BMU, Arbeitsgruppe IK III 1: Klimaschutz in Zahlen: Fakten, Trends und Impulse deutscher Klimapolitik.
Göhlich, D., Nagel, K., Syré, A. M., Grahle, A., Martins-Turner, K., Ewert, R., Miranda Jahn, R., & Jefferies, D. (2021). Integrated approach for the assessment of strategies for the decarbonization of urban traffic. Sustainability, 13(2), 839. https://doi.org/10.3390/su13020839
Article
Google Scholar
Göhlich, D., Raab, A.F. (Eds.): (2021). Mobility2Grid - Sektorenübergreifende Energie- und Verkehrswende, 1. auflage 2021 edn. Energie- und Mobilitätssysteme der Zukunft. Springer Berlin and Springer Vieweg, Berlin.
Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit: Klimaschutzbericht 2019. https://www.bmu.de/download/klimaschutzbericht-2019/.
Robinius, M., Linßen, J., Grube, T., Reuß, M., Stenzel, P., Syranidis, K., Kuckertz, P., & Stolten, D. Comparative analysis of infrastructures: Hydrogen fueling and electric charging of vehicles.
Miranda Jahn, R., Syré, A.M., Grahle, A., Martins-Turner, K., & Göhlich, D. Methodology for determining charging strategies for freight traffic vehicles based on traffic simulation results. https://doi.org/10.14279/depositonce-10977.
FuelCellWorks: Mitsubishi Fuso Presents its First Fuel Cell Concept Truck “Vision F-Cell” at Tokyo Motor Show 2019 (26.08.2020). https://fuelcellsworks.com/news/mitsubishi-fuso-presents-its-first-fuel-cell-concept-truck-vision-f-cell-at-tokyo-motor-show-2019/ Accessed 26.08.2020
Prandi, R. (2020). The Nikola Tre Lands in Europe. https://dieselprogress.com/nikola-tre-landed-in-europe-29701/ Accessed May 28, 2020.
Gnann, T., Patrick Plötz, P., Wietschel, M., & Kühn, A. (2017). How to decarbonise heavy road transport. Accessed November 16, 2020.
Gangloff, J.e.a. (2016). Design space assessment of hydrogen storage onboard medium and heavy duty fuel cell electric trucks. In ASME 2016 14th international conference on fuel cell science, engineering and technology.
Elgowainy, A., & Reddi, K. (2017). Hydrogen refueling analysis of heavy-duty fuel cell vehicle fleet (8.6.2017)
EnergieArgentur.NRW: Brennstoffzelle & Wasserstoff - Brennstoffzelle und Wasserstoff, Elektromobilität: Erzeugung (13-August-2020). https://www.energieagentur.nrw/brennstoffzelle/brennstoffzelle-wasserstoff-elektromobilitaet/erzeugung
H2 MOBILITY: Netzausbau live (14-August-2020). https://h2.live/
González Palencia, J. C., Araki, M., & Shiga, S. (2017). Energy consumption and CO2 emissions reduction potential of electric-drive vehicle diffusion in a road freight vehicle fleet. Energy Procedia, 142, 2936–2941. https://doi.org/10.1016/j.egypro.2017.12.420
Article
Google Scholar
Hammond, W., Axsen, J., & Kjeang, E. (2020). How to slash greenhouse gas emissions in the freight sector: Policy insights from a technology-adoption model of Canada. Energy Policy, 137, 111093. https://doi.org/10.1016/j.enpol.2019.111093
Article
Google Scholar
den Boer, E., Aarnink, S., Kleiner, F., & Pagenkopf, J. Zero emissions trucks: An overview of state-of-the-art technologies and their potential
Kreyenberg, D., Lischke, A., Bergk, F., Duennebeil, F., Heidt, C., Knörr, W., Raksha, T., Schmidt, P., Weindorf, W., Naumann, K., Majer, S., & Müller-Langer, F. Erneuerbare Energien im Verkehr: Potenziale und Entwicklungsperspektiven verschiedener erneuerbarer Energieträger und Energieverbrauch der Verkehrsträger, Berlin
Yazdanie, M., Noembrini, F., Dossetto, L., & Boulouchos, K. (2014). A comparative analysis of well-to-wheel primary energy demand and greenhouse gas emissions for the operation of alternative and conventional vehicles in switzerland, considering various energy carrier production pathways. Journal of Power Sources, 249, 333–348. https://doi.org/10.1016/j.jpowsour.2013.10.043
