Akbarzadeh, M., Salehi Reihani, S. F., & Samani, K. A. (2019). Detecting critical links of urban networks using cluster detection methods. Physica A: Statistical Mechanics and Its Applications, 515, 288–298. https://doi.org/10.1016/j.physa.2018.09.170
Article
Google Scholar
Árpád, T., Zsolt, S., Gábor, U., & Bence, V. (2018). Modelling urban autonomous transport system in Budapest. In 8th International scientific conference CMDTUR 2018, October.
Baz, A., Yi, P., & Qurashi, A. (2020). Intersection control and delay optimization for autonomous vehicles flows only as well as mixed flows with ordinary vehicles. Vehicles, 2(3), 523–541. https://doi.org/10.3390/vehicles2030029
Article
Google Scholar
Bernhard, F. (2016). The effect of autonomous vehicles on traffic. In M. Markus, J. Christianerdes, B. Lenz, & H. Winner (Eds.), Autonomous driving (pp. 317–334). Berlin: Springer. https://doi.org/10.1007/978-3-662-48847-8_16
Chapter
Google Scholar
Calvert, S. C., Klunder, G., Steendijk, J. L. L., & Snelder, M. (2020). The impact and potential of cooperative and automated driving for intelligent traffic signal corridors: A field-operational-test and simulation experiment. Case Studies on Transport Policy, 8(3), 901–919. https://doi.org/10.1016/j.cstp.2020.05.011
Article
Google Scholar
Calvert, S. C., & Snelder, M. (2018). A methodology for road traffic resilience analysis and review of related concepts. Transportmetrica A: Transport Science, 14(1–2), 130–154. https://doi.org/10.1080/23249935.2017.1363315
Article
Google Scholar
Chen, B. Y., Lam, W. H. K., Sumalee, A., Li, Q., & Li, Z. C. (2012). Vulnerability analysis for large-scale and congested road networks with demand uncertainty. Transportation Research Part A: Policy and Practice, 46(3), 501–516. https://doi.org/10.1016/j.tra.2011.11.018
Article
Google Scholar
Chen, D., Ahn, S., Chitturi, M., & Noyce, D. A. (2017). Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles. Transportation Research Part B: Methodological, 100, 196–221. https://doi.org/10.1016/j.trb.2017.01.017
Article
Google Scholar
Cui, M., & Levinson, D. (2018). Accessibility analysis of risk severity. Transportation, 45(4), 1029–1050. https://doi.org/10.1007/s11116-017-9837-4
Article
Google Scholar
Dvořák, Z., Sventeková, E., Řehák, D., & Čekerevac, Z. (2017). Assessment of critical infrastructure elements in transport. Procedia Engineering, 187, 548–555. https://doi.org/10.1016/j.proeng.2017.04.413
Article
Google Scholar
Elhenawy, M., Elbery, A. A., Hassan, A. A., & Rakha, H. A. (2015). An intersection game-theory-based traffic control algorithm in a connected vehicle environment. In IEEE conference on intelligent transportation systems, proceedings, ITSC, 2015-Octob (August 2019) (pp. 343–347). https://doi.org/10.1109/ITSC.2015.65.
García-Palomares, J. C., Gutiérrez, J., Martín, J. C., & Moya-Gómez, B. (2018). An analysis of the Spanish high capacity road network criticality. Transportation, 45(4), 1139–1159. https://doi.org/10.1007/s11116-018-9877-4
Article
Google Scholar
Gauthier, P., Furno, A., & El Faouzi, N. E. (2018). Road network resilience: How to identify critical links subject to day-to-day disruptions. Transportation Research Record, 2672(1), 54–65. https://doi.org/10.1177/0361198118792115
Article
Google Scholar
Gecchele, G., Ceccato, R., & Gastaldi, M. (2019). Road network vulnerability analysis: Case study considering travel demand and accessibility changes. Journal of Transportation Engineering, Part A: Systems, 145(7), 05019004. https://doi.org/10.1061/jtepbs.0000252
Article
Google Scholar
Gu, Y., Fu, X., Liu, Z., Xu, X., & Chen, A. (2020). Performance of transportation network under perturbations: Reliability, vulnerability, and resilience. Transportation Research Part E: Logistics and Transportation Review, 133(218), 1–16. https://doi.org/10.1016/j.tre.2019.11.003
Article
Google Scholar
Hartmann, M., Krause, S., Hoffmann, S., Motamedidehkordi, N., Vortisch, P., & Busch, F. (2017). Impact of automated vehicles on capacity of the German Freeway Network VISSIM View project Virtual Reality and Pedestrian Simulation View project Impact of Automated Vehicles on Capacity of the German Freeway Network. November.
Heinzelmann, B., Indinger, T., Adams, N., & Blanke, R. (2012). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. SAE International Journal of Commercial Vehicles, 5(1), 42–56. https://doi.org/10.4271/2012-01-0107
Article
Google Scholar
Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6, 255–259.
