tree approach.
The objective is to minimize the overall system cost
over multiple planning periods. Stumpe et al. [74]
propose a mixed-integer programing model for
charging infrastructure locations and electric bus-
line operation optimization for a set of bus trips. The
authors propose a sensitivity analysis approach to
identify persistent structures of the solutions given
uncertain input parameter distributions and configu-
rations based on realistic electric bus operation data.

Bi-level optimization-simulation approach This
approach considers a bi-level modeling structure by
iteratively optimizing the location and number of
charging stations at the upper level while simulating
charging operations at the lower level to obtain the
system performance in terms of charging operational
delays or vehicle idle times. This approach can flex-
ibly take into account different sources of uncertainty
and explicitly considers charging waiting times based
on EV arrival and charging service rates at charg-
ing stations. For example, Jung et al. [65] propose a
bi-level optimization-simulation approach to locate
e-taxi charging stations in an urban area. The upper-
level problem is modeled as a multiple server location
problem under the number of charger installations at
each candidate charging location. Ma and Xie [97]
propose a bi-level optimization-simulation approach
for charging-infrastructure planning for electric
microtransit systems. The authors consider the
sub-problem of online vehicle—charger assignment
optimization to minimize the idle times of vehicles
when recharging. A surrogate-based optimization
approach is proposed for its application in a realis-
tic simulation case study in Luxembourg. Lokhand-
wala and Cai [75] propose an agent-based simulation
approach for charging-infrastructure planning under
different demand scenarios. The model allows con-
sidering the number of charging stations and plugs,
as well as the problem of extensions of new charg-
ing infrastructure. The modeling framework consists
of generating customer demand, based on which EV
charging demand is explicitly simulated with queuing
dependent on EV arrival and service rates.
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Table 4 summarizes recent developments in charging
station location planning for electrified transportation
systems.

4 Open-access datasets, test instances,

and software
In this section, we summarize the available open-access
online resources including trips datasets, numerical test
instances, and software for EV-VRP and its variants (see
Table 5). These freely available datasets and software
could be adapted to generate new test instances with
new algorithms. Two datasets by Schneider et al. [24]
for electric vehicle routing problems with time windows
(E-VRPTW), extended from the benchmark instances of
Solomon [76], have been widely used to test different var-
iants of EV-VRP. Felipe et al. [77] provide large instances
with 100, 200, and 400 randomly distributed customers.
Mendoza et al. (2014) collect several VRP- and EV-VRP-
related test instances. Bongiovanni [47] provides two
sets of small instances with up to 50 customers based
on randomly generated customers and Uber ride data.
Some authors use freely available ride data from ride-
hailing companies to test the performance of proposed
operational policies for dynamic ride-hailing systems
[54, 55]. Froger et al. [78] provide 120 test instances for
EV-VRP with non-linear charging functions and capaci-
tated charging stations. The exact up-to-date and heuris-
tic solutions for EV-VRPTW are provided in Kucukoglu
etal. [14].

In terms of solution algorithms and software, most
studies utilize commercial solvers like CPLEX and
Gurobi to solve the mixed-integer programming prob-
lems and obtain exact solutions. There are few freely
available codes for the heuristics shared among the scien-
tific community. An exception can be found in Kullman
et al. [79], who publish their Python package for solving
the exact fixed-route vehicle-charging problem using the
labeling algorithm. The recently developed general VRP
solver has good potential for application in solving exact
EV-VRP variants [80].

5 Conclusions and future research directions

The accelerated electrification of transport systems with
EVs has brought new challenges for charging scheduling,
fleet management, and charging infrastructure location
and configuration planning. We have summarized recent
developments and mathematical modeling approaches
and identified future research directions for strategic,
tactical, and operational decisions for EV-DRT systems.
Moreover, existing open-access datasets, numerical test
instances, and software are listed for future research in
EV-DRT and related problems. Future research direc-
tions are discussed as follows.
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5.1 System-level integration with the power grid 5.2 Multi-period planning and decision support-system
development
+ Integrating impact on power grids While significant

research has contributed to EV charging schedul- o Integrate multi-period planning Significant research

ing in the context of urban logistics or DRT, few
studies integrate the impact of fleet charging on the
power grid. Future extensions could address this
by considering the impact on the power distribu-
tion network according to the number of charging
plugs and space-time power-supply constraints [81,
82]. Moreover, studying smart dynamic fleet charg-
ing/discharging strategies—including V2G technol-
ogy—to enhance grid stability and increase TNC
revenue is a promising research direction.

o Integrating time-dependent energy prices Integrat-

ing time-dependent energy prices to minimize
TNC fleet-charging management could significantly
reduce daily charging costs [26]. However, most
existing studies ignore this aspect by assuming uni-
tary energy prices. Future extensions could develop
new charging strategies by considering time-vary-
ing energy prices and evaluating the impact on cost
and other system-performance metrics.

o Integrating smart grids for fleet charging manage-

ment EV charging management can further con-
sider frequency regulation support of the power
grid as an energy storage device. With V2G tech-
nology, EVs can further gain revenue by applying
smart charging/discharging strategies during off-
peak/peak hours [83]. The cooperative game-theo-
retical approach (Ziad, Rajamani, & Manikas, 2019)
provides a methodological framework to model the
interactions of EV fleets and different actors in the
energy market (aggregators, distribution system
operators, energy prosumers/producers, etc.).