Article
Google Scholar
Lombardi, S., Tribioli, L., Guandalini, G., & Iora, P. (2020). Energy performance and well-to-wheel analysis of different powertrain solutions for freight transportation. International Journal of Hydrogen Energy, 45(22), 12535–12554. https://doi.org/10.1016/j.ijhydene.2020.02.181
Article
Google Scholar
Lee, D.-Y., Elgowainy, A., Kotz, A., Vijayagopal, R., & Marcinkoski, J. (2018). Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks. Journal of Power Sources, 393, 217–229. https://doi.org/10.1016/j.jpowsour.2018.05.012
Article
Google Scholar
Bishop, J. D. K., Axon, C. J., Banister, D., Bonilla, D., Tran, M., & McCulloch, M. D. (2011). Using non-parametric statistics to identify the best pathway for supplying hydrogen as a road transport fuel. International Journal of Hydrogen Energy, 36(15), 9382–9395. https://doi.org/10.1016/j.ijhydene.2011.04.173
Article
Google Scholar
Burkhardt, J., Patyk, A., Tanguy, P., & Retzke, C. (2016). Hydrogen mobility from wind energy—A life cycle assessment focusing on the fuel supply. Applied Energy, 181, 54–64. https://doi.org/10.1016/j.apenergy.2016.07.104
Article
Google Scholar
Cetinkaya, E., Dincer, I., & Naterer, G. F. (2012). Life cycle assessment of various hydrogen production methods. International Journal of Hydrogen Energy, 37(3), 2071–2080. https://doi.org/10.1016/j.ijhydene.2011.10.064
Article
Google Scholar
Djomo, S. N., & Blumberga, D. (2011). Comparative life cycle assessment of three biohydrogen pathways. Bioresource Technology, 102(3), 2684–2694. https://doi.org/10.1016/j.biortech.2010.10.139
Article
Google Scholar
Rezaei, M., Mostafaeipour, A., Qolipour, M., & Momeni, M. (2019). Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: A case study of Iran. Frontiers in Energy, 13(3), 539–550. https://doi.org/10.1007/s11708-019-0635-x
Article
Google Scholar
Yadav, D., & Banerjee, R. (2020). Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process. Applied Energy, 262, 114503. https://doi.org/10.1016/j.apenergy.2020.114503
Article
Google Scholar
Danebergs, J. (2019). Techno-economic study of hydrogen as a heavy-duty truck fuel: A case study on the transport corridor Oslo–Trondheim. Master of science thesis, KTH Industrial Engineering and Management, STOCKHOLM (September 16/2019)
Hall, D., & Lutsey, N. Estimating the infrastructure needs and costs for the launch of zero-emission trucks.
McKinsey & Company: A portfolio of power-trains for Europe: a fact-based analysis: The role of Battery Electric Vehicles, Plug-in Hybrids and Fuel Cell Electric Vehicles.
Hülsmann, F., Mottschall, M., Hacker, F., & Kasten, P. Konventionelle und alternative Fahrzeugtechnologien bei Pkw und schweren Nutzfahrzeugen—Potenziale zur Minderung des Energieverbrauchs bis 2050
Sim, K., Vijayagopal, R., Kim, N., & Rousseau, A. (2019). Optimization of component sizing for a fuel cell-powered truck to minimize ownership cost. Energies, 12(6), 1125. https://doi.org/10.3390/en12061125
Article
Google Scholar
Zhao, H., Wang, Q., Fulton, L., Jaller, M., & Burke, A. A Comparison of Zero-Emission Highway Trucking Technologies. University of California, Institute of Transportation Studies. https://doi.org/10.7922/G2FQ9TS7
Liu, N., Xie, F., Lin, Z., & Jin, M. (2019). Evaluating national hydrogen refueling infrastructure requirement and economic competitiveness of fuel cell electric long-haul trucks. Mitigation and Adaptation Strategies for Global Change. https://doi.org/10.1007/s11027-019-09896-z.
