Webster, F. V. (1958). *Traffic Signal Settings (no. 39)* Retrieved from https://trid.trb.org/view/113579.

Google Scholar

Robertson, D. I. (1969). *TRANSYT: A traffic network study tool* Retrieved from https://trid.trb.org/view/115048.

Google Scholar

Allsop, R. E. (1972). Estimating the traffic capacity of a signalized road junction. *Transportation Research*, *6*(3), 245–255.

Akcelik, R. (1981). *Traffic signals: Capacity and timing analysis* Retrieved from https://trid.trb.org/view/173392.

Google Scholar

Fellendorf, M. (1994). VISSIM: A microscopic simulation tool to evaluate actuated signal control including bus priority. In *64*^{th} *Institute of Transportation Engineers Annual Meeting, 32*, (pp. 1–9).

Google Scholar

Mirchandani, P., & Head, L. (2001). A real-time traffic signal control system: Architecture, algorithms, and analysis. *Transportation Research Part C: Emerging Technologies*, *9*(6), 415–432.

Article
Google Scholar

Gallivan, S., & Heydecker, B. (1988). Optimising the control performance of traffic signals at a single junction. *Transportation Research Part B: Methodological*, *22*(5), 357–370.

Article
Google Scholar

Lee, S., Wong, S. C., & Varaiya, P. (2017). Group-based hierarchical adaptive traffic-signal control part I: Formulation. *Transportation Research Part B: Methodological*, *105*, 1–18.

Article
Google Scholar

Mckenney, D., & White, T. (2013). Distributed and adaptive traffic signal control within a realistic traffic simulation. *Engineering Applications of Artificial Intelligence*, *26*(1), 574–583.

Article
Google Scholar

Spall, J. C., & Chin, D. C. (1997). Traffic-responsive signal timing for system-wide traffic control. *Transportation Research Part C: Emerging Technologies*, *5*(3–4), 153–163.

Article
Google Scholar

Urbanik, T., Tanaka, A., Lozner, B., Lindstrom, E., Lee, K., Quayle, S., … Sunkari, S. (2015). *Signal timing manual*. Washington, DC: Transportation Research Board.

Book
Google Scholar

Koonce, P., & Rodegerdts, L. (2008). *Traffic Signal Timing Manual(no. FHWA-HOP-08-024)*. U.S. Department of Transportation Federal Highway Administration. Available at https://rosap.ntl.bts.gov/view/dot/20661 [19 August 2020].

Lin, W. H., & Wang, C. (2004). An enhanced 0-1 mixed-integer LP formulation for traffic signal control. *IEEE Transactions on Intelligent Transportation Systems*, *5*(4), 238–245.

Article
Google Scholar

Dunne, M. C., & Potts, R. B. (1964). Algorithm for traffic control. *Operations Research*, *12*(6), 870–881.

Article
MathSciNet
MATH
Google Scholar

Srinivasan, D., Choy, M. C., & Cheu, R. L. (2006). Neural networks for real-time traffic signal control. *IEEE Transactions on Intelligent Transportation Systems*, *7*(3), 261–272.

Article
Google Scholar

Gazis, D. C. (1964). Optimum control of a system of oversaturated intersections. *Operations Research*, *12*(6), 815–831.

Article
MATH
Google Scholar

Boillot, F., Midenet, S., & Pierrelée, J. C. (2006). The real-time urban traffic control system CRONOS: Algorithm and experiments. *Transportation Research Part C: Emerging Technologies*, *14*(1), 18–38.

Article
Google Scholar

Ross, D. W., Sandys, R. C., & Schlaefli, J. L. (1971). A computer control scheme for critical-intersection control in an urban network. *Transportation Science*, *5*(2), 141–160.

Article
Google Scholar

Yu, X. H., & Recker, W. W. (2006). Stochastic adaptive control model for traffic signal systems. *Transportation Research Part C: Emerging Technologies*, *14*(4), 263–282.

Article
Google Scholar

D'ans, G. C., & Gazis, D. C. (1976). Optimal control of oversaturated store-and-forward transportation networks. *Transportation Science*, *10*(1), 1–19.