+ Increasing the use of renewable energy sources for

charging To further minimize impacts in terms of
climate change, the use of renewable energy for EVs
could be enhanced by integrating the modeling of
energy-demand interactions. Wellik et al. [84] pro-
pose a simulation approach to jointly model the
interactions of a grid operator and transit bus with
V2@ technology charging operations so as to mini-
mize the energy supply costs of the grid operator
and the total charging costs of e-buses by ensuring
a greater use of renewable energy sources for charg-
ing. Future research could investigate dynamic pric-
ing mechanisms using a game-theoretical approach
to incentivize the participation of bus operators in
grid-support services.

has focused on the single-period problem for EV
routing and charging management planning with
given demands. Further research could study joint
strategic, tactical, and operational decision plan-
ning under a multi-period planning horizon. Under
this modeling framework, demand uncertainty and
dynamic resource assignment could be integrated
over longer planning periods, for which stochastic
or robust optimization methods could be developed
under different scenarios [60, 85].

Developing a decision support system for EV-DRT
system planning and policy evaluation: Developing
such a decision support system would help trans-
port operators and policymakers evaluate and test
their business models before and during the deploy-
ment of their services. For policymakers, such tools
enable evaluating the impacts of different policies on
social welfare [86]. Existing studies are mainly based
on combustion-engine vehicles [87, 88]. Using a sys-
tems engineering approach and enhancing collabora-
tion between operators and stakeholders could help
develop an impactful decision support system to pro-
mote EV-DRT system deployment in the future [89]).

5.3 Dynamic charging scheduling under uncertainty

o Developing advanced deep reinforcement-learning

techniques for addressing state-action value approxi-
mation involving continuous state/action spaces The
recent study by [54, 79] shows promising results
compared to a re-optimization policy for ride-hailing
services. Future research could extend this study to
other on-demand mobility services and compare its
results with other optimization-based approaches
[18].

o Multimodal integration with EV-DRT Several stud-

ies have proposed a reinforcement-learning-based
approach to optimize the dispatching and routing of
ride-hailing/ride-sharing services using EVs under
a stochastic environment. However, these studies
do not consider service integration with the transit
system. It is a natural extension to integrate transit
systems into these on-demand mobility systems to
provide users with seamless multimodal solutions to
future requests based on the reinforcement-learning
approach. Moreover, it is desirable to make a set of
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numerical test instances freely available to support
algorithm design and comparison.

5.4 Modeling challenges with new technologies

o Develop new charging strategies involving V2G tech-
nology V2G technology provides EV fleets with the
capability of providing grid services to gain revenue
from smart charging strategies. Existing studies
mainly focus on the charging control strategy of pri-
vate EVs to encourage their participation in grid ser-
vices [90]. Further research could study smart charg-
ing strategies using V2G technology to maximize the
revenue from charging/discharging operations and
provide grid services to reduce their impact on the
grid.

« Develop incentives to encourage TNC participation in
grid-support services Given the expected large-scale
adoption of EVs in the near future, their impact on
the grid needs to be assessed and remedial solutions
using EV energy storage and discharge capabilities
via V2G technology need to be developed. Existing
studies mainly focus on private EV charging strategy
development, and investigations of electric vehicle
on-demand mobility services are few. The game-the-
oretical approach provides a theoretical framework
to model the interactions between different actors
(e.g., energy producers, grid operators, prosumers,
EVs, and other customers). It allows designing effi-
cient control and pricing policies by considering the
competition and cooperative behaviors of different
agents [46, 90-92]. Future research could develop
dynamic pricing mechanisms to allow fleet operators
to lower their energy consumption costs, increase the
use of renewables, and support frequency-regulation
services for the power grid.

« Develop new strategies with integrated photovoltaic
EVs: Electric vehicles with mounted photovoltaic
panels on the roof have been introduced by many
vehicle manufacturers,®* It has been shown that
passenger cars using the car-roof photovoltaic can
potentially achieve a 70% solar-driven performance
[93]. By using solar energy, integrated photovol-
taic EVs have good potential to reduce the charging
demand and their impacts on the power grid. Future
research can analyze the economic viability, business

3 https://www.autonews.com/article/20160616/OEMO05/160619900/next-
generation-toyota-prius-has-solar-roof-for-europe-japan.

* https://www.hyundai.news/eu/articles/press-releases/hyundai-launches-
first-car-with-solar-roof-charging-system.html.
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models, and environmental benefits of deploying
integrated photovoltaic EVs.
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