Kovač, A., Marciuš, D., & Budin, L. (2019). Solar hydrogen production via alkaline water electrolysis. International Journal of Hydrogen Energy, 44(20), 9841–9848. https://doi.org/10.1016/j.ijhydene.2018.11.007
Article
Google Scholar
Martins-Turner, K., Grahle, A., Nagel, Kai, & Göhlich, D. (2020). Electrification of urban freight transport—A case study of the food retailing industry (pp. 1–7). Elsevier.
jsprit: (13.08.2020). https://github.com/graphhopper/jsprit
Schröder, S., & Liedtke, G. Modeling and analyzing the effects of differentiated urban freight measures—A case study of the food retailing industry, Washington, D.C.
MATSim: Multi-Agent Transport Simulation (16.11.2020). https://matsim.org/, https://github.com/matsim-org/matsim-libs.
Open Berlin Scenario (16.11.2020). https://github.com/matsim-scenarios/matsim-berlin
Geissdörfer, K., Gleich, R., & Wald, A. (2009). Standardisierungspotentiale lebenszyklusbasierter modelle des strategischen kostenmanagements. Zeitschrift für Betriebswirtschaft, 79(6), 693–715. https://doi.org/10.1007/s11573-009-0256-7
Article
Google Scholar
PTV, TCI, & Mann, H.U. Methodenhandbuch zum bundesverkehrswegeplan 2030
Eurotransport. (2018). Lastauto Omnibus Katalog 2018. Fahrzeugkosten
Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The Ecoinvent database version 3 (Part I): Overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218–1230. https://doi.org/10.1007/s11367-016-1087-8
Article
Google Scholar
Edwards, R.e.a. Well-to-tank Report Version 4.a JEC Well-to-wheels analysis: well-to-wheels analysis of future automotive fuels and powertrains in the European context
DIN Deutsches Institut für Normung e. V.: Methode zur Berechnung und Deklaration des Energieverbrauchs und der Treibhausgasemissionen bei Transportdienstleistungen (Güter- und Personenverkehr) (März 2013)
The European Parliament and The Council: amending Council Directive 96/53/EC laying down for certain road vehicles circulating within the Community the maximum authorised dimensions in national and international traffic and the maximum authorised weights in international traffic: DIRECTIVE (EU) 2015/719 (2015)
Scania: Norwegian wholesaler ASKO puts hydrogen powered fuel cell electric Scania trucks on the road (24.04.2020). https://www.scania.com/group/en/home/newsroom/news/2020/norwegian-wholesaler-asko-puts-hydrogen-powered-fuel-cell-electric-scania-trucks-on-the-road.html. Accessed April 24, 2020
Kurzweil, P. (2016). Brennstoffzellentechnik. Springer Fachmedien Wiesbaden, Wiesbaden. https://doi.org/10.1007/978-3-658-14935-2
Hunter, C., & Penev, M. Market segmentation analysis of medium and heavy duty trucks with a fuel cell emphasis.
DIN Deutsches Institut für Normung e. V.: Kraftstoffe - Dieselkraftstoff: Anforderungen und Prüfverfahren (Oktober 2017)
Fraunhofer-Institut-ISE: Öffentliche Nettostromerzeugung in Deutschland im Jahr 2019 (2019). https://www.ise.fraunhofer.de/content/dam/ise/de/documents/news/2019/Stromerzeugung_2019_2.pdf Accessed May 05, 2021
Wietschel, M., Kühnbach, M., & Rüdiger, D. (2019). Die aktuelle treibhausgasemissionsbilanz von elektrofahrzeugen in deutschland: Working paper sustainability and innovation. Technical Report
Milanzi, S., Spiller, C., Grosse, B., Hermann, L., Kochems, J., & Müller-Kirchenbauer, J. Technischer Stand und Flexibilität des Power-to-Gas-Verfahrens. https://www.er.tu-berlin.de/fileadmin/a38331300/Dateien/Technischer_Stand_und_Flexibilit%C3%A4t_des_Power-to-Gas-Verfahrens.pdf. Berlin
van Wijk, A., & Wouters, F. Hydrogen: The Bridge between Africa and Europe.
Exchange Rates UK: Euro to Norwegian Krone Spot Exchange Rates for 2018 (15-August-2020). https://www.exchangerates.org.uk/EUR-NOK-spot-exchange-rates-history-2018.html.