Article
MathSciNet
Google Scholar
Jenelius, E., Petersen, T., & Mattsson, L. G. (2006). Importance and exposure in road network vulnerability analysis. Transportation Research Part A: Policy and Practice, 40(7), 537–560. https://doi.org/10.1016/j.tra.2005.11.003
Article
Google Scholar
Jia, D., & Ngoduy, D. (2016). Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication. Transportation Research Part B: Methodological, 90, 172–191. https://doi.org/10.1016/j.trb.2016.03.008
Article
Google Scholar
Jun, N. (2014). Graphical methods for data analysis. by J. M. Chambers; W. S. Cleveland; B. Kleiner; P. A. Tukey Review by: N. I. Fisher Stable URL : http://www.jstor.org/stable/2531418. 40(2), 567–568.
da Martins, M. C., Rodrigues da Silva, A. N., & Pinto, N. (2019). An indicator-based methodology for assessing resilience in urban mobility. Transportation Research Part D: Transport and Environment, 77(January), 352–363. https://doi.org/10.1016/j.trd.2019.01.004
Article
Google Scholar
Matisziw, T. C., & Murray, A. T. (2009). Modeling s-t path availability to support disaster vulnerability assessment of network infrastructure. Computers and Operations Research, 36(1), 16–26. https://doi.org/10.1016/j.cor.2007.09.004
Article
MATH
Google Scholar
Milanes, V., Shladover, S. E., Spring, J., Nowakowski, C., Kawazoe, H., & Nakamura, M. (2014). Cooperative adaptive cruise control in real traffic situations. IEEE Transactions on Intelligent Transportation Systems, 15(1), 296–305. https://doi.org/10.1109/TITS.2013.2278494
Article
Google Scholar
Obaid, M., & Szalay, Z. (2019). A novel model representation framework for cooperative intelligent transport systems. Periodica Polytechnica Transportation Engineering, 48(1), 39–44. https://doi.org/10.3311/PPtr.13759
Article
Google Scholar
Obaid, M., Szalay, Z., & Török, Á. (2020). Reconsidering the cybersecurity framework in the road transportation domain. Acta Polytechnica Hungarica, 17(9), 57–83. https://doi.org/10.12700/aph.17.9.2020.9.4
Article
Google Scholar
Obaid, M., Torok, A., & Szalay, Z. (2019). Network vulnerability of road infrastructure. East West Cohesion.
Ortega, E., Martín, B., & Aparicio, Á. (2020). Identification of critical sections of the Spanish transport system due to climate scenarios. Journal of Transport Geography, 84(March), 102691. https://doi.org/10.1016/j.jtrangeo.2020.102691
Article
Google Scholar
Piątkowski, B., & Maciejewski, M. (2013). Comparison of traffic assignment in visum and transport simulation in MATSim. Transport Problems, 8(2), 113–120.
Google Scholar
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.
Article
MathSciNet
Google Scholar
Shladover, S. E., Su, D., & Lu, X. Y. (2012). Impacts of cooperative adaptive cruise control on freeway traffic flow. Transportation Research Record, 2324(Idm), 63–70. https://doi.org/10.3141/2324-08
Article
Google Scholar
Suzuki, H., & Marumo, Y. (2018). A new approach to green light optimal speed advisory (GLOSA) systems for high-density traffic flowe. In IEEE conference on intelligent transportation systems, proceedings, ITSC, 2018-November (pp. 362–367). https://doi.org/10.1109/ITSC.2018.8569394.
Szalay, Z. (2021). Next generation X-in-the-loop validation methodology for automated vehicle systems. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3061732
Article
Google Scholar
Szarata, A., & Nosal Hoy, K. (2019). The impact of road infrastructure failures on traffic conditions and travel behaviour in urban areas—the case of the Lazienkowski Bridge in Warsaw. MATEC Web of Conferences, 284, 01006. https://doi.org/10.1051/matecconf/201928401006
Article
Google Scholar
Talebpour, A., & Mahmassani, H. S. (2016). Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transportation Research Part C: Emerging Technologies, 71, 143–163. https://doi.org/10.1016/j.trc.2016.07.007
Article
Google Scholar
Talebpour, A., Mahmassani, H. S., & Bustamante, F. E. (2016). Modeling driver behavior in a connected environment: Integrated microscopic simulation of traffic and mobile wireless telecommunication systems. Transportation Research Record, 2560(January), 75–86. https://doi.org/10.3141/2560-09
Article
Google Scholar
Taylor, M. A. P., Sekhar, S. V. C., & D’Este, G. M. (2006). Application of accessibility based methods for vulnerability analysis of strategic road networks. Networks and Spatial Economics, 6(3–4), 267–291. https://doi.org/10.1007/s11067-006-9284-9
Article
MathSciNet
MATH
Google Scholar
Tilg, G., Yang, K., & Menendez, M. (2018). Evaluating the effects of automated vehicle technology on the capacity of freeway weaving sections. Transportation Research Part C: Emerging Technologies, 96(September), 3–21. https://doi.org/10.1016/j.trc.2018.09.014
Article
Google Scholar
Varga, B., Szalai, M., Fehér, Á., Aradi, S., & Tettamanti, T. (2020). Mixed-reality automotive testing with sensoris. Periodica Polytechnica Transportation Engineering, 48(4), 357–362. https://doi.org/10.3311/PPTR.15851
Article
Google Scholar
Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. Proceedings of the Institute of Civil Engineers., 1(3), 325–362. https://doi.org/10.1680/ipeds.1952.11259
Article
Google Scholar
Yang, K., & Menendez, M. (2017). A convex model for queue length estimation in a connected vehicle environment. In Transportation Research Board 96th Annual Meeting.