Article
MathSciNet
Google Scholar

Stevanovic, J., Stevanovic, A., Martin, P. T., & Bauer, T. (2008). Stochastic optimization of traffic control and transit priority settings in VISSIM. *Transportation Research Part C: Emerging Technologies*, *16*(3), 332–349.

Article
Google Scholar

Michalopoulos, P. G., & Stephanopoulos, G. (1977a). Oversaturated signal systems with queue length constraints—I: Single intersection. *Transportation Research*, *11*(6), 413–421.

Article
Google Scholar

Villalobos, I. A., Poznyak, A. S., & Tamayo, A. M. (2008). Urban traffic control problem: A game theory approach. *IFAC Proceedings Volumes*, *41*(2), 7154–7159.

Article
Google Scholar

Michalopoulos, P. G., & Stephanopoulos, G. (1977b). Oversaturated signal systems with queue length constraints—II: Systems of intersections. *Transportation Research*, *11*(6), 423–428.

Article
Google Scholar

Yin, Y. (2008). Robust optimal traffic signal timing. *Transportation Research Part B: Methodological*, *42*(10), 911–924.

Article
Google Scholar

Smith, M. J. (1979). Traffic control and route-choice; a simple example. *Transportation Research Part B: Methodological*, *13*(4), 289–294.

Article
Google Scholar

Cai, C., Wong, C. K., & Heydecker, B. G. (2009). Adaptive traffic signal control using approximate dynamic programming. *Transportation Research Part C: Emerging Technologies*, *17*(5), 456–474.

Article
Google Scholar

Improta, G., & Cantarella, G. E. (1984). Control system design for an individual signalized junction. *Transportation Research Part B: Methodological*, *18*(2), 147–167.

Article
MathSciNet
Google Scholar

Ekeila, W., Sayed, T., & Esawey, M. E. (2009). Development of dynamic transit signal priority strategy. *Transportation Research Record*, *2111*(1), 1–9.

Article
Google Scholar

Arel, I., Liu, C., Urbanik, T., & Kohls, A. G. (2010). Reinforcement learning-based multi-agent system for network traffic signal control. *IET Intelligent Transport Systems*, *4*(2), 128–135.

Article
Google Scholar

Gartner, N. H., Assman, S. F., Lasaga, F., & Hou, D. L. (1991). A multi-band approach to arterial traffic signal optimization. *Transportation Research Part B: Methodological*, *25*(1), 55–74.

Article
Google Scholar

Haddad, J., De Schutter, B., Mahalel, D., Ioslovich, I., & Gutman, P. O. (2010). Optimal steady-state control for isolated traffic intersections. *IEEE Transactions on Automatic Control*, *55*(11), 2612–2617.

Article
MathSciNet
MATH
Google Scholar

Dell'Olmo, P., & Mirchandani, P. (1995). REALBAND: An approach for real-time coordination of traffic flows on networks. *Transportation Research Record*, *1494*, 106–116.

Google Scholar

Balaji, P. G., German, X., & Srinivasan, D. (2010). Urban traffic signal control using reinforcement learning agents. *IET Intelligent Transport Systems*, *4*(3), 177–188.

Article
Google Scholar

Wong, S. C. (1996). Group-based optimisation of signal timings using the TRANSYT traffic model. *Transportation Research Part B: Methodological*, *30*(3), 217–244.

Article
Google Scholar

Prashanth, L. A., & Bhatnagar, S. (2010). Reinforcement learning with function approximation for traffic signal control. *IEEE Transactions on Intelligent Transportation Systems*, *12*(2), 412–421.

Google Scholar

Sen, S., & Head, K. L. (1997). Controlled optimization of phases at an intersection. *Transportation Science*, *31*(1), 5–17.

Article
MATH
Google Scholar

Liu, Y., & Chang, G. L. (2011). An arterial signal optimization model for intersections experiencing queue spillback and lane blockage. *Transportation research part C: emerging technologies*, *19*(1), 130–144.

Article
Google Scholar

Silcock, J. P. (1997). Designing signal-controlled junctions for group-based operation. *Transportation Research Part A: Policy and Practice*, *31*(2), 157–173.

