With respect to societal costs, the present study suggests that it is feasible to enhance school transportation safety for children by implementing alternative measures for their morning pick-up and afternoon let-off procedures. The societal costs for these measures should, however, be set into context with the cost of a loss of a “statistical life” [8, 9, 13] due to a traffic related fatality.
The Swedish Road Administration (SRA) has adopted the Willingness To Pay (WTP) concept [8, 14] when estimating Society’s marginal benefit for every casualty avoided. This valuation consists of several dimensions, material costs representing <0.5% of the total valuation of safety. Currently, the value of a statistical life is set by SRA to 1.95 million €, a value not significantly different than those set by the equivalents of SRA in the U.K. and in the U.S. [15]. Mirrored towards this figure, the investigated measures costing 119,758 € per school year suggests that if only one child’s life is saved over a period of 16 years in the target community of the present study, it is, in fact, not only from a humanity aspect but also from a strict economical aspect, a sound implementation strategy. However, the WTP approach may be an oversimplification on a societal level, since the WTP methodology is based upon a theoretically accepted cost of death set by individual judgements. When it comes implementation of the proposed measures, the actual societal WTP remains to be investigated. Nevertheless, the WTP value offers a benchmark for stakeholders to set the costs of the suggested measures into a macro economical context.
One could argue that implementation of measure 2 could be viewed upon as a measure not only supporting school transportation, but also other road users. Hence, the school transportation system should share the costs for new construction with others. If excluding measure 2 related costs, the suggested measures required 68 530 € per school year for implementation, suggesting that if only one child’s life is saved over a period of 28 years in that municipality, this is a sound implementation strategy.
Based on the Anund et al. [1] cost benefit analyses figure of 0.06–0.2 € per child per school day for a Societal break even, yet another line of reasoning is to say that it will take 58–193 extra days of additional costs of 11.2–11.5 €/school day per child to make the bus stops safe. However, this line of reasoning is based on the assumption that the described measures would prevent all school transportation related injuries, which is not the case, since the present study only covered children with “bus stops” at high speed roads.
Since these children use the same buses as children with “bus stops” at other roads within the municipality, it is not possible to use route optimizing to reroute the operating lines. If taking into account the total school transportation system within a municipality, route optimizing most likely would make it possible to relocate “bus stops” from high speed roads at even lower costs. The results related to the cost should thus be regarded as the maximum cost, since the current cost for the children’s travel is not deducted from the cost for the proposed measures. Admittedly, this is a limitation of the present study.
Most of the suggested measures are relatively easy to implement, i.e. all but measure 2. The least expensive one, measure 1, is also the one most suitable for the majority of children. Together with measure 3, also being both simple to implement and fairly cheap, these two measures covered the need of 86% of the included children. The present study showed that by allocating a small sum per child per school day, almost nine out of ten children’s transportation safety may substantially be enhanced. Relocation of these “bus stops” also opens up for the children to benefit from a future implementation of Swedish law of passing a bus at standstill in no higher speeds than 30 km/h [4, 16]. In fact, planning school transportation is not only an economical issue, but also a matter of creative thinking.
The present study highlights the dangers presented each day to the children within the school transport system. Almost all of the children needed to cross the high speed road at unmarked spots each day and one fifth of the children had to walk along on the shoulder with vehicles passing in speeds about 90 km/h. Equally alarming were the design and location of the “bus stops”, shown in Fig. 2, and the fact that one third of them lacked waiting space areas.
This study covered all children at high speed roads known by the local authority in the targeted municipality. Such an approach suggests that generalization of the results may be questioned, since we do not compare the results with a random sample of children in school transportation in Sweden. However, for such an investigation, it would be possible to use the same procedures as is used in the present study. The targeted northern municipality was chosen due to its rural nature, rendering a substantial number of children on high speed roads. Southern communities with more urban settings may have fewer “bus stops” on roads with 90 km/h. A shift in proposed measures is in that case also likely to be found. For example, it is highly unlikely that it is possible to suggest rerouting of public transport, due to a significant number of passengers being other types of passengers than the target group of the present study. Instead, measures 2, and 4, would rather be preferred.
The children included in this study is not a sample of children that use bus stops on roads with speed limits of 90 km/h in this area, rather the study includes all children in such an environment. However, a limitation is that it is still a small number of children and in relation to crash statistics it is not possible to evaluate the effects of proposed changes for the 58 children included. This area could be seen as representative for all areas in Sweden, but still such an assumption is risky, due to the limited number of children included and thus the restricted possibility to generalize the results. However, looking into national crash statistics [7] it is clearly shown that children are at highest risk along roads with high speed limits and therefore the results are still of interest, even if the area used and the number of children in this are few.
It is interesting to notice that, despite the fact that one of the reasons behind the child achieving free school transportation is if it is required due to the traffic conditions, children are urged to use this service on high speed roads that they most often also have to cross or walk along. One may argue that this situation hopefully applies to the older children rather than the younger. However, in the present study 45% of the children were younger than 13 years old, indicating that also the younger children are on high speed roads on an every day basis. Now, regardless of whether this holds true or not on a national level, the age of the child does not seem to be the crucial factor. As shown by Anund et al. [6], half of the injured children in school transportation were older than 12. As a matter of fact, the present study supports the idea that no child should be present as pedestrian on or in the vicinity of high speed roads, regardless of age.
The presents study applied a door-to-door “travel chain” perspective [10], meaning that the school transportation starts as the child departures home and ends when the child is inside school (and vice versa in the afternoon). This door-to-door approach includes all events in-between and, hence, “bus stops” and the way to access them becomes part of the school transportation. However, most statistics available do not apply this perspective, which makes comparisons of our results across borders in Europe and elsewhere impossible, unfortunately.