Google Scholar

Adacher, L. (2012). A global optimization approach to solve the traffic signal synchronization problem. *Procedia - Social and Behavioral Sciences*, *54*, 1270–1277.

Article
Google Scholar

He, Q., Head, K. L., & Ding, J. (2012). PAMSCOD: Platoon-based arterial multi-modal signal control with online data. *Transportation Research Part C: Emerging Technologies*, *20*(1), 164–184.

Article
Google Scholar

De Schutter, B., & De Moor, B. (1998). Optimal traffic light control for a single intersection. *European Journal of Control*, *4*(3), 260–276.

Article
MATH
Google Scholar

Lo, H. K. (1999). A novel traffic signal control formulation. *Transportation Research Part A: Policy and Practice*, *33*(6), 433–448.

Google Scholar

Zheng, X., & Recker, W. (2013). An adaptive control algorithm for traffic-actuated signals. *Transportation Research Part C: Emerging Technologies*, *30*, 93–115.

Article
Google Scholar

Wong, S. C., & Yang, C. (1999). An iterative group-based signal optimization scheme for traffic equilibrium networks. *Journal of Advanced Transportation*, *33*(2), 201–217.

Article
Google Scholar

Christofa, E., Papamichail, I., & Skabardonis, A. (2013). Person-based traffic responsive signal control optimization. *IEEE Transactions on Intelligent Transportation Systems*, *14*(3), 1278–1289.

Article
Google Scholar

Lee, J. H., & Lee-Kwang, H. (1999). Distributed and cooperative fuzzy controllers for traffic intersections group. *IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews*, *29*(2), 263–271.

Article
Google Scholar

Zhang, L., Yin, Y., & Chen, S. (2013). Robust signal timing optimization with environmental concerns. *Transportation Research Part C: Emerging Technologies*, *29*, 55–71.

Article
Google Scholar

Trabia, M. B., Kaseko, M. S., & Ande, M. (1999). A two-stage fuzzy logic controller for traffic signals. *Transportation Research Part C: Emerging Technologies*, *7*(6), 353–367.

Article
Google Scholar

Varaiya, P. (2013). Max pressure control of a network of signalized intersections. *Transportation Research Part C: Emerging Technologies*, *36*, 177–195.

Article
MathSciNet
Google Scholar

Niittymäki, J., & Pursula, M. (2000). Signal control using fuzzy logic. *Fuzzy Sets and Systems*, *116*(1), 11–22.

Article
Google Scholar

Li, Y., Yu, L., Tao, S., & Chen, K. (2013). *Multi-objective optimization of traffic signal timing for oversaturated intersection*. In *Mathematical Problems in Engineering, 2013*.

Google Scholar

Chang, T. H., & Lin, J. T. (2000). Optimal signal timing for an oversaturated intersection. *Transportation Research Part B: Methodological*, *34*(6), 471–491.

Article
Google Scholar

He, Q., Head, K. L., & Ding, J. (2014). Multi-modal traffic signal control with priority, signal actuation and coordination. *Transportation Research Part C: Emerging Technologies*, *46*, 65–82.

Article
Google Scholar

Jin, J., & Ma, X. (2015). Adaptive group-based signal control by reinforcement learning. *Transportation Research Procedia*, *10*, 207–216.

Article
Google Scholar

Roozemond, D. A. (2001). Using intelligent agents for pro-active, real-time urban intersection control. *European Journal of Operational Research*, *131*(2), 293–301.

Article
MATH
Google Scholar

Feng, Y., Head, K. L., Khoshmagham, S., & Zamanipour, M. (2015). A real-time adaptive signal control in a connected vehicle environment. *Transportation Research Part C: Emerging Technologies*, *55*, 460–473.

Article
Google Scholar

Lo, H. K., Chang, E., & Chan, Y. C. (2001). Dynamic network traffic control. *Transportation Research Part A: Policy and Practice*, *35*(8), 721–744.

Google Scholar

Le, T., Kovács, P., Walton, N., Vu, H. L., Andrew, L. L., & Hoogendoorn, S. S. (2015). Decentralized signal control for urban road networks. *Transportation Research Part C: Emerging Technologies*, *58*, 431–450.

Article
Google Scholar

Wong, S. C., Wong, W. T., Leung, C. M., & Tong, C. O. (2002). Group-based optimization of a time-dependent TRANSYT traffic model for area traffic control. *Transportation Research Part B: Methodological*, *36*(4), 291–312.

Article
Google Scholar

Hu, J., Park, B. B., & Lee, Y. J. (2015). Coordinated transit signal priority supporting transit progression under connected vehicle technology. *Transportation Research Part C: Emerging Technologies*, *55*, 393–408.

Article
Google Scholar

De Schutter, B. (2002). Optimizing acyclic traffic signal switching sequences through an extended linear complementarity problem formulation. *European Journal of Operational Research*, *139*(2), 400–415.

Article
MATH
Google Scholar

Han, K., Liu, H., Gayah, V. V., Friesz, T. L., & Yao, T. (2016). A robust optimization approach for dynamic traffic signal control with emission considerations. *Transportation Research Part C: Emerging Technologies*, *70*, 3–26.

Article
Google Scholar

Dion, F., & Hellinga, B. (2002). A rule-based real-time traffic responsive signal control system with transit priority: Application to an isolated intersection. *Transportation Research Part B: Methodological*, *36*(4), 325–343.

Article
Google Scholar

Christofa, E., Ampountolas, K., & Skabardonis, A. (2016). Arterial traffic signal optimization: A person-based approach. *Transportation Research Part C: Emerging Technologies*, *66*, 27–47.

Article
Google Scholar

Abdulhai, B., Pringle, R., & Karakoulas, G. J. (2003). Reinforcement learning for true adaptive traffic signal control. *Journal of Transportation Engineering*, *129*(3), 278–285.

Article
Google Scholar

Choi, S., Park, B. B., Lee, J., Lee, H., & Son, S. H. (2016). Field implementation feasibility study of cumulative travel-time responsive (CTR) traffic signal control algorithm. *Journal of Advanced Transportation*, *50*(8), 2226–2238.

Article
Google Scholar

Choy, M. C., Srinivasan, D., & Cheu, R. L. (2003). Cooperative, hybrid agent architecture for real-time traffic signal control. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: systems and humans*, *33*(5), 597–607.

Article
Google Scholar

Portilla, C., Valencia, F., Espinosa, J., Núñez, A., & De Schutter, B. (2016). Model-based predictive control for bicycling in urban intersections. *Transportation Research Part C: Emerging Technologies*, *70*, 27–41.

Article
Google Scholar

Wong, C. K., & Wong, S. C. (2003). Lane-based optimization of signal timings for isolated junctions. *Transportation Research Part B: Methodological*, *37*(1), 63–84.

Article
MathSciNet
Google Scholar

Chandan, K., Seco, A. M., & Silva, A. B. (2017). Real-time traffic signal control for isolated intersection, using car-following logic under connected vehicle environment. *Transportation research procedia*, *25*, 1610–1625.

Article
Google Scholar

Chang, T. H., & Sun, G. Y. (2004). Modeling and optimization of an oversaturated signalized network. *Transportation Research Part B: Methodological*, *38*(8), 687–707.

Article
Google Scholar

Jin, J., & Ma, X. (2017). A group-based traffic signal control with adaptive learning ability. *Engineering Applications of Artificial Intelligence*, *65*, 282–293.

Article
Google Scholar

Di Febbraro, A., Giglio, D., & Sacco, N. (2004). Urban traffic control structure based on hybrid petri nets. *IEEE Transactions on Intelligent Transportation Systems*, *5*(4), 224–237.

Article
Google Scholar

Aslani, M., Mesgari, M. S., & Wiering, M. (2017). Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events. *Transportation Research Part C: Emerging Technologies*, *85*, 732–752.

Article
Google Scholar

Murat, Y. S., & Gedizlioglu, E. (2005). A fuzzy logic multi-phased signal control model for isolated junctions. *Transportation Research Part C: Emerging Technologies*, *13*(1), 19–36.

Article
Google Scholar

Li, L., Huang, W., & Lo, H. K. (2018). Adaptive coordinated traffic control for stochastic demand. *Transportation Research Part C: Emerging Technologies*, *88*, 31–51.

Article
Google Scholar

Bazzan, A. L. (2005). A distributed approach for coordination of traffic signal agents. *Autonomous Agents and Multi-Agent Systems*, *10*(2), 131–164.

Article
Google Scholar

Wang, F., Tang, K., Li, K., Liu, Z., & Zhu, L. (2019). A group-based signal timing optimization model considering safety for signalized intersections with mixed traffic flows. *Journal of Advanced Transportation*, *2019*. https://doi.org/10.1155/2019/2747569.

Salter, R. J., & Shahi, J. (1979). Prediction of effects of bus-priority schemes by using computer simulation techniques. *Transportation Research Record*, *718*, 1–5.

Google Scholar

Luyanda, F., Gettman, D., Head, L., Shelby, S., Bullock, D., & Mirchandani, P. (2003). ACS-lite algorithmic architecture: Applying adaptive control system technology to closed-loop traffic signal control systems. *Transportation Research Record*, *1856*(1), 175–184.

Article
Google Scholar

Sims, A. G., & Dobinson, K. W. (1980). The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits. *IEEE Transactions on Vehicular Technology*, *29*(2), 130–137.

Article
Google Scholar

Bing, B., & Carter, A. (1995). SCOOT: The world's foremost adaptive TRAFFIC control system. In *Traffic Tecnology International'95*.

Google Scholar

Gartner, N. H. (1983). *OPAC: A demand-responsive strategy for traffic signal control (no. 906)* Retrieved from https://trid.trb.org/view/196609.

Google Scholar

Brilon, W., & Wietholt, T. (2013). Experiences with adaptive signal control in Germany. *Transportation Research Record*, *2356*(1), 9–16.

Article
Google Scholar

Mauro, V., & Di Taranto, C. (1990). Utopia. *IFAC Proceedings Volumes*, *23*(2), 245–252.

Article
Google Scholar

Lee, J., & Park, B. (2012). Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment. *IEEE Transactions on Intelligent Transportation Systems*, *13*(1), 81–90.

Article
Google Scholar

Papageorgiou, M., Diakaki, C., Dinopoulou, V., Kotsialos, A., & Wang, Y. (2003). Review of road traffic control strategies. *Proceedings of the IEEE*, *91*(12), 2043–2067.

Article
Google Scholar

Lighthill, M. J., & Whitham, G. B. (1955). On kinematic waves II. A theory of traffic flow on long crowded roads. *Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences*, *229*(1178), 317–345.

MathSciNet
MATH
Google Scholar

Richards, P. I. (1956). Shock waves on the highway. *Operations Research*, *4*(1), 42–51.

Article
MathSciNet
MATH
Google Scholar

Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. *Transportation Research Part B: Methodological*, *28*(4), 269–287.

Article
Google Scholar

Foy, M. D., Benekohal, R. F., & Goldberg, D. E. (1992). Signal timing determination using genetic algorithms. *Transportation Research Record*, *1365*, 108–115.

Google Scholar

Park, B., Messer, C. J., & Urbanik, T. (2000). Enhanced genetic algorithm for signal-timing optimization of oversaturated intersections. *Transportation Research Record*, *1727*(1), 32–41.

Article
Google Scholar

Wallace, C. E., Courage, K. G., Hadi, M. A., & Gan, A. C. (1988). *TRANSYT-7F user’s guide*. Gainesville: University of Florida.

Google Scholar

Robertson, D. I., & Bretherton, R. D. (1991). Optimizing networks of traffic signals in real time-the SCOOT method. *IEEE Transactions on Vehicular Technology*, *40*(1), 11–15.

Article
Google Scholar

Lowrie, P. R. (1982). SCATS principles, methodology, algorithm. In *IEE Conf. On road traffic Signalling*, (pp. 67–70) IEE publication 207.

Google Scholar

Henry, J. J., Farges, J. L., & Tuffal, J. (1984). The PRODYN real time traffic algorithm. In *Control in Transportation Systems: Proceedings of the 4th IFAC/IFIP/IFORS Conference, Baden-Baden, Federal Republic of Germany, 20–22 April 1983*, (pp. 305–310). Pergamon.

List, G. F., & Cetin, M. (2004). Modeling traffic signal control using petri nets. *IEEE Transactions on Intelligent Transportation Systems*, *5*(3), 177–187.

Article
Google Scholar

Dotoli, M., & Fanti, M. P. (2006). An urban traffic network model via coloured timed petri nets. *Control Engineering Practice*, *14*(10), 1213–1229.

Article
Google Scholar

Bazzan, A. L. (2009). Opportunities for multiagent systems and multiagent reinforcement learning in traffic control. *Autonomous Agents and Multi-Agent Systems*, *18*(3), 342.

Article
Google Scholar

Guo, Q., Li, L., & Ban, X. J. (2019). Urban traffic signal control with connected and automated vehicles: A survey. *Transportation research part C: emerging technologies*, *101*, 313–334.

Article
Google Scholar

Gao, P., Kaas, H. W., Mohr, D., & Wee, D. (2016). *Automotive revolution–perspective towards 2030: How the convergence of disruptive technology-driven trends could transform the auto industry*. Advanced Industries*,* McKinsey & Company. http://hdl.voced.edu.au/10707/412253.

Dong, Z., Wu, Y., Pei, M., & Jia, Y. (2015). Vehicle type classification using a semisupervised convolutional neural network. *IEEE Transactions on Intelligent Transportation Systems*, *16*(4), 2247–2256.

Article
Google Scholar

Liu, K., & Mattyus, G. (2015). Fast multiclass vehicle detection on aerial images. *IEEE Geoscience and Remote Sensing Letters*, *12*(9), 1938–1942.

Article
Google Scholar

Friesen, M. R., & McLeod, R. D. (2015). Bluetooth in intelligent transportation systems: A survey. *International Journal of Intelligent Transportation Systems Research*, *13*(3), 143–153.

Article
Google Scholar

Lan, C. L., & Chang, G. L. (2016). Optimizing signals for arterials experiencing heavy mixed scooter-vehicle flows. *Transportation Research Part C: Emerging Technologies*, *72*, 182–201.

Article
Google Scholar

Furth, P. G., Wang, Y. D., & Santos, M. A. (2019). Multi-stage pedestrian crossings and two-stage bicycle turns: Delay estimation and signal timing techniques for limiting pedestrian and bicycle delay. *Journal of Transportation Technologies*, *9*(4), 489.

Article
Google Scholar

Fajardo, D., Au, T. C., Waller, S. T., Stone, P., & Yang, D. (2011). Automated intersection control: Performance of future innovation versus current traffic signal control. *Transportation Research Record*, *2259*(1), 223–232.

Article
Google Scholar

Xie, X. F., Smith, S. F., Lu, L., & Barlow, G. J. (2012). Schedule-driven intersection control. *Transportation Research Part C: Emerging Technologies*, *24*, 168–189.

Article
Google Scholar

Pandit, K., Ghosal, D., Zhang, H. M., & Chuah, C. N. (2013). Adaptive traffic signal control with vehicular ad hoc networks. *IEEE Transactions on Vehicular Technology*, *62*(4), 1459–1471.

Article
Google Scholar

Guler, S. I., Menendez, M., & Meier, L. (2014). Using connected vehicle technology to improve the efficiency of intersections. *Transportation Research Part C: Emerging Technologies*, *46*, 121–131.

Article
Google Scholar

Zhu, F., & Ukkusuri, S. V. (2015). A linear programming formulation for autonomous intersection control within a dynamic traffic assignment and connected vehicle environment. *Transportation Research Part C: Emerging Technologies*, *55*, 363–378.

Article
Google Scholar

Xie, X. F., & Wang, Z. J. (2018). SIV-DSS: Smart in-vehicle decision support system for driving at signalized intersections with V2I communication. *Transportation Research Part C: Emerging Technologies*, *90*, 181–197.

Article
Google Scholar